Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.390
Filtrar
1.
Expert Rev Endocrinol Metab ; 19(4): 299-306, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866702

RESUMO

INTRODUCTION: Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive condition. Effective treatment is important as patients are at risk for severe and potentially fatal acute pancreatitis. We review recent developments in pharmacologic treatment for FCS, namely biological inhibitors of apolipoprotein (apo) C-III and angiopoietin-like protein 3 (ANGPTL3). AREAS COVERED: FCS follows a biallelic inheritance pattern in which an individual inherits two pathogenic loss-of-function alleles of one of the five causal genes - LPL (in 60-80% of patients), GPIHBP1, APOA5, APOC2, and LMF1 - leading to the absence of lipolytic activity. Patients present from childhood with severely elevated triglyceride (TG) levels >10 mmol/L. Most patients with severe hypertriglyceridemia do not have FCS. A strict low-fat diet is the current first-line treatment, and existing lipid-lowering therapies are minimally effective in FCS. Apo C-III inhibitors are emerging TG-lowering therapies shown to be efficacious and safe in clinical trials. ANGPTL3 inhibitors, another class of emerging TG-lowering therapies, have been found to require at least partial lipoprotein lipase activity to lower plasma TG in clinical trials. ANGPTL3 inhibitors reduce plasma TG in patients with multifactorial chylomicronemia but not in patients with FCS who completely lack lipoprotein lipase activity. EXPERT OPINION: Apo C-III inhibitors currently in development are promising treatments for FCS.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Hiperlipoproteinemia Tipo I , Humanos , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/tratamento farmacológico , Hiperlipoproteinemia Tipo I/terapia , Apolipoproteína C-III/genética , Apolipoproteína C-III/antagonistas & inibidores , Hipolipemiantes/uso terapêutico , Lipase Lipoproteica/genética , Proteínas Semelhantes a Angiopoietina/antagonistas & inibidores , Proteínas Semelhantes a Angiopoietina/genética , Dieta com Restrição de Gorduras , Receptores de Lipoproteínas
2.
Pharmacogenet. genomics ; 34(4): 91-104, jun.2024.
Artigo em Inglês | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1552919

RESUMO

OBJECTIVES: This study explored the association of deleterious variants in pharmacodynamics (PD) genes with statin response and adverse effects in patients with familial hypercholesterolemia (FH) and analyzed their potential effects on protein structure and stability. METHODS: Clinical and laboratory data were obtained from 144 adult FH patients treated with statins. A panel of 32 PD genes was analyzed by exon-targeted gene sequencing. Deleterious variants were identified using prediction algorithms and their structural effects were analyzed by molecular modeling studies. RESULTS: A total of 102 variants were predicted as deleterious (83 missense, 8 stop-gain, 4 frameshift, 1 indel, 6 splicing). The variants ABCA1 rs769705621 (indel), LPA rs41267807 (p.Tyr2023Cys) and KIF6 rs20455 (p.Trp719Arg) were associated with reduced low-density lipoprotein cholesterol (LDLc) response to statins, and the LPL rs1801177 (p.Asp36Asn) with increased LDLc response (P < 0.05). LPA rs3124784 (p.Arg2016Cys) was predicted to increase statin response (P = 0.022), and ABCA1 rs769705621 to increase the risk of statin-related adverse events (SRAE) (P = 0.027). LPA p.Arg2016Cys and LPL p.Asn36Asp maintained interactions with solvent, LPA p.Tyr2023Cys reduced intramolecular interaction with Gln1987, and KIF6 p.Trp719Arg did not affect intramolecular interactions. DDMut analysis showed that LPA p.Arg2016Cys and p.Tyr2023Cys and LPL p.Asp36Asn caused energetically favorable changes, and KIF6 p.Trp719Arg resulted in unfavorable energetic changes, affecting protein stability. CONCLUSION: Deleterious variants in ABCA1, LPA, LPL and KIF6 are associated with variability in LDLc response to statins, and ABCA1 rs769705621 is associated with SRAE risk in FH patients. Molecular modeling studies suggest that LPA p.Tyr2023Cys and KIF6 p.Trp719Arg disturb protein conformational structure and stability.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Inibidores de Hidroximetilglutaril-CoA Redutases , Transportador 1 de Cassete de Ligação de ATP , Hiperlipoproteinemia Tipo II , Lipase Lipoproteica
3.
Arch Dermatol Res ; 316(6): 301, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819656

