Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Virol J ; 21(1): 83, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600532

RESUMO

BACKGROUND: Avian leukosis virus Subgroup-J (ALV-J) is a rapidly oncogenic evolving retrovirus infecting a variety of avian species; causing severe economic losses to the local poultry industry. METHODS: To investigate ALV-J, a total of 117 blood samples and 57 tissue specimens of different organs were collected for virological, and pathological identification, serological examinations, molecular characterization, and sequencing analysis. To the best of our knowledge, this is the first detailed report recorded in broiler flocks in Egypt. The present study targets the prevalence of a viral tumor disease circulating in broiler flocks in the El-Sharqia, El-Dakahliya, and Al-Qalyubiyya Egyptian governorates from 2021 to 2023 using different diagnostic techniques besides ALV-J gp85 genetic diversity determination. RESULT: We first isolated ALV-J on chicken embryo rough cell culture; showing aggregation, rounding, and degeneration. Concerning egg inoculation, embryonic death, stunting, and curling were observed. Only 79 serum samples were positive for ALV-J (67.52%) based on the ELISA test. Histopathological investigation showed tumors consist of uniform masses, usually well-differentiated myelocytes, lymphoid cells, or both in the liver, spleen, and kidneys. Immunohistochemical examination showed that the myelocytomatosis-positive signals were in the spleen, liver, and kidney. The PCR assay of ALV-J gp85 confirmed 545 base pairs with only 43 positive samples (75.4%). Two positive samples were sequenced and submitted to the Genbank with accession numbers (OR509852-OR509853). Phylogenetic analysis based on the gp85 gene showed that the ALV-J Dakahlia-2 isolate is genetically related to ALV-EGY/YA 2021.3, ALV-EGY/YA 2021.4, ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9 with amino acid identity percentage 96%, 97%; 96%, 96%; respectively. Furthermore, ALV-J Sharqia-1 isolate is highly genetically correlated to ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9, ALV-J isolate QL1, ALV-J isolate QL4, ALV-J isolate QL3, ALV-EGY/YA 2021.4 with amino acid identity percentage 97%, 97%; 98%, 97%, 97%, 95%; respectively. CONCLUSIONS: This study confirmed that ALV-J infection had still been prevalent in broilers in Egypt, and the genetic characteristics of the isolates are diverse.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Galinhas , Leucose Aviária/patologia , Vírus da Leucose Aviária/genética , Egito/epidemiologia , Filogenia , Evolução Molecular , Aminoácidos/genética
2.
Infect Genet Evol ; 109: 105415, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775048

RESUMO

Tibetan chicken is found in China Tibet (average altitude; ˃4500 m). However, little is known about avian leukosis virus subgroup J (ALV-J) found in Tibetan chickens. ALV-J is a typical alpharetrovirus that causes immunosuppression and myelocytomatosis and thus seriously affects the development of the poultry industry. In this study, Tibet-origin mutant ALV-J was isolated from Tibetan chickens and named RKZ-1-RKZ-5. A Myelocytomatosis outbreak occurred in a commercial Tibetan chicken farm in Shigatse of Rikaze, Tibet, China, in March 2022. About 20% of Tibetan chickens in the farm showed severe immunosuppression, and mortality increased to 5.6%. Histopathological examination showed typical myelocytomas in various tissues. Virus isolation and phylogenetic analysis demonstrated that ALV-J caused the disease. Gene-wide phylogenetic analysis showed the RKZ isolates were the original strains of the previously reported Tibetan isolates (TBC-J4 and TBC-J6) (identity; 94.5% to 94.9%). Furthermore, significant nucleotide mutations and deletions occurred in the hr1 and hr2 hypervariable regions of gp85 gene, 3'UTR, Y Box, and TATA Box of 3'LTR. Pathogenicity experiments demonstrated that the viral load, viremia, and viral shedding level were significantly higher in RKZ-1-infected chickens than in NX0101-infected chickens. Notably, RKZ-1 caused more severe cardiopulmonary damage in SPF chickens. These findings prove the origin of Tibet ALV-J and provide insights into the molecular characteristics and pathogenic ability of ALV-J in the plateau area. Therefore, this study may provide a basis for ALV-J prevention and eradication in Tibet.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Tibet/epidemiologia , Filogenia , Virulência/genética , China/epidemiologia , Leucose Aviária/patologia
3.
Front Immunol ; 13: 907287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693802

RESUMO

Avian leukosis virus (ALV) causes various diseases associated with tumor formation and decreased fertility. Moreover, ALV induces severe immunosuppression, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. There is growing evidence showing the interaction between ALV and the host. In this review, we will survey the present knowledge of the involvement of host factors in the important molecular events during ALV infection and discuss the futuristic perspectives from this angle.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Animais , Leucose Aviária/patologia , Galinhas , Replicação Viral
4.
Avian Dis ; 66(1): 119-123, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35230044

