Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.582
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 176, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909249

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor outcomes, especially in older AML patients. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer drug because it selectively induces the extrinsic apoptosis of tumor cells without affecting normal cells. However, clinical trials have shown that the responses of patients to TRAIL are significantly heterogeneous. It is necessary to explore predictable biomarkers for the preselection of AML patients with better responsiveness to TRAIL. Here, we investigated the critical role of tumor protein p53 inducible nuclear protein 2 (TP53INP2) in the AML cell response to TRAIL treatment. METHODS: First, the relationship between TP53INP2 and the sensitivity of AML cells to TRAIL was determined by bioinformatics analysis of Cancer Cell Line Encyclopedia datasets, Cell Counting Kit-8 assays, flow cytometry (FCM) and cell line-derived xenograft (CDX) mouse models. Second, the mechanisms by which TP53INP2 participates in the response to TRAIL were analyzed by Western blot, ubiquitination, coimmunoprecipitation and immunofluorescence assays. Finally, the effect of TRAIL alone or in combination with the BCL-2 inhibitor venetoclax (VEN) on cell survival was explored using colony formation and FCM assays, and the effect on leukemogenesis was further investigated in a patient-derived xenograft (PDX) mouse model. RESULTS: AML cells with high TP53INP2 expression were more sensitive to TRAIL in vitro and in vivo. Gain- and loss-of-function studies demonstrated that TP53INP2 significantly enhanced TRAIL-induced apoptosis, especially in AML cells with nucleophosmin 1 (NPM1) mutations. Mechanistically, cytoplasmic TP53INP2 maintained by mutant NPM1 functions as a scaffold bridging the ubiquitin ligase TRAF6 to caspase-8 (CASP 8), thereby promoting the ubiquitination and activation of the CASP 8 pathway. More importantly, simultaneously stimulating extrinsic and intrinsic apoptosis signaling pathways with TRAIL and VEN showed strong synergistic antileukemic activity in AML cells with high levels of TP53INP2. CONCLUSION: Our findings revealed that TP53INP2 is a predictor of responsiveness to TRAIL treatment and supported a potentially individualized therapeutic strategy for TP53INP2-positive AML patients.


Assuntos
Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Sulfonamidas , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Animais , Camundongos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Linhagem Celular Tumoral , Nucleofosmina , Ensaios Antitumorais Modelo de Xenoenxerto , Citoplasma/metabolismo , Feminino , Proteínas Nucleares
2.
J Biochem Mol Toxicol ; 38(7): e23757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38937960

RESUMO

Anticancer strategies using natural products or derivatives are promising alternatives for cancer treatment. Here, we showed that licochalcone D (LCD), a natural flavonoid extracted from Glycyrrhiza uralensis Fisch, suppressed the growth of breast cancer cells, and was less toxic to MCF-10A normal breast cells. LCD-induced DNA damage, cell cycle arrest, and apoptosis in breast cancer cells. Furthermore, LCD potentiated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. Mechanistically, LCD was revealed to reduce survival protein expression and to upregulate death receptor 5 (DR5) expressions. Silencing DR5 blocked the ability of LCD to sensitize cells to TRAIL-mediated apoptosis. LCD increased CCAAT/enhancer-binding protein homologous protein (CHOP) expression in breast cancer cells. Knockdown of CHOP attenuated DR5 upregulation and apoptosis triggered by cotreatment with LCD and TRAIL. Furthermore, LCD suppressed the phosphorylation of extracellular signal-regulated kinase and promoted the phosphorylation of c-Jun amino-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Pretreatment with JNK inhibitor SP600125 or p38 MAPK inhibitor SB203580 abolished the upregulation of DR5 and CHOP, and also attenuated LCD plus TRAIL-induced cleavage of poly(ADP-ribose) polymerase. Overall, our results show that LCD exerts cytotoxic effects on breast cancer cells and arguments TRAIL-mediated apoptosis by inhibiting survival protein expression and upregulating DR5 in a JNK/p38 MAPK-CHOP-dependent manner.