RESUMO

Our study aimed to investigate the role of lipids in melanoma risk and the effect of lipid-lowering drug targets on melanoma. Using Mendelian Randomization analysis, we examined the genetic agents of nine lipid-lowering drugs and their association with melanoma risk. We found that genetically proxied inhibition of HMGCR, ABCG5/ABCG8, and ANGPTL3 was associated with a reduced risk of melanoma. On the other hand, inhibition of LPL and Apo-B100 was significantly associated with an increased risk of melanoma. Sensitivity analyses did not reveal any statistical evidence of bias from pleiotropy or genetic confounding. We did not find a robust association between lipid traits NPC1L1, PCSK9, APOC3 inhibition, and melanoma risk. These findings were validated using two independent lipid datasets. Our analysis also revealed that HMGCR, ANGPTL3, and ABCG5/ABCG8 inhibitors reduced melanoma risk independent of their effects on lipids. This suggests that these targets may have potential for melanoma prevention or treatment. In conclusion, our study provides evidence for a causal role of lipids in melanoma risk and highlights specific lipid-lowering drug targets that may be effective in reducing the risk of melanoma. These findings contribute to the understanding of the underlying mechanisms of melanoma development and provide potential avenues for further research and therapeutic interventions.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteína 3 Semelhante a Angiopoietina , Hipolipemiantes , Melanoma , Análise da Randomização Mendeliana , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/epidemiologia , Hipolipemiantes/uso terapêutico , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/epidemiologia , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Semelhantes a Angiopoietina/genética , Apolipoproteína B-100/genética , Predisposição Genética para Doença , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Lipoproteínas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Hidroximetilglutaril-CoA Redutases , Lipase Lipoproteica
4.
Nat Commun ; 15(1): 4410, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782979

RESUMO

Pancreatic ß cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.


Assuntos
Encéfalo , Proteínas de Drosophila , Drosophila melanogaster , Secreção de Insulina , Insulina , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Eixo Encéfalo-Intestino/fisiologia , Lipase/metabolismo , Lipase/genética , Gorduras na Dieta/metabolismo , Glucose/metabolismo , Corpo Adiposo/metabolismo , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Masculino
5.
Atherosclerosis ; 393: 117558, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703417

RESUMO

BACKGROUND: Carriers of the E40K loss-of-function variant in Angiopoietin-like 4 (ANGPTL4), have lower plasma triglyceride levels as well as lower rates of coronary artery disease (CAD) and type 2 diabetes (T2D). These genetic data suggest ANGPTL4 inhibition as a potential therapeutic target for cardiometabolic diseases. However, it is unknown whether the association between E40K and human diseases is due to linkage disequilibrium confounding. The broader impact of genetic ANGPTL4 inhibition is also unknown, raising uncertainties about the safety and validity of this target. METHODS: To assess the impact of ANGPLT4 inhibition, we evaluated whether E40K and other loss-of-function variants in ANGPTL4 influenced a wide range of health markers and diseases using 29 publicly available genome-wide association meta-analyses of cardiometabolic traits and diseases, as well as 1589 diseases assessed in electronic health records within FinnGen (n = 309,154). To determine whether these relationships were likely causal, and not driven by other correlated variants, we used the Bayesian fine mapping algorithm CoPheScan. RESULTS: The CoPheScan posterior probability of E40K being the causal variant for triglyceride levels was 99.99 %, validating the E40K to proxy lifelong lower activity of ANGPTL4. The E40K variant was associated with lower risk of CAD (odds ratio [OR] = 0.84, 95 % CI = 0.81 to 0.87, p=3.6e-21) and T2D (OR = 0.91, 95 % CI = 0.87 to 0.95, p=2.8e-05) in GWAS meta-analyses, with results replicated in FinnGen. These significant results were also replicated using other rare loss-of-function variants identified through whole exome sequencing in 488,278 participants of the UK Biobank. Using a Mendelian randomization study design, the E40K variant effect on cardiometabolic diseases was concordant with lipoprotein lipase enhancement (r = 0.82), but not hepatic lipase enhancement (r = -0.10), suggesting that ANGPTL4 effects on cardiometabolic diseases are potentially mainly mediated through lipoprotein lipase. After correction for multiple testing, the E40K variant did not significantly increase the risk of any of the 1589 diseases tested in FinnGen. CONCLUSIONS: ANGPTL4 inhibition may represent a potentially safe and effective target for cardiometabolic diseases prevention or treatment.