RESUMO

Fowl glioma-inducing virus (FGV), a strain of avian leukosis virus (ALV) subgroup A, is the causal agent of fowl glioma characterized by multiple nodular astrocytic growths, gliosis, and lymphocytic encephalitis. Also associated with FGV infection are cases of cerebellar hypoplasia, perineuromas, and nonsuppurative myocarditis. Though fowl glioma has been recognized in several countries, most reports of FGV infection come from Japan. A 9-mo-old brown leghorn from a German farm with nine leghorns was presented to a veterinarian with an impaired general health with torticollis, tremor, and incoordination. Histopathology revealed multifocal nodular astrocytic growths, gliosis, and a lymphoplasmacytic encephalitis. Immunohistochemically, neoplastic astrocytes showed positivity for anti-ALV antibody. FGV was detected in the brain with nested reverse transcription-polymerase chain reaction (RT-PCR) and subsequent sequencing of PCR product. The remaining eight birds were screened for the presence of ALV with real-time RT-PCR. Four leghorns tested positive for exogenous ALV in nested RT-PCR with an identical nucleotide sequence as the leghorn with neurological symptoms. To the authors' knowledge this is the first report of a natural FGV infection in a brown leghorn in Germany with clinical manifestation.


Glioma aviar de manifestación clínica y natural en un pollo Leghorn en Alemania. El virus inductor del glioma del pollo (FGV), una cepa del subgrupo A del virus de la leucosis aviar (ALV), es el agente causal del glioma del pollo caracterizado por crecimientos astrocíticos nodulares múltiples, gliosis y encefalitis linfocítica. También se asocian con la infección por este virus, casos de hipoplasia cerebelar, perineuromas y miocarditis no supurativa. Aunque el glioma aviar se ha reconocido en varios países, la mayoría de los informes de infección por el virus inductor del glioma del pollo provienen de Japón. Un pollo Leghorn marrón de nueve meses de edad proveniente de una granja alemana con nueve aves Leghorns fue remitido a una clínica veterinaria con problemas de salud en general, tortícolis, temblores y falta de coordinación. La histopatología reveló crecimientos astrocíticos nodulares multifocales, gliosis y encefalitis linfoplasmocítica. Inmunohistoquímicamente, los astrocitos neoplásicos mostraron reacción positiva para anticuerpos contra el virus de la leucosis aviar. El virus inductor del glioma del pollo se detectó en el cerebro mediante transcripción reversa y reacción en cadena de la polimerasa anidada (RT-PCR) y con secuenciación posterior del producto de PCR. Las ocho aves restantes se examinaron para detectar la presencia del virus de la leucosis aviar mediante RT-PCR en tiempo real. Cuatro aves Leghorn dieron positivo para virus exógenos de leucosis mediante RT-PCR anidada y con una secuencia de nucleótidos idéntica a la del ave Leghorn con síntomas neurológicos. De acuerdo con el conocimiento de los autores, este es el primer informe de una infección natural por el virus inductor del glioma del pollo en un ave Leghorn marrón en Alemania que presentaba manifestaciones clínicas.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Encefalite , Glioma , Animais , Leucose Aviária/patologia , Galinhas , Encefalite/veterinária , Glioma/patologia , Glioma/veterinária , Gliose/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária
5.
Vet Microbiol ; 264: 109278, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34808431

RESUMO

MicroRNAs (miRNAs) involved host-virus interaction, affecting the replication or pathogenesis of several viruses. Although avian leukosis virus subgroup J (ALV-J) has been one of the most studied avian viruses, the effects of various host miRNAs on ALV-J infection and its underlying molecular mechanisms are still unclear. Here, we reported that gga-miR-200b-3p acts as a positive host factor enhancing ALV-J replication. We found that gga-miR-200b-3p was increased in response to ALV-J infection in host cells, and that gga-miR-200b-3p effectively enhanced ALV-J replication via targeting host protein dual-specificity phosphatase 1 (DUSP1). Collectively, these findings highlight a crucial role of gga-miR-200b-3p in ALV-J replication.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Fosfatases de Especificidade Dupla , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Replicação Viral , Animais , Leucose Aviária/patologia , Leucose Aviária/virologia , Vírus da Leucose Aviária/enzimologia , Vírus da Leucose Aviária/genética , Galinhas , Fosfatases de Especificidade Dupla/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Replicação Viral/genética
6.
Vet Res ; 52(1): 110, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412690

RESUMO

This study aimed to explore the mutual regulation between chicken telomerase reverse transcriptase (chTERT) and the Wnt/ß-catenin signalling pathway and its effects on cell growth and avian leukosis virus subgroup J (ALV-J) replication in LMH cells. First, LMH cells stably overexpressing the chTERT gene (LMH-chTERT cells) and corresponding control cells (LMH-NC cells) were successfully constructed with a lentiviral vector expression system. The results showed that chTERT upregulated the expression of ß-catenin, Cyclin D1, TCF4 and c-Myc. chTERT expression level and telomerase activity were increased when cells were treated with LiCl. When the cells were treated with ICG001 or IWP-2, the activity of the Wnt/ß-catenin signalling pathway was significantly inhibited, and chTERT expression and telomerase activity were also inhibited. However, when the ß-catenin gene was knocked down by small interfering RNA (siRNA), the changes in chTERT expression and telomerase activity were consistent with those in cells treated with ICG001 or IWP-2. These results indicated that chTERT and the Wnt/ß-catenin signalling pathway can be mutually regulated. Subsequently, we found that chTERT not only shortened the cell cycle to promote proliferation but also inhibited apoptosis by downregulating the expression of Caspase 3, Caspase 9 and BAX; upregulating BCL-2 and BCL-X expression; and promoting autophagy. Moreover, chTERT significantly enhanced the migration ability of LMH cells, upregulated the protein and mRNA expression of ALV-J and increased the virus titre. ALV-J replication promoted chTERT expression and telomerase activity.