Assuntos
Apoptose , Neoplasias da Mama , Chalconas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Fator de Transcrição CHOP , Regulação para Cima , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Chalconas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Apoptose/efeitos dos fármacos , Feminino , Regulação para Cima/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células MCF-7 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
3.
Cells ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727288

RESUMO

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αß1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin ß1. In its absence, generation of full length ß1 was reduced, immature ß1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.


Assuntos
Estresse do Retículo Endoplasmático , Glioblastoma , Integrina alfa3 , Integrina beta1 , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Apoptose/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Integrina alfa3/metabolismo , Integrina alfa3/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
4.
Biomed Pharmacother ; 174: 116470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565061

RESUMO

ERCC2 plays a pivotal role in DNA damage repair, however, its specific function in cancer remains elusive. In this study, we made a significant breakthrough by discovering a substantial upregulation of ERCC2 expression in glioblastoma (GBM) tumor tissue. Moreover, elevated levels of ERCC2 expression were closely associated with poor prognosis. Further investigation into the effects of ERCC2 on GBM revealed that suppressing its expression significantly inhibited malignant growth and migration of GBM cells, while overexpression of ERCC2 promoted tumor cell growth. Through mechanistic studies, we elucidated that inhibiting ERCC2 led to cell cycle arrest in the G0/G1 phase by blocking the CDK2/CDK4/CDK6/Cyclin D1/Cyclin D3 pathway. Notably, we also discovered a direct link between ERCC2 and CDK4, a critical protein in cell cycle regulation. Additionally, we explored the potential of TRAIL, a low-toxicity death ligand cytokine with anticancer properties. Despite the typical resistance of GBM cells to TRAIL, tumor cells undergoing cell cycle arrest exhibited significantly enhanced sensitivity to TRAIL. Therefore, we devised a combination strategy, employing TRAIL with the nanoparticle DMC-siERCC2, which effectively suppressed the GBM cell proliferation and induced apoptosis. In summary, our study suggests that targeting ERCC2 holds promise as a therapeutic approach to GBM treatment.


Assuntos
Pontos de Checagem do Ciclo Celular , Proliferação de Células , Glioblastoma , Nanopartículas , Ligante Indutor de Apoptose Relacionado a TNF , Proteína Grupo D do Xeroderma Pigmentoso , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Nanopartículas/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Animais , Apoptose/efeitos dos fármacos , Camundongos Nus , Masculino
5.
Biochemistry (Mosc) ; 89(3): 431-440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648763

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising agent for treatment of AML due to its specific apoptosis-inducing effect on tumor cells but not normal cells. However, emergence of resistance to TRAIL in the AML cells limits its potential as an antileukemic agent. Previously, we revealed increase in the resistance of the human AML THP-1 cells to the TRAIL-induced death during their LPS-dependent proinflammatory activation and in the in vitro model of LPS-independent proinflammatory activation - in a long-term high-density cell culture. In this study, we investigated mechanisms of this phenomenon using Western blot analysis, caspase 3 enzymatic activity analysis, quantitative reverse transcription-PCR, and flow cytometry. The results showed that the increased resistance to the TRAIL-induced cell death of AML THP-1 cells during their pro-inflammatory activation is associated with the decrease in the surface expression of the proapoptotic receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, as well as with the increased content of members of the IAPs family - Livin and cIAP2. The results of this article open up new insights into the role of inflammation in formation of the resistance of AML cells to the action of mediators of antitumor immunity, in particular TRAIL.


Assuntos
Apoptose , Leucemia Mieloide Aguda , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Apoptose/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Células THP-1 , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Caspase 3/metabolismo
6.
Biol Chem ; 405(6): 395-406, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452398

