Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
JBI Evid Synth ; 22(7): 1262-1302, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533650

RESUMO

OBJECTIVE: This review aimed to synthesize the experiences of patients with metachromatic leukodystrophy, adrenoleukodystrophy, or Krabbe disease and the experiences of their families. INTRODUCTION: Leukodystrophies are metabolic diseases caused by genetic mutations. There are multiple forms of the disease, varying in age of onset and symptoms. The progression of leukodystrophies worsens central nervous system symptoms and significantly affects the lives of patients and their families. INCLUSION CRITERIA: Qualitative studies on the experiences of patients with leukodystrophies and their family members were included. These experiences included treatments such as enzyme replacement therapy and hematopoietic stem cell transplantation; effects of tracheostomy and gastrostomy; burdens on the family, coordinating care within the health care system, and family planning due to genetic disorders. This review considered studies in any setting. METHODS: MEDLINE (Ovid), CINAHL Plus (EBSCOhost), APA PsycINFO (EBSCOhost), Scopus, and MedNar databases were searched on November 18, 2022. Study selection, critical appraisal, data extraction, and data synthesis were conducted in accordance with the JBI methodology for systematic reviews of qualitative evidence, and synthesized findings were evaluated according to the ConQual approach. RESULTS: Eleven studies were eligible for synthesis, and 45 findings were extracted corresponding with participants' voices. Of these findings, 40 were unequivocal and 5 were credible. The diseases in the included studies were metachromatic leukodystrophy and adrenoleukodystrophy; no studies were identified for patients with Krabbe disease and their families. These findings were grouped into 11 categories and integrated into 3 synthesized findings, including i) providing care by family members and health care providers as physical symptoms progress, which relates to the effects of the characteristics of progressive leukodystrophies; ii) building medical teamwork to provide appropriate support services, comprising categories related to the challenges experienced with the health care system for patients with leukodystrophy and their families; and iii) coordinating family functions to accept and cope with the disease, which included categories related to family psychological difficulties and role divisions within the family. According to the ConQual criteria, the second synthesized finding had a low confidence level, and the first and third synthesized findings had a very low confidence level. CONCLUSIONS: The synthesized findings of this review provide evidence on the experiences of patients with metachromatic leukodystrophy or adrenoleukodystrophy and their families. These findings indicate that there are challenges in managing a patient's physical condition and coordinating the health care system and family functions. REVIEW REGISTRATION: PROSPERO CRD42022318805. SUPPLEMENTAL DIGITAL CONTENT: A Japanese-language version of the abstract of this review is available [ http://links.lww.com/SRX/A49 ].


Assuntos
Adrenoleucodistrofia , Família , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/psicologia , Leucodistrofia Metacromática/terapia , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/psicologia , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Leucodistrofia de Células Globoides/psicologia , Família/psicologia , Pesquisa Qualitativa , Transplante de Células-Tronco Hematopoéticas/psicologia , Terapia de Reposição de Enzimas
2.
Dev Growth Differ ; 66(1): 21-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239149

RESUMO

Inherited leukodystrophies are genetic disorders characterized by abnormal white matter in the central nervous system. Although individually rare, there are more than 400 distinct types of leukodystrophies with a cumulative incidence of 1 in 4500 live births. The pathophysiology of most leukodystrophies is poorly understood, there are treatments for only a few, and there is significant morbidity and mortality, suggesting a critical need for improvements in this field. A variety of animal, cell, and induced pluripotent stem cell-derived models have been developed for leukodystrophies, but with significant limitations in all models. Many leukodystrophies lack animal models, and extant models often show no or mixed recapitulation of key phenotypes. Zebrafish (Danio rerio) have become increasingly used as disease models for studying leukodystrophies due to their early onset of disease phenotypes and conservation of molecular and neurobiological mechanisms. Here, we focus on reviewing new zebrafish disease models for leukodystrophy or models with recent progress. This includes discussion of leukodystrophy with vanishing white matter disease, X-linked adrenoleukodystrophy, Zellweger spectrum disorders and peroxisomal disorders, PSAP deficiency, metachromatic leukodystrophy, Krabbe disease, hypomyelinating leukodystrophy-8/4H leukodystrophy, Aicardi-Goutières syndrome, RNASET2-deficient cystic leukoencephalopathy, hereditary diffuse leukoencephalopathy with spheroids-1 (CSF1R-related leukoencephalopathy), and ultra-rare leukodystrophies. Zebrafish models offer important potentials for the leukodystrophy field, including testing of new variants in known genes; establishing causation of newly discovered genes; and early lead compound identification for therapies. There are also unrealized opportunities to use humanized zebrafish models which have been sparsely explored.