Assuntos
Proteína 4 Semelhante a Angiopoietina , Estudo de Associação Genômica Ampla , Fenótipo , Humanos , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Mutação com Perda de Função , Predisposição Genética para Doença , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Triglicerídeos/sangue , Doença da Artéria Coronariana/genética , Teorema de Bayes , Fatores de Risco , Lipase Lipoproteica
6.
Diabetes Obes Metab ; 26(7): 2969-2978, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685616

RESUMO

AIM: The response rate to pioglitazone and the predictive factors for its effects on improving liver biochemistry in patients with steatotic liver disease (SLD) remain elusive, so we aimed to investigate these issues. METHODS: A 3-year prospective cohort study of 126 Taiwanese patients with SLD treated with pioglitazone (15-30 mg/day) was conducted. Phospholipase domain-containing protein 3 I148M rs738409, methylenetetrahydrofolate reductase rs1801133, aldehyde dehydrogenase 2 (ALDH2) rs671 and lipoprotein lipase rs10099160 single nucleotide polymorphisms were assessed in the patients. RESULTS: Of 126 patients, 78 (61.9%) were men, and the mean and median ages were 54.3 and 56.5 years, respectively. Pioglitazone responders were defined as those with decreased alanine aminotransferase (ALT) levels at 6 months post-treatment, and 105 (83.3%) patients were responders. Compared with non-responders, responders were more frequently women and had higher baseline ALT levels. The proportion of patients with the ALDH2 rs671 GG genotype was lower among responders (38.6% vs. 66.6%, p = .028). Female sex [odds ratio (OR): 4.514, p = .023] and baseline ALT level (OR: 1.015, p = .046; cut-off level: ≥82 U/L) were associated with pioglitazone response. Among responders, the liver biochemistry and homeostasis model assessment of insulin resistance improved from 6 to 24 months post-treatment. The total cholesterol levels decreased within 6 months, while increases in high-density lipoprotein cholesterol levels and decreases in triglyceride levels and fibrosis-4 scores were noted only at 24 months post-treatment. The 2-year cumulative incidences of cardiovascular events, cancers and hepatic events were similar between responders and non-responders. CONCLUSIONS: Regarding liver biochemistry, over 80% of Taiwanese patients with SLD had a pioglitazone response, which was positively associated with female sex and baseline ALT levels. Insulin resistance improved as early as 6 months post-treatment, while liver fibrosis improvement was not observed until 24 months post-treatment. The link between the pioglitazone response and the ALDH2 genotype warrants further investigation.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Hipoglicemiantes , Pioglitazona , Polimorfismo de Nucleotídeo Único , Humanos , Pioglitazona/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Hipoglicemiantes/uso terapêutico , Resultado do Tratamento , Aldeído-Desidrogenase Mitocondrial/genética , Taiwan/epidemiologia , Alanina Transaminase/sangue , Tiazolidinedionas/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Idoso , Lipase Lipoproteica/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Genótipo , Adulto
7.
Pharmacogenet Genomics ; 34(4): 91-104, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682317

