RESUMO
Cestodes use own lipid-binding proteins to capture and transport hydrophobic ligands, including lipids that they cannot synthesise as fatty acids and cholesterol. In E. granulosus s.l., one of these lipoproteins is antigen B (EgAgB), codified by a multigenic and polymorphic family that gives rise to five gene products (EgAgB8/1-5 subunits) assembled as a 230 kDa macromolecule. EgAgB has a diagnostic value for cystic echinococcosis, but its putative role in the immunobiology of this infection is still poorly understood. Accumulating research suggests that EgAgB has immunomodulatory properties, but previous studies employed denatured antigen preparations that might exert different effects than the native form, thereby limiting data interpretation. This work analysed the modulatory actions on macrophages of native EgAgB (nEgAgB) and the recombinant form of EgAg8/1, which is the most abundant subunit in the larva and was expressed in insect S2 cells (rEgAgB8/1). Both EgAgB preparations were purified to homogeneity by immunoaffinity chromatography using a novel nanobody anti-EgAgB8/1. nEgAgB and rEgAgB8/1 exhibited differences in size and lipid composition. The rEgAgB8/1 generates mildly larger lipoproteins with a less diverse lipid composition than nEgAgB. Assays using human and murine macrophages showed that both nEgAgB and rEgAgB8/1 interfered with in vitro LPS-driven macrophage activation, decreasing cytokine (IL-1ß, IL-6, IL-12p40, IFN-ß) secretion and ·NO generation. Furthermore, nEgAgB and rEgAgB8/1 modulated in vivo LPS-induced cytokine production (IL-6, IL-10) and activation of large (measured as MHC-II level) and small (measured as CD86 and CD40 levels) macrophages in the peritoneum, although rEgAgB8/1 effects were less robust. Overall, this work reinforced the notion that EgAgB is an immunomodulatory component of E. granulosus s.l. Although nEgAgB lipid's effects cannot be ruled out, our data suggest that the EgAgB8/1 subunit contributes to EgAgB´s ability to regulate the inflammatory activation of macrophages.
Assuntos
Echinococcus granulosus , Humanos , Animais , Camundongos , Echinococcus granulosus/genética , Echinococcus granulosus/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Macrófagos , Citocinas/metabolismoRESUMO
(1) Background: Previous studies have enriched high-density lipoproteins (HDL) using cholesteryl esters in rabbits with a three-quarter reduction in functional renal mass, suggesting that the kidneys participate in the cholesterol homeostasis of these lipoproteins. However, the possible role of the kidneys in lipoprotein metabolism is still controversial. To understand the role of the kidneys in regulating the HDL lipid content, we determined the turnover of HDL-cholesteryl esters in rabbits with a three-quarter renal mass reduction. (2) Methods: HDL subclass characterization was conducted, and the kinetics of plasma HDL-cholesteryl esters, labeled with tritium, were studied in rabbits with a 75% reduction in functional renal mass (Ntx). (3) Results: The reduced renal mass triggered the enrichment of cholesterol, specifically cholesteryl esters, in HDL subclasses. The exchange of cholesteryl esters between HDL and apo B-containing lipoproteins (VLDL/LDL) was not significantly modified in Ntx rabbits. Moreover, the cholesteryl esters of HDL and VLDL/LDL fluxes from the plasmatic compartment tended to decrease, but they only reached statistical significance when both fluxes were added to the Nxt group. Accordingly, the fractional catabolic rate (FCR) of the HDL-cholesteryl esters was lower in Ntx rabbits, concomitantly with its accumulation in HDL subclasses, probably because of the reduced mass of renal cells requiring this lipid from lipoproteins.
Assuntos
Ésteres do Colesterol , Lipoproteínas HDL , Animais , Coelhos , Lipoproteínas HDL/metabolismo , Ésteres do Colesterol/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Proteínas de Transferência de Ésteres de ColesterolRESUMO
Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Membrana Celular , Parede Celular/metabolismo , Lipoproteínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Leptospirosis is a public health concern with lethality around 15% of the total cases. The current vaccines against Leptospira infection based on bacterins have several limitations, which require urgent development of new ones. In this context, groundbreaking approaches such as peptide-vaccines could be used to come around with promising results. Our goal was to identify conserved and immunogenic epitopes from the lipoprotein LruC that could interact with Major Histocompatibility Complex (MHC) I and II. LruC is a conserved lipoprotein expressed during leptospirosis that is considered among vaccine candidates and can be used as source for development of peptide-based vaccines. We searched for peptides that would be recognized by antibodies from either serum of hamsters previously immunized with low-LPS bacterin vaccines or from serum of patients diagnosed with leptospirosis. Immuno properties of seven peptides from LruC protein were evaluated in silico and by Dot Blot assay, and validate by ELISA. Preliminary results pointed one promising peptide that was recognized by the sera. In conclusion, the immunoinformatic approach helps the search and screening of peptides, while the Dot Blot assay, a simple and effective tool, helps to test and validate them. Thus, these prospective techniques together were validated to identify and validate potential peptides for further investigation as peptide-based vaccines or diagnostic methods.