RESUMO

Checkpoint kinase 1 (Chk1) plays an important role in regulation of the cell cycle, DNA damage response and cell death, and represents an attractive target in anticancer therapy. Small-molecule inhibitors of Chk1 have been intensively investigated either as single agents or in combination with various chemotherapeutic drugs and they can enhance the chemosensitivity of numerous tumor types. Here we newly demonstrate that pharmacological inhibition of Chk1 using potent and selective inhibitor SCH900776, currently profiled in phase II clinical trials, significantly enhances cytotoxic effects of the combination of platinum-based drugs (cisplatin or LA-12) and TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in human prostate cancer cells. The specific role of Chk1 in the drug combination-induced cytotoxicity was confirmed by siRNA-mediated silencing of this kinase. Using RNAi-based methods we also showed the importance of Bak-dependent mitochondrial apoptotic pathway in the combined anticancer action of SCH900776, cisplatin and TRAIL. The triple drug combination-induced cytotoxicity was partially enhanced by siRNA-mediated Mcl-1 silencing. Our findings suggest that targeting Chk1 may be used as an efficient strategy for sensitization of prostate cancer cells to killing action of platinum-based chemotherapeutic drugs and TRAIL.


Assuntos
Antineoplásicos , Quinase 1 do Ponto de Checagem , Cisplatino , Neoplasias da Próstata , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Compostos Organoplatínicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
7.
Cell Commun Signal ; 22(1): 195, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539203

RESUMO

BACKGROUND: Lung cancer is cancer with the highest morbidity and mortality in the world and poses a serious threat to human health. Therefore, discovering new treatments is urgently needed to improve lung cancer prognosis. Small molecule inhibitors targeting the ubiquitin-proteasome system have achieved great success, in which deubiquitinase inhibitors have broad clinical applications. The deubiquitylase OTUD3 was reported to promote lung tumorigenesis by stabilizing oncoprotein GRP78, implying that inhibition of OTUD3 may be a therapeutic strategy for lung cancer. RESULTS: In this study, we identified a small molecule inhibitor of OTUD3, Rolapitant, by computer-aided virtual screening and biological experimental verification from FDA-approved drugs library. Rolapitant inhibited the proliferation of lung cancer cells by inhibiting deubiquitinating activity of OTUD3. Quantitative proteomic profiling indicated that Rolapitant significantly upregulated the expression of death receptor 5 (DR5). Rolapitant also promoted lung cancer cell apoptosis through upregulating cell surface expression of DR5 and enhanced TRAIL-induced apoptosis. Mechanistically, Rolapitant directly targeted the OTUD3-GRP78 axis to trigger endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP)-DR5 signaling, sensitizing lung cancer cells to TRAIL-induced apoptosis. In the vivo assays, Rolapitant suppressed the growth of lung cancer xenografts in immunocompromised mice at suitable dosages without apparent toxicity. CONCLUSION: In summary, the present study identifies Rolapitant as a novel inhibitor of deubiquitinase OTUD3 and establishes that the OTUD3-GRP78 axis is a potential therapeutic target for lung cancer.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Neoplasias Pulmonares , Compostos de Espiro , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Proteômica , Proteases Específicas de Ubiquitina/metabolismo , Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
8.
Gene ; 909: 148293, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38373660

RESUMO

The major limitation of conventional chemotherapy drugs is their lack of specificity for cancer cells. As a selective apoptosis-inducing agent, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive alternative. However, most of the cancer cells are found to be either intrinsically resistant to the TRAIL protein or may develop resistance after multiple treatments, and TRAIL resistance can induce epithelial-to-mesenchymal transition (EMT) at a later stage, promoting cancer invasion and migration. Interestingly, E-cadherin loss has been linked to TRAIL resistance and initiation of EMT, making E-cadherin re-expression a potential target to overcome these obstacles. Recent research suggests that re-expressing E-cadherin may reduce TRAIL resistance by enhancing TRAIL-induced apoptosis and preventing EMT by modulating EMT signalling factors. This reversal of EMT, can also aid in improving TRAIL-induced apoptosis. Therefore, this review provides remarkable insights into the mechanisms underlying E-cadherin re-expression, clinical implications, and potentiation, as well as the research gaps of E-cadherin re-expression in the current cancer treatment.