RESUMO

OBJECTIVES: This study explored the association of deleterious variants in pharmacodynamics (PD) genes with statin response and adverse effects in patients with familial hypercholesterolemia (FH) and analyzed their potential effects on protein structure and stability. METHODS: Clinical and laboratory data were obtained from 144 adult FH patients treated with statins. A panel of 32 PD genes was analyzed by exon-targeted gene sequencing. Deleterious variants were identified using prediction algorithms and their structural effects were analyzed by molecular modeling studies. RESULTS: A total of 102 variants were predicted as deleterious (83 missense, 8 stop-gain, 4 frameshift, 1 indel, 6 splicing). The variants ABCA1 rs769705621 (indel), LPA rs41267807 (p.Tyr2023Cys) and KIF6 rs20455 (p.Trp719Arg) were associated with reduced low-density lipoprotein cholesterol (LDLc) response to statins, and the LPL rs1801177 (p.Asp36Asn) with increased LDLc response (P < 0.05). LPA rs3124784 (p.Arg2016Cys) was predicted to increase statin response (P = 0.022), and ABCA1 rs769705621 to increase the risk of statin-related adverse events (SRAE) (P = 0.027). LPA p.Arg2016Cys and LPL p.Asn36Asp maintained interactions with solvent, LPA p.Tyr2023Cys reduced intramolecular interaction with Gln1987, and KIF6 p.Trp719Arg did not affect intramolecular interactions. DDMut analysis showed that LPA p.Arg2016Cys and p.Tyr2023Cys and LPL p.Asp36Asn caused energetically favorable changes, and KIF6 p.Trp719Arg resulted in unfavorable energetic changes, affecting protein stability. CONCLUSION: Deleterious variants in ABCA1, LPA, LPL and KIF6 are associated with variability in LDLc response to statins, and ABCA1 rs769705621 is associated with SRAE risk in FH patients. Molecular modeling studies suggest that LPA p.Tyr2023Cys and KIF6 p.Trp719Arg disturb protein conformational structure and stability.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemia Tipo II , Cinesinas , Lipase Lipoproteica , Humanos , Cinesinas/genética , Masculino , Feminino , Pessoa de Meia-Idade , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Transportador 1 de Cassete de Ligação de ATP/genética , Lipase Lipoproteica/genética , Adulto , Estabilidade Proteica , LDL-Colesterol/sangue , Polimorfismo de Nucleotídeo Único
8.
Proc Natl Acad Sci U S A ; 121(17): e2322332121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625948

RESUMO

Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.


Assuntos
Apolipoproteínas , Lipase Lipoproteica , Camundongos , Humanos , Animais , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Lipase Lipoproteica/metabolismo , Proteína 3 Semelhante a Angiopoietina , Aminoácidos , Triglicerídeos/metabolismo , Apolipoproteína A-V/genética
9.
J Lipid Res ; 65(4): 100532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38608546

RESUMO

To support in vivo and in vitro studies of intravascular triglyceride metabolism in mice, we created rat monoclonal antibodies (mAbs) against mouse LPL. Two mAbs, mAbs 23A1 and 31A5, were used to develop a sandwich ELISA for mouse LPL. The detection of mouse LPL by the ELISA was linear in concentrations ranging from 0.31 ng/ml to 20 ng/ml. The sensitivity of the ELISA made it possible to quantify LPL in serum and in both pre-heparin and post-heparin plasma samples (including in grossly lipemic samples). LPL mass and activity levels in the post-heparin plasma were lower in Gpihbp1-/- mice than in wild-type mice. In both groups of mice, LPL mass and activity levels were positively correlated. Our mAb-based sandwich ELISA for mouse LPL will be useful for any investigator who uses mouse models to study LPL-mediated intravascular lipolysis.


Assuntos
Anticorpos Monoclonais , Ensaio de Imunoadsorção Enzimática , Lipase Lipoproteica , Animais , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/sangue , Camundongos , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Monoclonais/imunologia , Ratos , Receptores de Lipoproteínas/metabolismo , Receptores de Lipoproteínas/genética , Camundongos Knockout
10.
Lipids Health Dis ; 23(1): 92, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561841