Assuntos
Leptospira , Leptospirose , Animais , Cricetinae , Humanos , Estudos Prospectivos , Leptospirose/diagnóstico , Leptospirose/prevenção & controle , Antígenos de Bactérias , Peptídeos/metabolismo , Vacinas Bacterianas , Anticorpos Antibacterianos , Lipoproteínas/metabolismo , Desenvolvimento de VacinasRESUMO
Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.
Assuntos
Nanopartículas , Medicina de Precisão , Animais , Camundongos , Distribuição Tecidual , Benzeno , Lipoproteínas HDL/metabolismo , Nanopartículas/uso terapêutico , Colesterol/metabolismo , Lipoproteínas/metabolismo , Radioisótopos , Fosfolipídeos , Receptores Depuradores/metabolismoRESUMO
Preeclampsia (PE) is a multisystemic syndrome specific to pregnancy. Although PE is the leading cause of death from complications associated with pregnancy, its aetiology is still unknown. In PE, lipid metabolism is altered. When lipids are damaged, both the mother and the foetus may be at risk. Lipoproteins contain apolipoproteins, triacylglycerols, free and esterified cholesterol, and phospholipids, all of which are susceptible to oxidative stress when high levels of oxygen and nitrogen free radicals are present. Lipoperoxidation can occur in three stages: mild, moderate, and severe. In severe lipid damage, highly toxic products such as malondialdehyde (MDA) can be generated; under these conditions, low-density lipoprotein (LDL) proteins can be oxidized (oxLDL). oxLDL is a biomolecule that can affect the production of nitric oxide (NO), the main vasodilator derived from the endothelium. oxLDL can interfere with the transduction of the signals responsible for triggering the activation of endothelial nitric oxide synthase (eNOS), causing reduced vasodilation and endothelial dysfunction, which are the main characteristics of preeclampsia. The objective of the review was to analyse the information the current information about exists about the impact generated by the oxidation of LDL and HDL lipoproteins in neonates of women with preeclampsia and how these alterations can predispose the neonate to develop diseases in adulthood.PE can cause foetal loss, intrauterine growth restriction, or developmental complications. Neonates of mothers with PE have a high risk of cardiovascular diseases, stroke, mental retardation, sensory deficiencies and an increased risk of developing metabolic diseases. PE not only affects the foetus, generating complications during pregnancy but also predisposes them to chronic diseases in adulthood.
Assuntos
Lipoproteínas , Pré-Eclâmpsia , Feminino , Feto/metabolismo , Humanos , Recém-Nascido , Lipoproteínas/metabolismo , Lipoproteínas HDL , Lipoproteínas LDL , Malondialdeído/metabolismo , Pré-Eclâmpsia/metabolismo , GravidezRESUMO
Due to hormonal fluctuation, the menstrual cycle impacts inflammatory response and lipid metabolism; moreover, the anti-atherogenic and anti-inflammatory effects of exercise in this cycle, mainly high-intensity intermittent exercise (HIIE), need to be examined. Therefore, the aim of the current study was to investigate the influence of menstrual cycle phases on adipokine and lipoprotein responses after acute HIIE sessions in healthy women. Fourteen women (age: 24 ± 2 years; BMI: 22.79 ± 1.89 kg·m2) were recruited to perform two HIIE sessions (10 × 1 min running at 90% of maximum aerobic velocity, with 1 min recovery); one during the follicular phase (FP) and other during the luteal phase (LP), randomly. Blood samples were collected at rest, immediately, and 60 min after HIIE sessions. Macrophage inflammatory protein-1α (MIP-1α), leptin, adiponectin, total cholesterol, triacylglycerol (TAG), HDL-c, and glucose concentrations were analyzed. At rest, higher MIP-1α concentrations were observed during the LP compared to FP (p = 0.017). Likewise, leptin (p = 0.050), LDL-c (p = 0.015), and non-HDL (p = 0.016) were statistically higher in the LP. In contrast, the adiponectin/leptin ratio was lower in the LP compared to the ratio found in the FP (p = 0.032). Immediately post-HIIE sessions, in both menstrual phases, higher TAG (p = 0.001) and HDL-c (p = 0.001) concentrations were found, which returned to resting levels after 60 min. In conclusion, adipokine and lipoprotein responses after a single HIIE session are regulated by the phase of the menstrual cycle, contributing to inflammatory conditions, and demonstrating the importance of considering the phases of the menstrual cycle for the periodization of physical training.