Assuntos
Apoptose , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Linhagem Celular Tumoral
9.
FASEB J ; 38(4): e23475, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334450

RESUMO

Ankyrin-repeat proteins with a suppressor of cytokine signaling box (ASB) proteins belong to the E3 ubiquitin ligase family. 18 ASB members have been identified whose biological functions are mostly unexplored. Here, we discovered that ASB3 was essential for hepatocellular carcinoma (HCC) development and high ASB3 expression predicted poor clinical outcomes. ASB3 silencing induced HCC cell growth arrest and apoptosis in vitro and in vivo. Liver-specific deletion of Asb3 gene suppressed diethylnitrosamine (DEN)-induced liver cancer development. Mechanistically, ASB3 interacted with death receptor 5 (DR5), which promoted ubiquitination and degradation of DR5. We further showed that ASB3 knockdown stabilized DR5 and increased the sensitivity of liver cancer cells to the treatment of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a DR5-dependent manner in cellular and in animal models. In summary, we demonstrated that ASB3 promoted ubiquitination and degradation of DR5 in HCC, suggesting the potential of targeting ASB3 to HCC treatment and overcome TRAIL resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ligantes , Neoplasias Hepáticas/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação , Humanos
10.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398629

RESUMO

Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Estrofantidina , Humanos , Estrofantidina/farmacologia , Caspase 3/farmacologia , Linhagem Celular Tumoral , Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Microambiente Tumoral , Proteínas Nucleares
11.
Biochem Pharmacol ; 221: 116041, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316367

RESUMO

The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.


Assuntos
Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Necroptose , Neoplasias/patologia , Apoptose , Proteínas Reguladoras de Apoptose
12.
Eur Urol ; 85(5): 483-494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37380559

RESUMO

BACKGROUND: Molecular understanding of muscle-invasive (MIBC) and non-muscle-invasive (NMIBC) bladder cancer is currently based primarily on transcriptomic and genomic analyses. OBJECTIVE: To conduct proteogenomic analyses to gain insights into bladder cancer (BC) heterogeneity and identify underlying processes specific to tumor subgroups and therapeutic outcomes. DESIGN, SETTING, AND PARTICIPANTS: Proteomic data were obtained for 40 MIBC and 23 NMIBC cases for which transcriptomic and genomic data were already available. Four BC-derived cell lines harboring FGFR3 alterations were tested with interventions. INTERVENTION: Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), second mitochondrial-derived activator of caspases mimetic (birinapant), pan-FGFR inhibitor (erdafitinib), and FGFR3 knockdown. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Proteomic groups from unsupervised analyses (uPGs) were characterized using clinicopathological, proteomic, genomic, transcriptomic, and pathway enrichment analyses. Additional enrichment analyses were performed for FGFR3-mutated tumors. Treatment effects on cell viability for FGFR3-altered cell lines were evaluated. Synergistic treatment effects were evaluated using the zero interaction potency model. RESULTS AND LIMITATIONS: Five uPGs, covering both NMIBC and MIBC, were identified and bore coarse-grained similarity to transcriptomic subtypes underlying common features of these different entities; uPG-E was associated with the Ta pathway and enriched in FGFR3 mutations. Our analyses also highlighted enrichment of proteins involved in apoptosis in FGFR3-mutated tumors, not captured through transcriptomics. Genetic and pharmacological inhibition demonstrated that FGFR3 activation regulates TRAIL receptor expression and sensitizes cells to TRAIL-mediated apoptosis, further increased by combination with birinapant. CONCLUSIONS: This proteogenomic study provides a comprehensive resource for investigating NMIBC and MIBC heterogeneity and highlights the potential of TRAIL-induced apoptosis as a treatment option for FGFR3-mutated bladder tumors, warranting a clinical investigation. PATIENT SUMMARY: We integrated proteomics, genomics, and transcriptomics to refine molecular classification of bladder cancer, which, combined with clinical and pathological classification, should lead to more appropriate management of patients. Moreover, we identified new biological processes altered in FGFR3-mutated tumors and showed that inducing apoptosis represents a new potential therapeutic option.