Assuntos
Apoptose/genética , Vírus da Leucose Aviária/fisiologia , Proteínas Aviárias/genética , Movimento Celular , Galinhas/fisiologia , Telomerase/genética , Replicação Viral , Via de Sinalização Wnt , Animais , Leucose Aviária/patologia , Proteínas Aviárias/metabolismo , Carcinogênese , Linhagem Celular , Galinhas/genética , Doenças das Aves Domésticas/patologia , Telomerase/metabolismo
7.
Avian Dis ; 65(2): 237-240, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34412453

RESUMO

Histomonas meleagridis is a trichomonad protozoan parasite that can cause an important poultry disease known as histomoniasis; Marek's disease virus (MDV) and subtype J avian leukosis virus (ALV-J) usually cause avian oncogenic diseases. Although these diseases have been reported in a single pathogen infection, information about their coinfection is scarce. This study reports a naturally occurring case of coinfection with H. meleagridis, MDV, and ALV-J in a local chicken flock at the age of 150 days. Necropsy revealed necrosis and swelling in the liver and spleen. Histologic analysis showed large areas of mild to severe necrosis of hepatocytes, with numerous intralesional trophozoites of H. meleagridis by H&E and periodic acid-Schiff staining; H&E staining showed pleomorphic and neoplastic lymphoid tumor cells in the liver and myeloid cells with eosinophilic cytoplasmic granules in the spleen. Coexpression of MDV and ALV-J antigens was detected in the liver by fluorescence multiplex immunohistochemistry staining. The 18S rRNA gene of H. meleagridis, meq gene of MDV, and gp85 gene of ALV-J were identified in mixed liver and spleen tissues by PCR and sequencing, respectively.


Reporte de caso­Caracterización patológica de la coinfección con Histomonas meleagridis, el virus de la enfermedad de Marek y el virus de la leucosis aviar subtipo J en pollos Histomonas meleagridis es un parásito protozoario tricomonial que puede causar una enfermedad avícola importante conocida como histomoniasis; El virus de la enfermedad de Marek (MDV) y el virus de la leucosis aviar subtipo J (ALV-J) suelen causar enfermedades oncogénicas aviares. Aunque estas enfermedades se han reportado como infecciones patógenas separadas, la información sobre coinfección es escasa. Este estudio reporta un caso natural de coinfección con H. meleagridis, el virus de la enfermedad de Marek y el virus de la leucosis aviar subtipo J en una parvada de pollos local a la edad de 150 días. La necropsia reveló necrosis e inflamación del hígado y el bazo. El análisis histológico mostró grandes áreas de necrosis de hepatocitos de leve a severa, con numerosos trofozoítos intralesionales de H. meleagridis por tinción de hematoxilina y eosina y por tinción de ácido periódico-Schiff. La tinción de hematoxilina y eosina mostró células linfoides neoplásicas y pleomórficas en el hígado y en el bazo presencia de células mieloides con gránulos citoplásmicos eosinofílicos. La coexpresión de antígenos del virus de Marek y de la leucosis aviar subtipo J se detectó en el hígado mediante tinción inmunohistoquímica de fluorescencia múltiple. El gene de ARNr 18S de H. meleagridis, el gene meq del virus de Marek y el gene gp85 del virus de la leucosis aviar subtipo J se identificaron en tejidos mixtos de hígado y bazo mediante PCR y secuenciación, respectivamente.


Assuntos
Leucose Aviária/complicações , Galinhas , Doença de Marek/complicações , Doenças das Aves Domésticas/virologia , Infecções por Protozoários/complicações , Animais , Leucose Aviária/patologia , Vírus da Leucose Aviária/classificação , Vírus da Leucose Aviária/isolamento & purificação , Doenças Transmissíveis Emergentes/complicações , Doenças Transmissíveis Emergentes/patologia , Doenças Transmissíveis Emergentes/veterinária , Fígado/patologia , Fígado/virologia , Mardivirus/classificação , Mardivirus/isolamento & purificação , Doença de Marek/patologia , Filogenia , Doenças das Aves Domésticas/patologia , Infecções por Protozoários/patologia , Baço/patologia , Baço/virologia , Trichomonadida/classificação , Trichomonadida/isolamento & purificação
8.
Sci Rep ; 11(1): 4797, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637946