Assuntos
Adipocinas/metabolismo , Treinamento Intervalado de Alta Intensidade , Lipoproteínas/metabolismo , Ciclo Menstrual/fisiologia , Feminino , Humanos , Adulto JovemRESUMO
Several proteins are involved in cholesterol homeostasis, as scavenger receptor class B type I and ATP-binding cassette (ABC) transporters including ABCA1, ABCG1, ABCG5, and ABCG8. This study aimed to determine the effects of single nucleotide variants (SNVs) rs2275543 (ABCA1), rs1893590 (ABCG1), rs6720173 (ABCG5), rs6544718 (ABCG8), and rs5888 (SCARB1) on plasma lipids, lipoproteins, and adiposity markers in an asymptomatic population and its sex-specific effects. Volunteers (n = 590) were selected and plasma lipids, lipoproteins, and adiposity markers (waist-to-hip and waist-to-height ratios, lipid accumulation product and body adiposity index) were measured. Genomic DNA was isolated from peripheral blood cells according to the method adapted from Gross-Bellard. SNVs were detected in the TaqMan® OpenArray® Real-Time polymerase chain reaction platform and data analyses were performed using the TaqMan® Genotyper Software. The rs2275543*C point to an increase of high-density lipoprotein size in females while in males very-low-density lipoprotein, cholesterol, and triglycerides were statistically lower (P value < 0.05). The rs1893590*C was statistically associated with lower apolipoprotein A-I levels and higher activities of paraoxonase-1 and cholesteryl ester transfer protein (P value < 0.05). The rs6720173 was statistically associated with an increase in cholesterol and low-density lipoprotein cholesterol in males; moreover, rs6544718*T reduced adiposity markers in females (P value < 0.05). Regarding the rs5888, a decreased adiposity marker in the total population and in females occurred (P value < 0.05). Multivariate analysis of variance showed that SNVs could influence components of high-density lipoprotein metabolism, mainly through ABCG1 (P value < 0.05). The ABCA1 and ABCG5 variants showed sex-specific effects on lipids and lipoproteins, while SCARB1 and ABCG8 variants might influence adiposity markers in females. Our data indicate a possible role of ABCG1 on HDL metabolism.
Assuntos
Adiposidade , Lipoproteínas , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adiposidade/genética , Colesterol/metabolismo , Feminino , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Lipoproteínas HDL/genética , Masculino , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismoRESUMO
Leptospirosis is a globally prevalent zoonotic disease, and is caused by pathogenic spirochetes from the genus Leptospira. LipL21 and LipL41 are lipoproteins expressed strongly on the outer membrane of pathogenic Leptospira spp. Many studies have shown that both proteins are interesting targets for vaccines and diagnosis. However, their role in host-pathogen interactions remains underexplored. Therefore, we evaluated the capacity of LipL21 and LipL41 to bind with glycosaminoglycans (GAGs), the cell receptors and extracellular matrix, and plasma components by ELISA. Both proteins interacted with collagen IV, laminin, E-cadherin, and elastin dose-dependently. A broad-spectrum binding to plasma components was also observed. Only LipL21 interacted with all the GAG components tested, whereas LipL41 presented a concentration-dependent binding only for chondroitin 4 sulfate. Although, both proteins have the ability to interact with fibrinogen, only LipL21 inhibited fibrin clot formation partially. Both proteins exhibited a decrease in plasminogen binding in the presence of amino caproic acid (ACA), a competitive inhibitor of lysine residues, suggesting that their binding occurs via the kringle domains of plasminogen. LipL41, but not LipL21, was able to convert plasminogen to plasmin, and recruit plasminogen from normal human serum, suggesting that the interaction of this protein with plasminogen may occur in physiological conditions. This work provides the first report demonstrating the capacity of LipL21 and LipL41 to interact with a broad range of host components, highlighting their importance in host-Leptospira interactions.