Assuntos
Neoplasias não Músculo Invasivas da Bexiga , Proteogenômica , Neoplasias da Bexiga Urinária , Humanos , Proteômica , Ligantes , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Apoptose , Fator de Necrose Tumoral alfa , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
13.
Asia Pac J Clin Oncol ; 20(2): 210-219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36658682

RESUMO

AIM: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively kill tumor cells but has no significant effect on normal cells. However, the use of TRAIL is limited for resistance by more than 50% of the tumor cell lines. It's very important to develop a more efficient form of TRAIL for cancer treatment. METHODS: The N-terminal in soluble fragments (114-281aa) of TRAIL was redesigned to construct a novel TRAIL mutant-MuR5S4-TR. The Cell Counting Kit-8 method to explore the antitumor effects. The potential mechanisms were also explored. RESULTS: Novel TRAIL mutant with cell-penetrating peptides (CPP) like and Second mitochondria-derived activator of caspases (Smac) like structure-MuR5S4-TR was successfully constructed. The prokaryotic expression system was successfully built, and the MuR5S4-TR was purified and reconfirmed by western blot. MuR5S4-TR could enhance the antitumor effects of TRAIL in most of the cancer cell lines significantly, NCI-H460 lung cancer cell line, for instance. After MuR5S4-TR treatment, the expressions of death receptor 4 (DR4), DR5, Caspase-8, and cleaved Caspase-3 were remarkably increased, however, there was no significant difference in X-linked inhibitor of apoptosis expression. CONCLUSION: We constructed a novel TRAIL mutant with CPP-like and Smac-like structure-MuR5S4-TR. The MuR5S4-TR showed significantly stronger antitumor effects than TRAIL in many tumor cell lines. The MuR5S4-TR showed strong antitumor effects both in vitro and in vivo. This preliminary study implies that MuR5S4-TR may be a more efficient form of TRAIL for cancer therapy.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Humanos , Proteínas Reguladoras de Apoptose/farmacologia , Ligantes , Caspases/metabolismo , Caspases/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular Tumoral , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
14.
Drug Resist Updat ; 72: 101033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157648

RESUMO

Recently, radioresistance has become a major obstacle in the radiotherapy of cervical cancer. To demonstrate enhanced radiosensitization against radioresistant cervical cancer, radioresistant cervical cancer cell line was developed and the mechanism of radioresistance was explored. Due to the overexpression of (death receptor 5, DR5) in cervical cancer, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-overexpressed cervical cancer cell membrane-camouflaged Cu2-xSe nanomedicine (CCMT) was designed. Since the CCMT was encapsulated with TRAIL-modified cell membrane, it represented high target to cervical cancer cell and immune evasion. Furthermore, Cu2-xSe had the ability to scavenge glutathione (GSH) and produce ·OH with excess H2O2 in the tumor microenvironment. The presence of CCMT combined with radiation therapy could effectively increase the 1O2 produced by X-rays. In vitro and in vivo studies elaborated that CCMT exhibited excellent radiosensitization properties to reverse radiotolerance by scavenging GSH and promoting DNA damage, apoptosis, mitochondrial membrane potential damage and metabolic disruption. Collectively, this study suggested that the development of TRAIL-overexpressed cell membrane-camouflaged Cu2-xSe nanomedicine could advance future cervical cancer treatment and minimize the disadvantages associated with radiation treatment.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Peróxido de Hidrogênio , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068921

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a promising anticancer agent, as it selectively induces apoptosis in transformed cells without altering the cellular machinery of healthy cells. Unfortunately, the presence of TRAIL resistance mechanisms in a variety of cancer types represents a major hurdle, thus limiting the use of TRAIL as a single agent. Accumulating studies have shown that TRAIL-mediated apoptosis can be facilitated in resistant tumors by combined treatment with antitumor agents, ranging from synthetic molecules to natural products. Among the latter, flavonoids, the most prevalent polyphenols in plants, have shown remarkable competence in improving TRAIL-driven apoptosis in resistant cell lines as well as tumor-bearing mice with minimal side effects. Here, we summarize the molecular mechanisms, such as the upregulation of death receptor (DR)4 and DR5 and downregulation of key anti-apoptotic proteins [e.g., cellular FLICE-inhibitory protein (c-FLIP), X-linked inhibitor of apoptosis protein (XIAP), survivin], underlying the TRAIL-sensitizing properties of different classes of flavonoids (e.g., flavones, flavonols, isoflavones, chalcones, prenylflavonoids). Finally, we discuss limitations, mainly related to bioavailability issues, and future perspectives regarding the clinical use of flavonoids as adjuvant agents in TRAIL-based therapies.