RESUMO

Avian leukosis caused by avian leukosis virus (ALV) is one of the most severe diseases endangering the poultry industry. When the eradication measures performed in commercial broilers and layers have achieved excellent results, ALV in some local chickens has gradually attracted attention. Since late 2018, following the re-outbreak of ALV-J in white feather broilers in China, AL-like symptoms also suddenly broke out in some local flocks, leading to great economic losses. In this study, a systematic epidemiological survey was carried out in eight local chicken flocks in Jiangxi Province, China, and 71 strains were finally isolated from 560 samples, with the env sequences of them being successfully sequenced. All of those new isolates belong to subgroup J but they have different molecular features and were very different from the strains that emerged in white feature broilers recently, with some strains being highly consistent with those previously isolated from commercial broilers, layers and other flocks or even isolated from USA and Russian, suggesting these local chickens have been acted as reservoirs to accumulate various ALV-J strains for a long time. More seriously, phylogenetic analysis shows that there were also many novel strains emerging and in a separate evolutionary branch, indicating several new mutated ALVs are being bred in local chickens. Besides, ALV-J strains isolated in this study can be further divided into ten groups, while there were more or fewer groups in different chickens, revealing that ALV may cross propagate in those flocks. The above analyses explain the complex background and future evolution trend of ALV-J in Chinese local chickens, providing theoretical support for the establishment of corresponding prevention and control measures.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/virologia , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Animais , Leucose Aviária/epidemiologia , Leucose Aviária/patologia , Vírus da Leucose Aviária/isolamento & purificação , China/epidemiologia , Variação Genética , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia
9.
Infect Genet Evol ; 85: 104425, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32561296

RESUMO

Since subgroup J avian leukosis virus (ALV-J) was first isolated in the United Kingdom in 1988, it has seriously hindered the development of the poultry industry worldwide. Although cases of ALV-J infection have been reported as early as 2001 in Pakistan, there was no further research on the isolation and molecular characteristics of ALVs. In the present study, we first isolated two ALVs from suspicious clinical samples that were collected from a desi chicken farm in Pakistan. The results of multiplex PCR and indirect immunofluorescent antibody assays confirmed that the two isolates (PK19FA01 and PK19SA01) belonged to ALV-J. The complete genomes of the two isolates were amplified, sequenced, and systematically analyzed. We found that gp85 of PK19FA01 was more similar to that of the prototype strain HPRS103, whereas gp85 of PK19SA01 was more similar to that of American strains. The two isolates contained an intact E element of 147 residues and had a unique 135 bp deletion in the redundant transmembrane of the 3' untranslated region. The U3 region of the two isolates was highly homologous to that of American ALV-J strains. To our knowledge, this is the first report of the isolation, complete genome sequencing, and systematic molecular epidemiological investigation of ALV-J in Pakistan. Our findings could enrich epidemiological data and might contributed to more effective measures to prevent and control avian leukosis in Pakistan.


Assuntos
Vírus da Leucose Aviária/classificação , Vírus da Leucose Aviária/genética , Leucose Aviária/virologia , Regiões 3' não Traduzidas , Animais , Leucose Aviária/patologia , Vírus da Leucose Aviária/isolamento & purificação , Linhagem Celular , Galinhas/virologia , DNA Viral , Epidemiologia Molecular , Paquistão/epidemiologia , Filogenia , Doenças das Aves Domésticas/virologia , Análise de Sequência de DNA , Proteínas do Envelope Viral/genética , Sequenciamento Completo do Genoma
10.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32213616

RESUMO

Different from other subgroups of avian leukosis viruses (ALVs), ALV-J is highly pathogenic. It is the main culprit causing myeloid leukemia and hemangioma in chickens. The distinctiveness of the env gene of ALV-J, with low homology to those of other ALVs, is linked to its unique pathogenesis, but the underlying mechanism remains unclear. Previous studies show that env of ALV-J can be grouped into three species based on the tyrosine motifs in the cytoplasmic domain (CTD) of Gp37, i.e., the inhibitory, bifunctional, and active groups. To explore whether the C terminus or the tyrosine motifs in the CTD of Gp37 affect the pathogenicity of ALV-J, a set of ALV-J infectious clones containing different C termini of Gp37 or the mutants at the tyrosine sites were tested in vitro and in vivo Viral growth kinetics indicated not only that ALV-J with active env is the fastest in replication and ALV-J with inhibitory env is the lowest but also that the tyrosine sites essentially affected the replication of ALV-J. Moreover, in vivo studies demonstrated that chickens infected by ALV-J with active or bifunctional env showed higher viremia, cloacal viral shedding, and viral tissue load than those infected by ALV-J with inhibitory env Notably, the chickens infected by ALV-J with active or bifunctional env showed significant loss of body weight compared with the control chickens. Taken together, these findings reveal that the C terminus of Gp37 plays a vital role in ALV-J pathogenesis, and change from inhibitory env to bifunctional or active env increases the pathogenesis of ALV-J.IMPORTANCE ALV-J can cause severe immunosuppression and myeloid leukemia in infected chickens. However, no vaccine or antiviral drug is available against ALV-J, and the mechanism for ALV-J pathogenesis needs to be elucidated. It is generally believed that gp85 and LTR of ALV contribute to its pathogenesis. Here, we found that the C terminus and the tyrosine motifs (YxxM, ITIM, and ITAM-like) in the CTD of Gp37 of ALV-J could affect the pathogenicity of ALV-J in vitro and in vivo The pathogenicity of ALV-J with Gp37 containing ITIM only was significantly less than ALV-J with Gp37 containing both YxxM and ITIM and ALV-J with Gp37 containing both YxxM and ITAM-like. This study highlights the vital role of the C terminus of Gp37 in the pathogenesis of ALV-J and thus provides a new perspective to elucidate the interaction between ALV-J and its host and a molecular basis to develop efficient strategies against ALV-J.