Assuntos
Leptospira interrogans , Leptospira , Leptospirose , Proteínas da Membrana Bacteriana Externa/metabolismo , Humanos , Leptospira/metabolismo , Lipoproteínas/metabolismo , PlasminogênioRESUMO
BACKGROUND AND AIMS: Chronically administered parenteral nutrition (PN) in patients with intestinal failure carries the risk for developing PN-associated cholestasis (PNAC). We have demonstrated that farnesoid X receptor (FXR) and liver X receptor (LXR), proinflammatory interleukin-1 beta (IL-1ß), and infused phytosterols are important in murine PNAC pathogenesis. In this study we examined the role of nuclear receptor liver receptor homolog 1 (LRH-1) and phytosterols in PNAC. APPROACH AND RESULTS: In a C57BL/6 PNAC mouse model (dextran sulfate sodium [DSS] pretreatment followed by 14 days of PN; DSS-PN), hepatic nuclear receptor subfamily 5, group A, member 2/LRH-1 mRNA, LRH-1 protein expression, and binding of LRH-1 at the Abcg5/8 and Cyp7a1 promoter was reduced. Interleukin-1 receptor-deficient mice (Il-1r-/- /DSS-PN) were protected from PNAC and had significantly increased hepatic mRNA and protein expression of LRH-1. NF-κB activation and binding to the LRH-1 promoter were increased in DSS-PN PNAC mice and normalized in Il-1r-/- /DSS-PN mice. Knockdown of NF-κB in IL-1ß-exposed HepG2 cells increased expression of LRH-1 and ABCG5. Treatment of HepG2 cells and primary mouse hepatocytes with an LRH-1 inverse agonist, ML179, significantly reduced mRNA expression of FXR targets ATP binding cassette subfamily C member 2/multidrug resistance associated protein 2 (ABCC2/MRP2), nuclear receptor subfamily 0, groupB, member 2/small heterodimer partner (NR0B2/SHP), and ATP binding cassette subfamily B member 11/bile salt export pump (ABCB11/BSEP). Co-incubation with phytosterols further reduced expression of these genes. Similar results were obtained by suppressing the LRH-1 targets ABCG5/8 by treatment with small interfering RNA, IL-1ß, or LXR antagonist GSK2033. Liquid chromatography-mass spectrometry and chromatin immunoprecipitation experiments in HepG2 cells showed that ATP binding cassette subfamily G member 5/8 (ABCG5/8) suppression by GSK2033 increased the accumulation of phytosterols and reduced binding of FXR to the SHP promoter. Finally, treatment with LRH-1 agonist, dilauroyl phosphatidylcholine (DLPC) protected DSS-PN mice from PNAC. CONCLUSIONS: This study suggests that NF-κB regulation of LRH-1 and downstream genes may affect phytosterol-mediated antagonism of FXR signaling in the pathogenesis of PNAC. LRH-1 could be a potential therapeutic target for PNAC.
Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase/etiologia , Lipoproteínas/metabolismo , NF-kappa B/metabolismo , Nutrição Parenteral/efeitos adversos , Fitosteróis/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Colestase/metabolismo , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Hypercholesterolemia is one of the main risk factors associated with atherosclerosis and cardiovascular disease, the leading cause of death worldwide. During pregnancy, maternal hypercholesterolemia develops, and it can occur in a physiological (MPH) or supraphysiological (MSPH) manner, where MSPH is associated with endothelial dysfunction and early atherosclerotic lesions in the fetoplacental vasculature. In the pathogenesis of atherosclerosis, endothelial activation and endothelial dysfunction, characterized by an imbalance in the bioavailability of nitric oxide, contribute to the early stages of this disease. Macrophages conversion to foam cells, cholesterol efflux from these cells and its differentiation into a pro- or anti-inflammatory phenotype are also important processes that contribute to atherosclerosis. In adults it has been reported that native and modified HDL and LDL play an important role in endothelial and macrophage function. In this review it is proposed that fetal lipoproteins could be also relevant factors involved in the detrimental vascular effects described in MSPH. Changes in the composition and function of neonatal lipoproteins compared to adults has been reported and, although in MSPH pregnancies the fetal lipid profile does not differ from MPH, differences in the lipidomic profiles of umbilical venous blood have been reported, which could have implications in the vascular function. In this review we summarize the available information regarding the effects of lipoproteins on endothelial and macrophage function, emphasizing its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy.