RESUMO

BACKGROUND: Lipoprotein lipase (LPL) plays a crucial role in triglyceride hydrolysis. Rare biallelic variants in the LPL gene leading to complete or near-complete loss of function cause autosomal recessive familial chylomicronemia syndrome. However, rare biallelic LPL variants resulting in significant but partial loss of function are rarely documented. This study reports a novel occurrence of such rare biallelic LPL variants in a Chinese patient with hypertriglyceridemia-induced acute pancreatitis (HTG-AP) during pregnancy and provides an in-depth functional characterization. METHODS: The complete coding sequences and adjacent intronic regions of the LPL, APOC2, APOA5, LMF1, and GPIHBP1 genes were analyzed by Sanger sequencing. The aim was to identify rare variants, including nonsense, frameshift, missense, small in-frame deletions or insertions, and canonical splice site mutations. The functional impact of identified LPL missense variants on protein expression, secretion, and activity was assessed in HEK293T cells through single and co-transfection experiments, with and without heparin treatment. RESULTS: Two rare LPL missense variants were identified in the patient: the previously reported c.809G > A (p.Arg270His) and a novel c.331G > C (p.Val111Leu). Genetic testing confirmed these variants were inherited biallelically. Functional analysis showed that the p.Arg270His variant resulted in a near-complete loss of LPL function due to effects on protein synthesis/stability, secretion, and enzymatic activity. In contrast, the p.Val111Leu variant retained approximately 32.3% of wild-type activity, without impacting protein synthesis, stability, or secretion. Co-transfection experiments indicated a combined activity level of 20.7%, suggesting no dominant negative interaction between the variants. The patient's post-heparin plasma LPL activity was about 35% of control levels. CONCLUSIONS: This study presents a novel case of partial but significant loss-of-function biallelic LPL variants in a patient with HTG-AP during pregnancy. Our findings enhance the understanding of the nuanced relationship between LPL genotypes and clinical phenotypes, highlighting the importance of residual LPL function in disease manifestation and severity. Additionally, our study underscores the challenges in classifying partial loss-of-function variants in classical Mendelian disease genes according to the American College of Medical Genetics and Genomics (ACMG)'s variant classification guidelines.


Assuntos
Hiperlipidemias , Hipertrigliceridemia , Pancreatite , Humanos , Lipase Lipoproteica/genética , Doença Aguda , Células HEK293 , Pancreatite/genética , Heparina
11.
BMC Endocr Disord ; 24(1): 47, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622573

RESUMO

BACKGROUND: Familial chylomicronemia syndrome (FCS) is a rare monogenic form of severe hypertriglyceridemia, caused by mutations in genes involved in triglyceride metabolism. Herein, we report the case of a Korean family with familial chylomicronemia syndrome caused by compound heterozygous deletions of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). CASE PRESENTATION: A 4-year-old boy was referred for the evaluation of severe hypertriglyceridemia (3734 mg/dL) that was incidentally detected 4 months prior. His elder brother also demonstrated an elevated triglyceride level of 2133 mg/dL at the age of 9. Lipoprotein electrophoresis revealed the presence of chylomicrons, an increase in the proportion of pre-beta lipoproteins, and low serum lipoprotein lipase levels. The patient's parents and first elder brother had stable lipid profiles. For suspected FCS, genetic testing was performed using the next-generation sequencing-based analysis of 31 lipid metabolism-associated genes, which revealed no pathogenic variants. However, copy number variant screening using sequencing depth information suggested large heterozygous deletion encompassing all the coding exons of GPIHBP1. A real-time quantitative polymerase chain reaction was performed to validate the deletion site. The results showed that the siblings had two heterozygous copy number variants consisting of the whole gene and an exon 4 deletion, each inherited from their parents. During the follow-up period of 17 months, the patient did not develop pancreatitis, following dietary intervention. CONCLUSION: These siblings' case of familial chylomicronemia syndrome caused by rare GPIHBP1 deletions highlight the implementation of copy number variants-beyond next-generation sequencing-as an important consideration in diagnosis. Accurate genetic diagnosis is necessary to establish the etiology of severe hypertriglyceridemia, which increases the risk of pancreatitis.