Assuntos
Vírus da Leucose Aviária/metabolismo , Vírus da Leucose Aviária/patogenicidade , Leucose Aviária/metabolismo , Doenças das Aves Domésticas/metabolismo , Proteínas do Envelope Viral/metabolismo , Motivos de Aminoácidos , Animais , Leucose Aviária/genética , Leucose Aviária/patologia , Vírus da Leucose Aviária/genética , Linhagem Celular , Galinhas , Mutação , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/patologia , Domínios Proteicos , Proteínas do Envelope Viral/genética
11.
Front Immunol ; 10: 2299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632395

RESUMO

In this study, a novel oral vaccine of recombinant Lactobacillus plantarum (L. plantarum) containing the gp85 protein was explored, and the effects of this vaccine on the prevention of subgroup J Avian Leukosis Virus (ALV-J) infection were assessed. In the current study, the gp85 protein of ALV-J was expressed on the surface of L. plantarum with the surface-display motif, pgsA, by constructing a shuttle vector pMG36e:pgsA:gp85. Surface localization of the fusion protein was verified by western blotting and flow cytometry. Subsequently, Specific Pathogen Free Hy-Line Brown layer chickens were orally vaccinated with the recombinant L. plantarum and presented with high levels of serum immunoglobulin G (IgG) and secretory immunoglobulin A (sIgA) titers in bile and duodenal-mucosal fluid. After challenged with ALV-J of a 3 × 103 50% tissue culture infective dose (TCID50), serum samples of the chickens were collected and viremia was analyzed. Results showed that, compared to the L. plantarum and PBS control group, the recombinant L. plantarum group showed a significant rise in antibody levels after inoculation, and provide improved protection against ALV-J according to viremia detection. These results indicate that oral immunization with the recombinant L. plantarum provided an effective means for eliciting protective immune response against early ALV-J infection.


Assuntos
Vírus da Leucose Aviária/imunologia , Leucose Aviária , Galinhas , Lactobacillus plantarum , Microrganismos Geneticamente Modificados , Doenças das Aves Domésticas , Proteínas do Envelope Viral , Vacinas Virais , Administração Oral , Animais , Leucose Aviária/imunologia , Leucose Aviária/patologia , Leucose Aviária/prevenção & controle , Vírus da Leucose Aviária/genética , Galinhas/imunologia , Galinhas/virologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
12.
J Vet Diagn Invest ; 31(5): 761-765, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31378167

RESUMO

We investigated the histologic findings and viral antigen distribution in 3 cases of natural coinfection of layer hens with subgroup J avian leukosis virus (ALV-J), Marek's disease virus (MDV), and reticuloendotheliosis virus (REV) in hens. At autopsy, diseased hens were found to have hepatosplenomegaly and thickened proventriculi, with white tumor nodules in the liver, spleen, lung, kidney, and ovary. Microscopically, most tissues had been infiltrated by neoplastic lymphocytes; the spleen, lung, proventriculus, heart, and liver had been infiltrated by both neoplastic lymphocytes and myeloblastic cells and/or primitive reticular cells. Fluorescence multiplex immunohistochemistry staining revealed ALV-J, MDV, and REV antigens co-expressed in the same tissue, even the same cell.


Assuntos
Leucose Aviária/virologia , Galinhas , Coinfecção/veterinária , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Animais , Antígenos Virais/análise , Leucose Aviária/imunologia , Leucose Aviária/patologia , Vírus da Leucose Aviária/fisiologia , Coinfecção/imunologia , Coinfecção/patologia , Coinfecção/virologia , Feminino , Herpesvirus Galináceo 2/fisiologia , Doença de Marek/imunologia , Doença de Marek/patologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Vírus da Reticuloendoteliose/fisiologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
13.
Gene ; 701: 72-81, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30898701