Assuntos
Células Endoteliais/metabolismo , Hipercolesterolemia/metabolismo , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Complicações na Gravidez/metabolismo , Feminino , Humanos , Gravidez , Resultado da GravidezRESUMO
Subclinical thyroid disorders have been associated with atherosclerosis and increased cardiovascular risk. As triglyceride-rich lipoprotein particles (TRLPs) have recently emerged as a casual factor for atherogenesis, the aim of this study was to evaluate the relationship between subclinical hypo- and hyperthyroidism and TRLP subfractions. We selected 5066 participants from the ELSA-Brasil cohort with available data of thyroid function and lipid profile measured by nuclear magnetic resonance (NMR) spectroscopy. Individuals were divided into 3 groups by baseline thyroid function (subclinical hypothyroidism, euthyroidism, and subclinical hyperthyroidism). Triglyceride-rich lipoprotein particle subfractions were analyzed through NMR spectroscopy. To examine the association between TRLP subfractions and thyroid function, we conducted univariate and multivariate linear regression models adjusted for demographic characteristics, body mass index, diabetes, smoking status, and alcohol use. Of 3304 individuals, 54% were women, with a mean age of 50.6 ± 8.7 years, 51% white, and 53% with at least a college education. Of these individuals, 92% were euthyroid, whereas 6.8% had subclinical hypothyroidism and 1.2% had subclinical hyperthyroidism. The univariate linear regression showed that very small TRLPs (P = 0.026) and very large TRLPs (P = 0.008) were statistically increased in subclinical hypothyroidism when compared with euthyroidism. In subclinical hyperthyroidism, there was a reduction in total TRLPs (P = 0.003), seemingly driven by reduced very small TRLPs (P = 0.067). The findings were confirmed when adjusted for demographic characteristics, as well as comorbidities. This study suggests that subclinical hypothyroidism is associated with very small and very large TRLPs, which are related to an unfavorable atherogenic profile. Subclinical hyperthyroidism is associated to lower very small TRLPs.
Assuntos
Lipoproteínas/metabolismo , Doenças da Glândula Tireoide/sangue , Triglicerídeos/metabolismo , Adulto , Aterosclerose/complicações , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças da Glândula Tireoide/complicaçõesRESUMO
Leptospirosis is an acute infection caused by pathogenic species of the genus Leptospira, which affects humans and animals in all world. In severe forms of the disease, kidneys, liver and lungs are the main affected organs, resulting in acute kidney injury, jaundice and pulmonary hemorrhage. Previous post-mortem studies have shown that lesions are not limited to these organs. Cardiac and striated muscle injuries have already been reported, but the pathophysiology of cardiac and skeletal lesions in leptospirosis is not fully understood. It has been suggested that the tissue damage observed in leptospirosis could be directly mediated by leptospires or by their toxic cellular components. LipL32 and Lp25 are leptospira membrane proteins with unknown functions, that are present only in pathogenic strains of Leptospira spp. Both proteins induce skeletal muscle lesions similar to those observed when normal guinea pigs are inoculated with leptospires. Through immunohistochemistry, this study showed the presence of LipL32 and Lp25 proteins on muscle cell membranes and in the underlying cytoplasm of skeletal muscles, as well as focal lesions in cardiac tissues of fatal cases of leptospirosis. Altogether, these results reinforce that both proteins can be important factors in the pathogenesis of leptospirosis.
Assuntos
Injúria Renal Aguda/patologia , Proteínas da Membrana Bacteriana Externa/genética , Rim/patologia , Leptospira/genética , Leptospirose/complicações , Lipoproteínas/genética , Miocárdio/patologia , Injúria Renal Aguda/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Feminino , Genes Bacterianos , Cobaias , Humanos , Leptospira/metabolismo , Leptospirose/metabolismo , Lipoproteínas/metabolismo , Masculino , Pessoa de Meia-Idade , Músculos/patologiaRESUMO
Brucellosis is a prevalent global zoonotic infection but has far more impact in developing countries. The adipocytes are the most abundant cell type of adipose tissue and their secreted factors play an important role in several aspects of the innate and adaptive immune response. Here, we demonstrated the ability of Brucella abortus to infect and replicate in both adipocytes and its precursor cells (pre-adipocytes) derived from 3T3-L1 cell line. Additionally, infection of pre-adipocytes also inhibited adipogenesis in a mechanism independent of bacterial viability and dependent on lipidated outer membrane protein (L-Omp19). B. abortus infection was able to modulate the secretion of IL-6 and the matrix metalloproteases (MMPs) -2 and-9 in pre-adipocytes and adipocytes, and also modulated de transcription of adiponectin, leptin, and resistin in differentiated adipocytes. B. abortus-infected macrophages also modulate adipocyte differentiation involving a TNF-α dependent mechanism, thus suggesting a plausible interplay between B. abortus, adipocytes, and macrophages. In conclusion, B. abortus is able to alter adipogenesis process in adipocytes and its precursors directly after their infection, or merely their exposure to the B. abortus lipoproteins, and indirectly through soluble factors released by B. abortus-infected macrophages.