Assuntos
Adrenoleucodistrofia , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Leucoencefalopatias , Animais , Peixe-Zebra/genética , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Adrenoleucodistrofia/genética , Leucoencefalopatias/terapia
3.
Mol Ther ; 32(1): 44-58, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952085

RESUMO

Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides , Cães , Animais , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Galactosilceramidase/genética , Psicosina , Transplante de Células-Tronco Hematopoéticas/métodos , Terapia Genética/métodos , Modelos Animais de Doenças
4.
Genes (Basel) ; 14(8)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37628569

RESUMO

Krabbe disease (KD) is a progressive and devasting neurological disorder that leads to the toxic accumulation of psychosine in the white matter of the central nervous system (CNS). The condition is inherited via biallelic, loss-of-function mutations in the galactosylceramidase (GALC) gene. To rescue GALC gene function in the CNS of the twitcher mouse model of KD, an adeno-associated virus serotype 1 vector expressing murine GALC under control of a chicken ß-actin promoter (AAV1-GALC) was administered to newborn mice by unilateral intracerebroventricular injection. AAV1-GALC treatment significantly improved body weight gain and survival of the twitcher mice (n = 8) when compared with untreated controls (n = 5). The maximum weight gain after postnatal day 10 was significantly increased from 81% to 217%. The median lifespan was extended from 43 days to 78 days (range: 74-88 days) in the AAV1-GALC-treated group. Widespread expression of GALC protein and alleviation of KD neuropathology were detected in the CNS of the treated mice when examined at the moribund stage. Functionally, elevated levels of psychosine were completely normalized in the forebrain region of the treated mice. In the posterior region, which includes the mid- and the hindbrain, psychosine was reduced by an average of 77% (range: 53-93%) compared to the controls. Notably, psychosine levels in this region were inversely correlated with body weight and lifespan of AAV1-GALC-treated mice, suggesting that the degree of viral transduction of posterior brain regions following ventricular injection determined treatment efficacy on growth and survivability, respectively. Overall, our results suggest that viral vector delivery via the cerebroventricular system can partially correct psychosine accumulation in brain that leads to slower disease progression in KD.


Assuntos
Leucodistrofia de Células Globoides , Substância Branca , Animais , Camundongos , Galactosilceramidase , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Psicosina , Longevidade/genética , Hidrolases , Prosencéfalo , Peso Corporal
5.
Brain Dev ; 45(7): 408-412, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37080866

RESUMO

BACKGROUND: Late-onset Krabbe disease is a disorder with autosomal recessive inheritance caused by a deficiency in galactocerebrosidase (GALC) activity. Its late-onset form usually shows slow disease progression with atypical symptoms including spastic paresis. The efficacy of hematopoietic stem cell transplantation (HSCT) in late-onset Krabbe disease has not been fully established. CASE REPORT: We describe the case of a patient with late-onset Krabbe disease showing progressive spastic paraparesis. At the age of 18, one and a half years after the development of symptoms, the patient underwent HSCT. After HSCT, the patient's GALC activity returned to a normal level and the lesions in the brain and spinal cord became faint on images. Over two and a half years after the HSCT, the patient's gait remained spastic, however, an improvement in gait speed and modified Rankin Scale score was observed. No severe adverse events occurred during this period. CONCLUSION: Our experience reported herein provides additional evidence for a favorable course in HSCT conducted in the early course of late-onset Krabbe disease.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/terapia , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/patologia , Espasticidade Muscular , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Síncope , Galactosilceramidase/genética
6.
Mol Ther ; 31(1): 7-23, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36196048

RESUMO

Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.