Assuntos
Antineoplásicos , Flavonoides , Neoplasias , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Ligantes , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
16.
Cell Death Dis ; 14(11): 715, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919293

RESUMO

Death receptor ligand TRAIL is a promising cancer therapy due to its ability to selectively trigger extrinsic apoptosis in cancer cells. However, TRAIL-based therapies in humans have shown limitations, mainly due inherent or acquired resistance of tumor cells. To address this issue, current efforts are focussed on dissecting the intracellular signaling pathways involved in resistance to TRAIL, to identify strategies that sensitize cancer cells to TRAIL-induced cytotoxicity. In this work, we describe the oncogenic MEK5-ERK5 pathway as a critical regulator of cancer cell resistance to the apoptosis induced by death receptor ligands. Using 2D and 3D cell cultures and transcriptomic analyses, we show that ERK5 controls the proteostasis of TP53INP2, a protein necessary for full activation of caspase-8 in response to TNFα, FasL or TRAIL. Mechanistically, ERK5 phosphorylates and induces ubiquitylation and proteasomal degradation of TP53INP2, resulting in cancer cell resistance to TRAIL. Concordantly, ERK5 inhibition or genetic deletion, by stabilizing TP53INP2, sensitizes cancer cells to the apoptosis induced by recombinant TRAIL and TRAIL/FasL expressed by Natural Killer cells. The MEK5-ERK5 pathway regulates cancer cell proliferation and survival, and ERK5 inhibitors have shown anticancer activity in preclinical models of solid tumors. Using endometrial cancer patient-derived xenograft organoids, we propose ERK5 inhibition as an effective strategy to sensitize cancer cells to TRAIL-based therapies.


Assuntos
Apoptose , Neoplasias , Humanos , Transdução de Sinais , Proteínas Reguladoras de Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Morte Celular , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo
17.
Anticancer Agents Med Chem ; 23(20): 2225-2236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859313

RESUMO

BACKGROUND: TRAIL has emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells while sparing normal cells. Autophagy, a highly regulated cellular recycling mechanism, is known to play a cell survival role by providing a required environment for the cell. Recent studies suggest that autophagy plays a significant role in increasing TRAIL resistance in certain cancer cells. Thus, regulating autophagy in TRAIL-mediated cancer therapy is crucial for its role in cancer treatment. OBJECTIVE: Our study explored whether the antidepressant drug desipramine could enhance the ability of TRAIL to kill cancer cells by inhibiting autophagy. METHODS: The effect of desipramine on TRAIL sensitivity was examined in various lung cancer cell lines. Cell viability was measured by morphological analysis, trypan blue exclusion, and crystal violet staining. Flow cytometry analysis was carried out to measure apoptosis with annexin V-PI stained cells. Western blotting, rtPCR, and immunocytochemistry were carried out to measure autophagy and death receptor expression. TEM was carried out to detect autophagy inhibition. RESULTS: Desipramine treatment increased the TRAIL sensitivity in all lung cancer cell lines. Mechanistically, desipramine treatment induced death receptor expression to increase TRAIL sensitivity. This effect was confirmed when the genetic blockade of DR5 reduced the effect of desipramine in enhanced TRAIL-mediated cell death. Further investigation revealed that desipramine treatment increased the LC3 and p62 levels, indicating the inhibition of lysosomal degradation of autophagy. Notably, TRAIL, in combination with either desipramine or the autophagy inhibitor chloroquine, exhibited enhanced cytotoxicity compared to TRAIL treatment alone. CONCLUSION: Our findings revealed the potential of desipramine to induce TRAIL-mediated cell death by autophagy impairment. This discovery suggests its therapeutic potential for inducing TRAIL-mediated cell death by increasing the expression of death receptors, which is caused by impairing autophagy.