RESUMO

Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that causes severe economic losses to the poultry industry worldwide. Circular RNAs (circRNAs) are a class of non-coding RNAs that has been described in various biological systems and pathogenic processes. However, the immune mechanisms in response to circRNAs remain unknown. In this study, high-throughput transcriptome sequencing was used to detect circRNAs present in chicken macrophage (HD11) and chick embryo fibroblast (CEF) cells infected with ALV-J. We identified 7684 circRNAs from diverse genomic locations in CEF and HD11 after ALV-J infection, these RNAs showed complex expression patterns that differed based on the cells type and infection time. In total, 302 differentially expressed (DE) circRNAs and 164 DE circRNAs were identified in CEF and HD11 after ALV-J infection, respectively. CircRNA7419-associated with KDM4C- and circRNA6679 and circRNA6680-associated with TNFAIP6- were involved in the immune response upon ALV-J infection in CEF. Host genes were analyzed through further bioinformatics analysis. The result confirmed that a large number of DE circRNAs corresponded to several immune-associated or tumor-associated terms and pathways, such as Mucin type O-Glycan biosynthesis, MAPK signaling pathway, B cell receptor signaling, and Wnt signaling pathway in CEF, as well as Jak-STAT signaling pathway, apoptosis, and MAPK signaling pathway in HD11. CircRNAs related to the B cell receptor signaling pathway in CEF, and the Jak-STAT signaling pathway in HD11, were selected for circRNA-miRNA interaction network analyses. Our study indicates that circRNAs expression was altered by ALV-J infection in both CEF and HD11, and may play a key role in the progression of ALV-J infection.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Galinhas , Sistema de Sinalização das MAP Quinases , Doenças das Aves Domésticas , RNA , Via de Sinalização Wnt , Animais , Leucose Aviária/genética , Leucose Aviária/metabolismo , Leucose Aviária/patologia , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Linhagem Celular , Embrião de Galinha , Galinhas/genética , Galinhas/metabolismo , Galinhas/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , RNA/genética , RNA/metabolismo
14.
Poult Sci ; 98(7): 2772-2780, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768138

RESUMO

Avian leukosis virus subgroup J has been found to infect many types of chickens with various genetic backgrounds. The ALV-J strain NX0101, which was isolated from broiler breeders in 2001, mainly induces the formation of myeloid cell tumors. However, strain HN10PY01, which was recently isolated from laying hens, mainly induces the formation of myeloid cell tumors and hemangioma. In order to determine the difference in pathogenicity of the 2 strains in broiler chickens, 2 groups of chicken embryos were infected with NA0101 and HN10PY01 separately. A comparison was made of the mortality, oncogenicity, body weights, indexes for immune organs, levels of ALV group-specific antigen p27, and mRNA expression levels of the tumor-related gene, p53, in ALV-J-infected birds and immune organs of theses chickens in response to Newcastle Disease Virus (NDV) and avian influenza virus subtype H9 (AIV-H9) vaccination. The results indicated that strain NX0101 was highly pathogenic in broiler chickens and led to a 30% mortality rate and 45% oncogenicity, compared with the HN10PY01-infected birds. Weight of chickens was also significantly lower after 15 wk (P < 0.05). In addition, the mRNA expression levels of tumor-related p53 in medulla, liver, and lung in broilers infected with strain NX0101 were significantly higher than those infected with strain HN10PY01 (P < 0.05). These results indicated that strain NX0101 had a higher replication ability in broiler chickens. The findings of this study will contribute to further elucidating the mechanisms underlying host susceptibility and tumor classification in ALV-J-infected chickens.


Assuntos
Vírus da Leucose Aviária/patogenicidade , Neoplasias/virologia , Doenças das Aves Domésticas/virologia , Virulência , Animais , Leucose Aviária/mortalidade , Leucose Aviária/patologia , Peso Corporal , Embrião de Galinha , Galinhas , Vírus da Influenza A/imunologia , Vírus da Doença de Newcastle/imunologia , Vacinas/administração & dosagem
15.
Retrovirology ; 16(1): 1, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602379

RESUMO

BACKGROUND: The pathogenesis of immunological tolerance caused by avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, is largely unknown. RESULTS: In this study, the development, differentiation, and immunological capability of B cells and their progenitors infected with ALV-J were studied both morphologically and functionally by using a model of ALV-J congenital infection. Compared with posthatch infection, congenital infection of ALV-J resulted in severe immunological tolerance, which was identified as the absence of detectable specific antivirus antibodies. In congenitally infected chickens, immune organs, particularly the bursa of Fabricius, were poorly developed. Moreover, IgM-and IgG-positive cells and total immunoglobulin levels were significantly decreased in these chickens. Large numbers of bursa follicles with no differentiation into cortex and medulla indicated that B cell development was arrested at the early stage. Flow cytometry analysis further confirmed that ALV-J blocked the differentiation of CD117+chB6+ B cell progenitors in the bursa of Fabricius. Furthermore, both the humoral immunity and the immunological capability of B cells and their progenitors were significantly suppressed, as assessed by (a) the antibody titres against sheep red blood cells and the Marek's disease virus attenuated serotype 1 vaccine; (b) the proliferative response of B cells against thymus-independent antigen lipopolysaccharide (LPS) in the spleen germinal centres; and (c) the capacities for proliferation, differentiation and immunoglobulin gene class-switch recombination of B cell progenitors in response to LPS and interleukin-4(IL-4) in vitro. CONCLUSIONS: These findings suggested that the anergy of B cells in congenitally infected chickens is caused by the developmental arrest and dysfunction of B cell progenitors, which is an important factor for the immunological tolerance induced by ALV-J.