Assuntos
Leucodistrofia de Células Globoides , Doenças por Armazenamento dos Lisossomos , Criança , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Leucodistrofia de Células Globoides/patologia , Terapia Combinada , Mutação , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia
7.
Am J Med Genet C Semin Med Genet ; 190(2): 153-155, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36056676

RESUMO

Since the early 2000s, many families impacted by Krabbe disease have tried to implement newborn screening for this rare fatal neurological disorder in their home state. However, despite grassroots efforts, states have been unable to agree to newborn screening for Krabbe disease due to poor testing mechanisms, lack of understanding of the developmental outcomes of transplantation, low incidence rate, and more. Over the past five years, many organizations and experts have made significant strides to help Krabbe disease meet the eligibility requirements for state panels and the Recommended Uniform Screening Panel (RUSP). Nevertheless, ethicists and newborn screening advisory committees continue to disregard the progress our community has made in the treatment and screening of Krabbe disease.


Assuntos
Leucodistrofia de Células Globoides , Recém-Nascido , Humanos , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/terapia , Triagem Neonatal , Doenças Raras
8.
Indian Pediatr ; 59(9): 699-702, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35762023

RESUMO

OBJECTIVE: We present outcome data on hematopoietic stem cell transplantation (HSCT) in children with inborn errors of metabolism (IEM). METHODS: We retrospectively analyzed data on children up to 18 years of age, diagnosed with IEM, who underwent HSCT between January, 2002 and December, 2020. RESULTS: 24 children, (mucopolysaccharidosis - 13, Gaucher disease - 4, X-linked adrenoleukodystrophy - 4, metachromatic leukodystrophy - 2, Krabbe disease - 1) were included. Donors were matched family donors in 24%, matched unrelated donors in 34%, and haploidentical fathers in 42% of the transplants, with engraftment in 91% of children. Overall survival was 72% (55-100%) with a median follow-up of 76.5 (10-120 ) months, and progression-free survival of 68% (MPS-76%, X-ALD -60%, Gaucher disease - 50%, and 100% in MLD and Krabbe disease). CONCLUSION: HSCT is an available curative option, and early age at HSCT prevents end-organ damage.


Assuntos
Adrenoleucodistrofia , Doença de Gaucher , Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Erros Inatos do Metabolismo , Adrenoleucodistrofia/terapia , Criança , Doença de Gaucher/terapia , Humanos , Leucodistrofia de Células Globoides/terapia , Erros Inatos do Metabolismo/terapia , Estudos Retrospectivos
9.
Hum Gene Ther ; 33(9-10): 499-517, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35333110

RESUMO

Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.


Assuntos
Leucodistrofia de Células Globoides , Animais , Pré-Escolar , Dependovirus/genética , Modelos Animais de Doenças , Cães , Terapia Genética , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Macaca mulatta/genética , Camundongos , Psicosina
10.
Blood Adv ; 6(9): 2947-2956, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35042231

RESUMO

Infantile Krabbe disease (IKD) can be treated with hematopoietic cell transplantation (HCT) if done during the first weeks of life before symptoms develop. To facilitate this, newborn screening (NBS) has been instituted in 8 US states. An application to add IKD to the recommended NBS panel is currently under review. In this report, the outcomes of newborns with IKD diagnosed through NBS and treated with HCT are presented. The unique challenges associated with NBS for this disease are discussed, including opportunities for earlier diagnosis and streamlining treatment referrals. This is a retrospective review of six infants with IKD detected by NBS who were referred for HCT. The timing from diagnosis to HCT was examined, and both HCT and neurodevelopmental outcomes are described. Neurologic testing before HCT revealed evidence of active IKD in all infants. All underwent HCT between 24 and 40 days of age, were successfully engrafted, and are alive 30 to 58 months later (median, 47.5 months). All are gaining developmental milestones albeit at a slower pace than unaffected age-matched peers. Gross motor function is most notably affected. NBS for these patients enabled early access to HCT, the only currently available treatment of infants with IKD. All children are alive and have derived developmental and neurologic benefits from timely HCT. Long-term follow up is ongoing. Optimization of HCT and further development of emerging therapies, all of which must be delivered early in life, are expected to further improve outcomes of infants with IKD.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/terapia , Estudos Longitudinais , Triagem Neonatal
11.
J Child Neurol ; 37(1): 12-19, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670440