Assuntos
Desipramina , Neoplasias Pulmonares , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Antidepressivos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia , Linhagem Celular Tumoral , Desipramina/farmacologia , Desipramina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
18.
Int J Biol Macromol ; 253(Pt 5): 127162, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37788732

RESUMO

Anticancer therapies have been the continual pursuit of this age. Cancer has been ravaging all across the globe breathing not just threats but demonstrating them. Remedies for cancer have been frantically sought after. Few have worked out, yet till date, the available cancer therapies have not delivered a holistic solution. In a world where the search for therapies is levitating towards natural remedies, solutions based on phytochemicals are highly prospective attractions. A lot has been achieved with inputs from plant resources, providing numerous natural remedies. In the current review, we intensely survey the progress achieved in the treatment of cancer through phytochemicals-based programmed cell death of cancer cells. More specifically, we have further reviewed and discussed the role of phytochemicals in activating apoptosis via Tumor Necrosis Factor-Alpha-Related Apoptosis-Inducing Ligand (TRAIL), which is a cell protein that can attach to certain molecules in cancer cells, killing cancer cells. The objective of this review is to enlist the various phytochemicals that are available for specifically contributing towards triggering the TRAIL cell protein-mediated cancer therapy and to point out the research gaps that require future research motivation. This is the first review of this kind in this research direction.


Assuntos
Neoplasias , Humanos , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Linhagem Celular Tumoral
19.
Biomacromolecules ; 24(11): 5046-5057, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37812059

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) drives apoptosis selectively in cancer cells by clustering death receptors (DR4 and DR5). While it has excellent in vitro selectivity and toxicity, the TRAIL protein has a very low circulation half-life in vivo, which has hampered clinical development. Here, we developed core-cross-linked micelles that present multiple copies of a TRAIL-mimicking peptide at its surface. These micelles successfully induce apoptosis in a colon cancer cell line (COLO205) via DR4/5 clustering. Micelles with a peptide density of 15% (roughly 1 peptide/45 nm2) displayed the strongest activity with an IC50 value of 0.8 µM (relative to peptide), demonstrating that the precise spatial arrangement of ligands imparted by a protein such as a TRAIL may not be necessary for DR4/5/signaling and that a statistical network of monomeric ligands may suffice. As micelles have long circulation half-lives, we propose that this could provide a potential alternative drug to TRAIL and stimulate the use of micelles in other membrane receptor clustering networks.


Assuntos
Proteínas Reguladoras de Apoptose , Neoplasias do Colo , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Micelas , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral , Apoptose , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias do Colo/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/metabolismo , Proteínas de Transporte
20.
Cancer Med ; 12(19): 19821-19837, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37747052

RESUMO

BACKGROUND: Liver-resident natural killer (lr-NK) cells are distinct from conventional NK cells and exhibit higher cytotoxicity against hepatoma via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). However, the mechanism by which partial hepatectomy (PH) significantly suppresses TRAIL expression in lr-NK cells remains unclear. METHODS: This study aimed to investigate the PH influence on the function and characteristics of liver-resident NK (lr-NK) cells using a PH mouse model. RESULTS: Here, we report that PH alters the differentiation pattern of NK cells in the liver, and an aryl hydrocarbon receptor (AhR) molecule is involved in these changes. Treatment with the AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) inhibited the maturation of NK cells. FICZ increased the immature subtype proportion of NK cells with high TRAIL activity and decreased the mature subtype of NK cells with low TRAIL activity. Consequently, FICZ increased the expression of TRAIL and cytotoxic activity of NK cells in the liver, and this effect was confirmed even after hepatectomy. The participation of AhR promoted FoxO1 expression in the mTOR signaling pathway involved in the maturation of NK cells, resulting in TRAIL expression. CONCLUSION: Our findings provide direct in-vivo evidence that partial hepatectomy affects lrNK cell activity through NK cell differentiation in the liver. Perioperative therapies using an AhR agonist to improve NK cell function may reduce the recurrence of hepatocellular carcinoma after hepatectomy.


Assuntos
Carcinoma Hepatocelular , Células Matadoras Naturais , Neoplasias Hepáticas , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/cirurgia , Hepatectomia , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/análise , Receptores de Hidrocarboneto Arílico/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/cirurgia , Recidiva Local de Neoplasia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...