Assuntos
Vírus da Leucose Aviária/imunologia , Leucose Aviária/congênito , Subpopulações de Linfócitos B/patologia , Anergia Clonal , Doenças das Aves Domésticas/congênito , Células-Tronco/patologia , Animais , Anticorpos Antivirais/sangue , Leucose Aviária/patologia , Vírus da Leucose Aviária/patogenicidade , Subpopulações de Linfócitos B/química , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/virologia , Bolsa de Fabricius/patologia , Diferenciação Celular , Proliferação de Células , Galinhas , Citometria de Fluxo , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Doenças das Aves Domésticas/patologia , Proteínas Proto-Oncogênicas c-kit/análise , Células-Tronco/química , Células-Tronco/imunologia , Células-Tronco/virologia
16.
J Comp Pathol ; 160: 50-55, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29729721

RESUMO

Avian leucosis virus (ALV) is an oncogenic retrovirus that induces tumours including lymphoid leucosis and myeloid leucosis. Pleomorphic malignant mesothelioma and myelocytoma, which were thought to be induced by ALV subgroup J (ALV-J) infection, were identified in a 432-day-old broiler breeder. The bird showed no clinical signs; however, at necropsy examination there were multiple nodules in the alimentary tract. Microscopical analysis showed that these consisted of pleomorphic cells and myelocyte-like cells. Immunohistochemistry revealed that the pleomorphic cells were atypical and expressed cytokeratin, vimentin, c-kit, calretinin and ALV. The myelocyte-like cells were also positive for ALV. Retroviral type C particles were observed by electron microscopy. ALV-E and ALV-J nucleotide sequences were detected in DNA extracted from formalin-fixed and paraffin wax-embedded small intestinal tissue. Based on these results, the tumours were diagnosed as pleomorphic malignant mesothelioma and myelocytoma and were thought to have been induced by ALV-J infection. This is the first report of malignant mesothelioma associated with naturally acquired ALV-J infection.


Assuntos
Leucose Aviária/complicações , Neoplasias Pulmonares/veterinária , Mesotelioma/veterinária , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Animais , Leucose Aviária/patologia , Vírus da Leucose Aviária , Galinhas , Feminino , Mesotelioma Maligno
17.
Viruses ; 10(4)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652854

RESUMO

In recent years, cases of avian leukosis virus (ALV) infection have become more frequent in China. We isolated 6 ALV strains from yellow feather broiler breeders in south China from 2014 to 2016. Their full genomes were sequenced, compared, and analyzed with other reference strains of ALV. The complete genomic nucleotide sequences of GD150509, GD160403, GD160607, GDFX0601, and GDFX0602 were 7482 bp in length, whereas GDFX0603 was 7480 bp. They shared 99.7% to 99.8% identity with each other. Homology analysis showed that the gag, pol, long terminal repeats (LTRs), and the transmembrane region (gp37) of the env genes of the 6 viruses were well conserved to endogenous counterpart sequences (>97.8%). However, the gp85 genes displayed high variability with any known chicken ALV strains. Growth kinetics of DF-1 cells infected with the isolated ALV showed viral titers that were lower than those infected with the GD13 (ALV-A), CD08 (ALV-B), and CHN06 (ALV-J) on day 7 post-infection. The infected Specific-pathogen-free (SPF) chickens could produce continuous viremia, atrophy of immune organs, growth retardation and no tumors were observed. These subgroup ALVs are unique and may be common in south China. The results suggested that updating the control and eradication program of exogenous ALV for yellow feather broiler breeders in south China needs to be considered because of the emergence of the new subgroup viruses.


Assuntos
Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/patogenicidade , Leucose Aviária/virologia , Variação Genética , Filogenia , Recombinação Genética , Animais , Leucose Aviária/patologia , Vírus da Leucose Aviária/classificação , Vírus da Leucose Aviária/isolamento & purificação , Galinhas , China , Genoma Viral , Homologia de Sequência , Sequências Repetidas Terminais , Proteínas Virais/genética , Sequenciamento Completo do Genoma
18.
Virol J ; 15(1): 33, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29433551

RESUMO

BACKGROUND: In spite of the purification of the laying hens and broilers of avian leukosis virus (ALV) has made remarkable achievements, the infection of ALV was still serious in Chinese indigenous chickens. METHODS: In order to assess the epidemic state of avian leukosis virus in indigenous chickens in China, 10 novel strains of ALV subgroup J (ALV-J), named JS16JH01 to JS16JH10, were isolated and identified by virus isolation and immunofluorescence antibody assays from a Chinese local breed farm with a sporadic incidence of tumors. To understand their virological characteristics further, the proviral genome of ENV-LTR was sequenced and compared with the reference strains. RESULTS: The homology of the gp85 gene between the ten ALV-J strains and NX0101 was in the range from 89.7-94.8% at the nuclear acid level. In addition, their gp85 genes were quite varied, with identities of 92-98% with themselves at the nuclear acid level. There were several snp and indel sites in the amino acid sequence of gp85 genes after comparison with other reference strains of ALV. Interestingly, a novel insertion in the gp85 region was found in two strains, JS16JH01 and JS16JH07, compared with NX0101 and HPRS-103. DISCUSSION: At present, owing to the large-scale purification of ALV in China, laying hens and broiler chickens with ALV infection are rarely detected, but ALVs are still frequently detected in the local chickens, which suggests that more efforts should be applied to the purification of ALV from indigenous chickens.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/virologia , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Sequência de Aminoácidos , Animais , Leucose Aviária/patologia , Vírus da Leucose Aviária/classificação , Vírus da Leucose Aviária/isolamento & purificação , China , Mutação , Filogenia , Doenças das Aves Domésticas/patologia , Sequências Repetidas Terminais , Proteínas do Envelope Viral/genética
19.
Virus Res ; 244: 147-152, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29162488