RESUMO

OBJECTIVE: The purpose of our study was to understand the healthcare burden and incidence of Krabbe disease (Krabbe). METHODS: Retrospective analysis of Krabbe patients identified October 1, 2015 through December 31, 2020, ages birth through age 3, evaluated in two national databases. We estimated point prevalence and incidence from year 2016 data. RESULTS: We identified 98 unique Krabbe patients with 736 visits including 260 were inpatient admissions. Total healthcare charges were $51.5 million dollars. We determined a point prevalence of 34 68 Krabbe patients in 2016 ages 0 3 years. This estimates a birth incidence of ~1 in 310,000 live births. Significance: Krabbe disease patients had over $51 million in health care charges and hundreds of hospitalizations. Estimated prevalence and birth incidence is similar to rates observed from newborn screening. Our findings show the tremendous health impacts of Krabbe disease, and provide guidance for efforts in screening and treatment planning.


Assuntos
Efeitos Psicossociais da Doença , Hospitalização/estatística & dados numéricos , Leucodistrofia de Células Globoides/epidemiologia , Leucodistrofia de Células Globoides/terapia , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos , Estados Unidos/epidemiologia
12.
Glia ; 69(10): 2309-2331, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33851745

RESUMO

Globoid cell leukodystrophy (GLD), also known as Krabbe disease, is a lysosomal storage disorder causing extensive demyelination in the central and peripheral nervous systems. GLD is caused by loss-of-function mutations in the lysosomal hydrolase, galactosylceramidase (GALC), which catabolizes the myelin sphingolipid galactosylceramide. The pathophysiology of GLD is complex and reflects the expression of GALC in a number of glial and neural cell types in both the central and peripheral nervous systems (CNS and PNS), as well as leukocytes and kidney in the periphery. Over the years, GLD has garnered a wide range of scientific and medical interests, especially as a model system to study gene therapy and novel preclinical therapeutic approaches to treat the spontaneous murine model for GLD. Here, we review recent findings in the field of Krabbe disease, with particular emphasis on novel aspects of GALC physiology, GLD pathophysiology, and therapeutic strategies.


Assuntos
Leucodistrofia de Células Globoides , Animais , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Terapia Genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/terapia , Camundongos , Bainha de Mielina/metabolismo
13.
Neurosci Lett ; 752: 135841, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766733

RESUMO

Krabbe disease (globoid cell leukodystrophy) is a lysosomal storage disease (LSD) characterized by progressive and profound demyelination. Infantile, juvenile and adult-onset forms of Krabbe disease have been described, with infantile being the most common. Children with an infantile-onset generally appear normal at birth but begin to miss developmental milestones by six months of age and die by two to four years of age. Krabbe disease is caused by a deficiency of the acid hydrolase galactosylceramidase (GALC) which is responsible for the degradation of galactosylceramides and sphingolipids, which are abundant in myelin membranes. The absence of GALC leads to the toxic accumulation of galactosylsphingosine (psychosine), a lysoderivative of galactosylceramides, in oligodendrocytes and Schwann cells resulting in demyelination of the central and peripheral nervous systems, respectively. Treatment strategies such as enzyme replacement, substrate reduction, enzyme chaperones, and gene therapy have shown promise in LSDs. Unfortunately, Krabbe disease has been relatively refractory to most single-therapy interventions. Although hematopoietic stem cell transplantation can alter the course of Krabbe disease and is the current standard-of-care, it simply slows the progression, even when initiated in pre-symptomatic children. However, the recent success of combinatorial therapeutic approaches in small animal models of Krabbe disease and the identification of new pathogenic mechanisms provide hope for the development of effective treatments for this devastating disease. This review provides a brief history of Krabbe disease and the evolution of single and combination therapeutic approaches and discusses new pathogenic mechanisms and how they might impact the development of more effective treatment strategies.


Assuntos
Galactosilceramidase/deficiência , Leucodistrofia de Células Globoides/terapia , Animais , Terapia Combinada/métodos , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Galactosilceramidase/genética , Galactosilceramidas/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Esfingolipídeos/metabolismo
14.
Mol Ther ; 29(5): 1883-1902, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508430

RESUMO

Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.