Assuntos
Hiperlipoproteinemia Tipo I , Hipertrigliceridemia , Pancreatite , Receptores de Lipoproteínas , Pré-Escolar , Humanos , Masculino , Hiperlipoproteinemia Tipo I/diagnóstico , Hiperlipoproteinemia Tipo I/genética , Hipertrigliceridemia/etiologia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/química , Receptores de Lipoproteínas/metabolismo , Irmãos , Triglicerídeos , Criança
12.
Biomed Pharmacother ; 174: 116598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615609

RESUMO

Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 µM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Dieta Hiperlipídica , Flavonoides , Metabolismo dos Lipídeos , Lipase Lipoproteica , Receptores X do Fígado , Propiofenonas , Peixe-Zebra , Animais , Receptores X do Fígado/metabolismo , Propiofenonas/farmacologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia , Lipase Lipoproteica/metabolismo , Receptores X de Retinoides/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Chalconas/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo
14.
Int J Hematol ; 119(6): 755-761, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507115

RESUMO

BACKGROUND: Medications used to treat acute lymphoblastic leukemia (ALL), such as L-asparaginase, can cause blood lipid disturbances. These can also be associated with polymorphisms of the lipoprotein lipase (LpL) and apolipoprotein E (APOE) genes. PROCEDURE: We aimed to investigate the association between lipid profile, certain LpL and APOE gene polymorphisms (rs268, rs328, rs1801177 and rs7412, rs429358 respectively) as well as the risk subgroup in 30 pediatric patients being treated for ALL, compared with 30 pediatric ALL survivors and 30 healthy controls. RESULTS: The only APOE gene polymorphism with significant allelic and genotypic heterogeneity was rs429358. Further analysis of this polymorphism showed that genotype (CC, CT, or TT) was significantly associated with (1) changes in the lipid profile at the end of consolidation (total cholesterol, LDL, apo-B100, and lipoprotein a) and during re-induction (total cholesterol and apo-B100), and (2) classification in the high risk-ALL subgroup (for CC genotype/C allele presence). CONCLUSIONS: Lipid abnormalities in children being treated for ALL may be associated with the APOE genotype, which is also possibly associated with risk stratification. Further research is needed to confirm the potential prognostic value of these findings.


Assuntos
Apolipoproteínas E , Lipídeos , Lipase Lipoproteica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Apolipoproteínas E/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Criança , Masculino , Feminino , Lipase Lipoproteica/genética , Pré-Escolar , Lipídeos/sangue , Adolescente , Polimorfismo de Nucleotídeo Único , Genótipo , Alelos , Asparaginase/administração & dosagem , Asparaginase/uso terapêutico , Asparaginase/efeitos adversos , Polimorfismo Genético
15.
Trends Endocrinol Metab ; 35(6): 490-504, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521668

RESUMO

The regulation of triglyceride (TG) tissue distribution, storage, and utilization, a fundamental process of energy homeostasis, critically depends on lipoprotein lipase (LPL). We review the intricate mechanisms by which LPL activity is regulated by angiopoietin-like proteins (ANGPTL3, 4, 8), apolipoproteins (APOA5, APOC3, APOC2), and the cAMP-responsive element-binding protein H (CREBH). ANGPTL8 functions as a molecular switch, through complex formation, activating ANGPTL3 while deactivating ANGPTL4 in their LPL inhibition. The ANGPTL3-4-8 model integrates the roles of the aforementioned proteins in TG partitioning between white adipose tissue (WAT) and oxidative tissues (heart and skeletal muscles) during the feed/fast cycle. This model offers a unified perspective on LPL regulation, providing insights into TG metabolism, metabolic diseases, and therapeutics.


Assuntos
Lipase Lipoproteica , Humanos , Lipase Lipoproteica/metabolismo , Animais , Triglicerídeos/metabolismo , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Proteína 8 Semelhante a Angiopoietina , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 3 Semelhante a Angiopoietina/metabolismo
16.
J Lipid Res ; 65(4): 100526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431115