RESUMO

Avian leukosis virus (ALV) induces multiple avian tumors, growth decrease and immune suppression. Previously, a novel natural recombinant ALV isolate FJ15HT0 was proven to be associated with significant body weight decrease, immune suppression and lymphocytoma in infected SPF chickens. In order to uncover the interaction between virus and host, we compared differences in the transcriptomes of the thymuses from the mock chickens and simulated congenitally infected chickens at 5days (d), 13d and 21d of age by RNA-seq analysis of the thymuses. Signaling pathways including cytokine-cytokine receptor interactions, peroxisome proliferator-activated receptor (PPAR) signaling pathway, Janus tyrosine kinase/signal transducers and activators of transcription (Jak-STAT) signaling pathway and fatty acid degradation were involved in the interaction between FJ15HT0 and SPF chickens. Interestingly, fold change of ciliary neurotrophic factor receptor α (CNTFRα) in infected donor collected from 2d to 21d showed a significant positive correlation with the corresponding expression of the viral gp85 gene in thymuses (r=0.656, P<0.01) and in livers (r=0.525, P<0.05). It will provide new insights for the molecular pathogenesis of ALV infection.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/genética , Proteínas Aviárias/genética , Doenças das Aves Domésticas/genética , Timo/virologia , Transcrição Gênica , Animais , Leucose Aviária/imunologia , Leucose Aviária/patologia , Leucose Aviária/virologia , Vírus da Leucose Aviária/crescimento & desenvolvimento , Vírus da Leucose Aviária/metabolismo , Proteínas Aviárias/imunologia , Peso Corporal , Galinhas , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/genética , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/imunologia , Citocinas/genética , Citocinas/imunologia , Ácidos Graxos/metabolismo , Interações Hospedeiro-Patógeno , Janus Quinases/genética , Janus Quinases/imunologia , Metabolismo dos Lipídeos , Fígado/imunologia , Fígado/virologia , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Timo/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
20.
BMC Vet Res ; 12(1): 261, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27876045

RESUMO

BACKGROUND: From 2014 to 2015 in China, many broiler breeder and layer hen flocks exhibited a decrease in egg production and some chickens developed hepatitis syndrome including hepatomegaly, hepatic necrosis and hemorrhage. Avian hepatitis E virus (HEV) and avian leucosis virus subgroup J (ALV-J) both cause decreasing in egg production, hepatomegaly and hepatic hemorrhage in broiler breeder and layer hens. In the study, the seroprevalence of avian HEV and ALV-J in these flocks emerging the disease from Shandong and Shaanxi provinces were investigated. RESULTS: A total of 1995 serum samples were collected from 14 flocks with hepatitis syndrome in Shandong and Shaanxi provinces, China. Antibodies against avian HEV and ALV-J in these serum samples were detected using iELISAs. The seroprevalence of anti-avian HEV antibodies (35.09%) was significantly higher than that of anti-ALV-J antibodies (2.16%) (p = 0.00). Moreover, the 43 serum samples positive for anti-ALV-J antibodies were all also positive for anti-avian HEV antibodies. In a comparison of both provinces, Shandong chickens exhibited a significantly higher seroprevalence of anti-avian HEV antibodies (42.16%) than Shaanxi chickens (26%) (p = 0.00). In addition, the detection of avian HEV RNA and ALV-J cDNA in the liver samples from the flocks of two provinces also showed the same results of the seroprevalence. CONCLUSIONS: In the present study, the results showed that avian HEV infection is widely prevalent and ALV-J infection is endemic in the flocks with hepatitis syndrome from Shandong and Shaanxi provinces of China. These results suggested that avian HEV infection may be the major cause of increased egg drop and hepatitis syndrome observed during the last 2 years in China. These results should be useful to guide development of prevention and control measures to control the diseases within chicken flocks in China.


Assuntos
Leucose Aviária/epidemiologia , Hepatite E/veterinária , Doenças das Aves Domésticas/epidemiologia , Animais , Anticorpos Antivirais/sangue , Leucose Aviária/patologia , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/fisiologia , Galinhas , China/epidemiologia , DNA Complementar/análise , Ensaio de Imunoadsorção Enzimática/veterinária , Hepatite E/epidemiologia , Hepevirus/genética , Hepevirus/fisiologia , Fígado/virologia , Doenças das Aves Domésticas/patologia , RNA Viral/análise , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...