Assuntos
Galactosilceramidase/genética , Terapia Genética/métodos , Leucodistrofia de Células Globoides/patologia , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Fibrinogênio/metabolismo , Galactosilceramidase/metabolismo , Vetores Genéticos/administração & dosagem , Leucodistrofia de Células Globoides/sangue , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Masculino , Camundongos , Recidiva
15.
Mol Ther ; 29(2): 691-701, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33388420

RESUMO

Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC) and the progressive accumulation of the toxic metabolite psychosine. We showed previously that central nervous system (CNS)-directed, adeno-associated virus (AAV)2/5-mediated gene therapy synergized with bone marrow transplantation and substrate reduction therapy (SRT) to greatly increase therapeutic efficacy in the murine model of Krabbe disease (Twitcher). However, motor deficits remained largely refractory to treatment. In the current study, we replaced AAV2/5 with an AAV2/9 vector. This single change significantly improved several endpoints primarily associated with motor function. However, nearly all (14/16) of the combination-treated Twitcher mice and all (19/19) of the combination-treated wild-type mice developed hepatocellular carcinoma (HCC). 10 out of 10 tumors analyzed had AAV integrations within the Rian locus. Several animals had additional integrations within or near genes that regulate cell growth or death, are known or potential tumor suppressors, or are associated with poor prognosis in human HCC. Finally, the substrate reduction drug L-cycloserine significantly decreased the level of the pro-apoptotic ceramide 18:0. These data demonstrate the value of AAV-based combination therapy for Krabbe disease. However, they also suggest that other therapies or co-morbidities must be taken into account before AAV-mediated gene therapy is considered for human therapeutic trials.


Assuntos
Dependovirus/genética , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Leucodistrofia de Células Globoides/complicações , Leucodistrofia de Células Globoides/terapia , Animais , Transplante de Medula Óssea/métodos , Carcinoma Hepatocelular/etiologia , Terapia Combinada , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Neoplasias Hepáticas/etiologia , Camundongos
16.
Blood ; 137(13): 1719-1730, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33150395

RESUMO

Krabbe disease is a rare neurodegenerative disorder caused by a deficiency in galactocerebrosidase. The only effective treatment is hematopoietic stem cell transplantation (HSCT). Approximately 85% of Krabbe disease cases are the infantile subtypes, among which ∼20% are late infantile. Prior studies have demonstrated that HSCT is effective for early-infantile patients (0-6 months of age) who undergo transplantation while asymptomatic, compared with those receiving transplants while symptomatic. However, no studies evaluated the efficacy of HSCT for late-infantile patients (6-36 months). In this prospective, longitudinal study, patients were evaluated at a single site according to a standardized protocol. Survival analysis was performed using the Kaplan-Meier method. Differences between groups were estimated using mixed regression models to account for within-person repeated measures. Nineteen late-infantile patients underwent HSCT (March 1997 to January 2020). Compared with untreated patients, transplant recipients had a longer survival probability and improved cognitive and language function. Gross and fine motor development were most affected, with variable results. Asymptomatic patients benefitted the most from transplantation, with normal to near-normal development in all domains and some gross motor delays. Among symptomatic patients, those with disease onset at >12 months of age had better cognitive outcomes than untreated patients. Those with disease onset at ≤12 months were comparable to untreated patients. We found that HSCT prolonged the lifespan and improved the functional abilities of late-infantile patients with Krabbe disease, particularly those who underwent transplantation before onset of symptoms. In addition, our findings support prior literature that reclassifies late-infantile Krabbe disease to be symptom onset at 12 to 36 months of age.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia de Células Globoides/terapia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Pré-Escolar , Cognição , Feminino , Humanos , Lactente , Recém-Nascido , Desenvolvimento da Linguagem , Leucodistrofia de Células Globoides/fisiopatologia , Estudos Longitudinais , Masculino , Resultado do Tratamento
17.
J Clin Invest ; 130(9): 4906-4920, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773406