RESUMO

ANGPTL4 is an attractive pharmacological target for lowering plasma triglycerides and cardiovascular risk. Since most preclinical studies on ANGPTL4 were performed in male mice, little is known about sexual dimorphism in ANGPTL4 regulation and function. Here, we aimed to study potential sexual dimorphism in ANGPTL4 mRNA and protein levels and ANGPTL4 function. Additionally, we performed exploratory studies on the function of ANGPTL4 in the liver during fasting using Angptl4-transgenic and Angptl4-/- mice. Compared to female mice, male mice showed higher hepatic and adipose ANGPTL4 mRNA and protein levels, as well as a more pronounced effect of genetic ANGPTL4 modulation on plasma lipids. By contrast, very limited sexual dimorphism in ANGPTL4 levels was observed in human liver and adipose tissue. In human and mouse adipose tissue, ANGPTL8 mRNA and/or protein levels were significantly higher in females than males. Adipose LPL protein levels were higher in female than male Angptl4-/- mice, which was abolished by ANGPTL4 (over) expression. At the human genetic level, the ANGPTL4 E40K loss-of-function variant was associated with similar plasma triglyceride reductions in women and men. Finally, ANGPTL4 ablation in fasted mice was associated with changes in hepatic gene expression consistent with PPARα activation. In conclusion, the levels of ANGPTL4 and the magnitude of the effect of ANGPTL4 on plasma lipids exhibit sexual dimorphism. Nonetheless, inactivation of ANGPTL4 should confer a similar metabolic benefit in women and men. Expression levels of ANGPTL8 in human and mouse adipose tissue are highly sexually dimorphic, showing higher levels in females than males.


Assuntos
Tecido Adiposo , Proteína 4 Semelhante a Angiopoietina , Fígado , Hormônios Peptídicos , Caracteres Sexuais , Animais , Masculino , Feminino , Humanos , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Camundongos , Fígado/metabolismo , Tecido Adiposo/metabolismo , Angiopoietinas/genética , Angiopoietinas/metabolismo , Proteína 8 Semelhante a Angiopoietina , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Camundongos Knockout , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/genética , Camundongos Endogâmicos C57BL
17.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542527

RESUMO

Angiopoietin-like protein 3 (ANGPTL3) is a plasmatic protein that plays a crucial role in lipoprotein metabolism by inhibiting the lipoprotein lipase (LPL) and the endothelial lipase (EL) responsible for the hydrolysis of phospholipids on high-density lipoprotein (HDL). Interest in developing new pharmacological therapies aimed at inhibiting ANGPTL3 has been growing due to the hypolipidemic and antiatherogenic profile observed in its absence. The goal of this study was the in silico characterization of the interaction between ANGPTL3 and EL. Because of the lack of any structural information on both the trimeric coiled-coil N-terminal domain of ANGPTL3 and the EL homodimer as well as data regarding their interactions, the first step was to obtain the three-dimensional model of these two proteins. The models were then refined via molecular dynamics (MD) simulations and used to investigate the interaction mechanism. The analysis of interactions in different docking poses and their refinement via MD allowed the identification of three specific glutamates of ANGPTL3 that recognize a positively charged patch on the surface of EL. These ANGPTL3 key residues, i.e., Glu154, Glu157, and Glu160, could form a putative molecular recognition site for EL. This study paves the way for future investigations aimed at confirming the recognition site and at designing novel inhibitors of ANGPTL3.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Lipase , Proteínas Semelhantes a Angiopoietina , Lipase/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas HDL/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos , Angiopoietinas/metabolismo
18.
J Biosci Bioeng ; 137(5): 381-387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429186

RESUMO

The adjunct product with enzymatic activity from Aspergillus oryzae is beneficial for flavor enrichment in the ripened cheese. However, an excessive lipolytic reaction leads to the release of volatile free fatty acids. Accordingly, a strong off-flavor (i.e., rancidity) has been detected when A. oryzae AHU 7139 is used. To identify the rancidity-related lipase from this strain, we evaluated the substrate specificity and lipase distribution using five mutants cultured on a whey-based solid medium under different initial pH conditions. The results showed a higher diacylglycerol lipase activity than triacylglycerol lipase activity. Moreover, an initial pH of 6.5 for the culture resulted in higher lipolytic activity than a pH of 4.0, and most of the activity was found in the extracellular fraction. Based on the gene expression analysis by real-time polymerase chain reaction and location and substrate specificity, five genes (No. 1, No. 19, mdlB, tglA, and cutL) were selected among 25 annotated lipase genes to identify the respective knockout strains. Because ΔtglA and ΔmdlB showed an outstanding involvement in the release of free fatty acids, these strains were applied to in vitro cheese curd experiments. In conclusion, we posit that triacylglycerol lipase (TglA) plays a key role as the trigger of rancidity and the resulting diglycerides have to be exposed to diacylglycerol lipase (MdlB) to stimulate rancidity in cheese made with A. oryzae AHU 7139. This finding could help screen suitable A.oryzae strains as cheese adjuncts to prevent the generation of the rancid-off flavor.