RESUMO

Globoid cell leukodystrophy (GLD; Krabbe disease) is a progressive, incurable neurodegenerative disease caused by deficient activity of the hydrolytic enzyme galactosylceramidase (GALC). The ensuing cytotoxic accumulation of psychosine results in diffuse central and peripheral nervous system (CNS, PNS) demyelination. Presymptomatic hematopoietic stem cell transplantation (HSCT) is the only treatment for infantile-onset GLD; however, clinical outcomes of HSCT recipients often remain poor, and procedure-related morbidity is high. There are no effective therapies for symptomatic patients. Herein, we demonstrate in the naturally occurring canine model of GLD that presymptomatic monotherapy with intrathecal AAV9 encoding canine GALC administered into the cisterna magna increased GALC enzyme activity, normalized psychosine concentration, improved myelination, and attenuated inflammation in both the CNS and PNS. Moreover, AAV-mediated therapy successfully prevented clinical neurological dysfunction, allowing treated dogs to live beyond 2.5 years of age, more than 7 times longer than untreated dogs. Furthermore, we found that a 5-fold lower dose resulted in an attenuated form of disease, indicating that sufficient dosing is critical. Finally, postsymptomatic therapy with high-dose AAV9 also significantly extended lifespan, signifying a treatment option for patients for whom HSCT is not applicable. If translatable to patients, these findings would improve the outcomes of patients treated either pre- or postsymptomatically.


Assuntos
Dependovirus , Galactosilceramidase , Terapia Genética , Leucodistrofia de Células Globoides , Animais , Modelos Animais de Doenças , Cães , Galactosilceramidase/biossíntese , Galactosilceramidase/genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Leucodistrofia de Células Globoides/terapia
19.
Neuron ; 107(1): 65-81.e9, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32375064

RESUMO

Many therapies for lysosomal storage disorders rely on cross-correction of lysosomal enzymes. In globoid cell leukodystrophy (GLD), mutations in GALC cause psychosine accumulation, inducing demyelination, a neuroinflammatory "globoid" reaction and neurodegeneration. The efficiency of GALC cross-correction in vivo, the role of the GALC substrate galactosylceramide, and the origin of psychosine are poorly understood. Using a novel GLD model, we show that cross-correction does not occur efficiently in vivo and that Galc-deficient Schwann cells autonomously produce psychosine. Furthermore, macrophages require GALC to degrade myelin, as Galc-deficient macrophages are transformed into globoid cells by exposure to galactosylceramide and produce a more severe GLD phenotype. Finally, hematopoietic stem cell transplantation in patients reduces globoid cells in nerves, suggesting that the phagocytic response of healthy macrophages, rather than cross-correction, contributes to the therapeutic effect. Thus, GLD may be caused by at least two mechanisms: psychosine-induced demyelination and secondary neuroinflammation from galactosylceramide storage in macrophages.


Assuntos
Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/enzimologia , Macrófagos/enzimologia , Células de Schwann/enzimologia , Animais , Doenças Desmielinizantes/enzimologia , Doenças Desmielinizantes/patologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucodistrofia de Células Globoides/patologia , Leucodistrofia de Células Globoides/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/enzimologia , Degeneração Neural/patologia
20.
Sci Adv ; 5(11): eaax7462, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31799395

RESUMO

Lysosomal storage disorders (LSDs) result from an enzyme deficiency within lysosomes. The systemic administration of the missing enzyme, however, is not effective in the case of LSDs with central nervous system (CNS)-involvement. Here, an enzyme delivery system based on the encapsulation of cross-linked enzyme aggregates (CLEAs) into poly-(lactide-co-glycolide) (PLGA) nanoparticles (NPs) functionalized with brain targeting peptides (Ang2, g7 or Tf2) is demonstrated for Krabbe disease, a neurodegenerative LSD caused by galactosylceramidase (GALC) deficiency. We first synthesize and characterize Ang2-, g7- and Tf2-targeted GALC CLEA NPs. We study NP cell trafficking and capability to reinstate enzymatic activity in vitro. Then, we successfully test our formulations in the Twitcher mouse. We report enzymatic activity measurements in the nervous system and in accumulation districts upon intraperitoneal injections, demonstrating activity recovery in the brain up to the unaffected mice level. Together, these results open new therapeutic perspectives for all LSDs with major CNS-involvement.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Terapia de Reposição de Enzimas/métodos , Galactosilceramidase/administração & dosagem , Leucodistrofia de Células Globoides/terapia , Nanopartículas/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Galactosilceramidase/deficiência , Células HEK293 , Antígenos HLA/metabolismo , Humanos , Leucodistrofia de Células Globoides/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ribonuclease Pancreático/metabolismo , Valina-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...