Assuntos
Aspergillus oryzae , Queijo , Lipase Lipoproteica/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipase/genética , Lipase/metabolismo
19.
Nutr J ; 23(1): 30, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429792

RESUMO

BACKGROUND: Metabolic syndrome (MetS), a cluster of metabolic and cardiovascular risk factors is influenced by environmental, lifestyle, and genetic factors. We explored whether coffee consumption and the rs301 variant of the lipoprotein lipase (LPL) gene are related to MetS. METHODS: We conducted multiple logistic regression analyses using data gathered from 9523 subjects in Taiwan Biobank (TWB). RESULTS: Our findings indicated that individuals who consumed coffee had a reduced odds ratio (OR) for MetS (0.750 (95% confidence interval [CI] 0.653-0.861) compared to non-coffee drinkers. Additionally, the risk of MetS was lower for individuals with the 'TC' and 'CC' genotypes of rs301 compared to those with the 'TT' genotype. Specifically, the OR for MetS was 0.827 (95% CI 0.721-0.949) for the 'TC' genotype and 0.848 (95% CI 0.610-1.177) for the 'CC' genotype. We observed an interaction between coffee consumption and the rs301 variant, with a p-value for the interaction of 0.0437. Compared to the reference group ('no coffee drinking/TT'), the ORs for MetS were 0.836 (95% CI 0.706-0.992) for 'coffee drinking/TT', 0.557 (95% CI 0.438-0.707) for 'coffee drinking/TC', and 0.544 (95% CI 0.319-0.927) for 'coffee drinking/CC'. Notably, MetS was not observed in non-coffee drinkers regardless of their rs301 genotype. CONCLUSION: Our findings suggest that rs301 genotypes may protect against MetS in Taiwanese adults who consume coffee compared to non-coffee drinkers.


Assuntos
Café , Lipase Lipoproteica , Síndrome Metabólica , Adulto , Humanos , Genótipo , Estilo de Vida , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , Fatores de Risco , Taiwan , População do Leste Asiático , Lipase Lipoproteica/genética
20.
Arch Endocrinol Metab ; 68: e230195, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38530959

RESUMO

Objective: The study aims to explore the relationship between lipoprotein lipase (LPL) variants and hyperlipidemic acute pancreatitis (HLAP) in the southeastern Chinese population. Subjects and methods: In total, 80 participants were involved in this study (54 patients with HLAP and 26 controls). All coding regions and intron-exon boundaries of the LPL gene were sequenced. The correlations between variants and phenotypes were also analysed. Results: The rate of rare LPL variants in the HLAP group is 14.81% (8 of 54), higher than in controls. Among the detected four variants (rs3735959, rs371282890, rs761886494 and rs761265900), the most common variant was rs371282890. Further analysis demonstrated that subjects with rs371282890 "GC" genotype had a 2.843-fold higher risk for HLAP (odds ratio [OR]: 2.843, 95% confidence interval [CI]: 1.119-7.225, p = 0.028) than subjects with the "CC" genotype. After adjusting for sex, the association remained significant (adjusted OR: 3.083, 95% CI: 1.208-7.869, p = 0.018). Subjects with rs371282890 "GC" genotype also exhibited significantly elevated total cholesterol, triglyceride and non-high-density lipoprotein cholesterol levels in all the participants and the HLAP group (p < 0.05). Conclusion: Detecting rare variants in LPL might be valuable for identifying higher-risk patients with HLAP and guiding future individualised therapeutic strategies.


Assuntos
Pancreatite , Humanos , Doença Aguda , China/epidemiologia , Genótipo , Lipase Lipoproteica/genética , Pancreatite/diagnóstico , Pancreatite/genética , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...