Assuntos
Adipócitos/citologia , Adipogenia , Brucelose/complicações , Diferenciação Celular , Inflamação/imunologia , Macrófagos/imunologia , Células 3T3-L1 , Adipócitos/imunologia , Adipócitos/metabolismo , Adipócitos/microbiologia , Animais , Brucella abortus/fisiologia , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Mediadores da Inflamação/metabolismo , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , CamundongosRESUMO
Purpose: Lipid metabolism has been poorly explored in subclinical hyperthyroidism. The aim was to examine the effects of exogenous subclinical hyperthyroidism in women under levothyroxine treatment upon plasma lipids and aspects of HDL metabolism. Methodology: Ten women were studied in euthyroidism and again in exogenous subclinical hyperthyroidism. Thyroid function tests and plasma lipids were studied. Results: HDL-cholesterol (increased 21.6%, p = 0.0004), unesterified cholesterol (increased 12.3%, p = 0.04) and Lp(a) (increased 33,3%, P = 0.02) plasma concentrations were higher in subclinical hyperthyroidism compared to euthyroidism, but total cholesterol, LDL, non-HDL cholesterol, triglycerides, apo A-I, apo B were unchanged. PON1 activity (decreased 75%, p = 0.0006) was lower in subclinical hyperthyroidism. There were no changes in HDL particle size, CETP and LCAT concentrations. The in vitro assay that estimates the lipid transfers to HDL showed that esterified cholesterol (increased 7.1%, p = 0.03), unesterified cholesterol (increased 7.8%, p = 0.02) and triglycerides (increased 6.8%, p = 0.006) transfers were higher in subclinical hyperthyroidism. There were no changes in phospholipid transfers to HDL in subclinical hyperthyroidism. Conclusions: Several alterations in the plasma lipid metabolism were observed in the subclinical hyperthyroidism state that highlight the importance of this aspect in the follow-up of those patients. The increase in HDL-C and in the transfer of unesterified and esterified cholesterol to HDL, an important anti-atherogenic HDL function are consistently protective for cardiovascular health. The increase in Lp(a) and the decrease in PON-1 activity that are important risk factors were documented here in subclinical hyperthyroidism and these results should be confirmed in larger studies due to great data variation but should not be neglected in the follow-up of those patients.
Assuntos
Adenocarcinoma/cirurgia , Colesterol/sangue , Hipertireoidismo/induzido quimicamente , Hipertireoidismo/metabolismo , Lipoproteínas/metabolismo , Neoplasias da Glândula Tireoide/cirurgia , Tiroxina/efeitos adversos , Adenocarcinoma/sangue , Adenocarcinoma/metabolismo , Adulto , Doenças Assintomáticas , Brasil , Estudos de Casos e Controles , HDL-Colesterol/sangue , Feminino , Terapia de Reposição Hormonal , Humanos , Hipertireoidismo/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas HDL/sangue , Pessoa de Meia-Idade , Testes de Função Tireóidea , Neoplasias da Glândula Tireoide/sangue , Neoplasias da Glândula Tireoide/metabolismo , Tireoidectomia/reabilitação , Tiroxina/farmacologiaRESUMO
Physical inactivity has emerged as an important cardiometabolic risk factor; however, the beneficial impacts of physical exercise according physical fitness status are still unclear. To analyze the lipoproteins and immune-endocrine response to acute aerobic exercise sessions performed at different intensities according physical fitness status and evaluated the gene expression in monocyte cells. Twelve individuals, divided into Low and High VO2max, performed three randomized acute exercise sessions at low (<60% VO2max), moderate (60-75% VO2max), and high (>90% VO2max) intensities. Blood samples were collected pre, immediately post, and 60 minutes post-exercise to analyze NEFA, triacylglycerol, non-HDL-c, HDL-c, PAI-1, leptin and adiponectin concentrations. Blood samples were collected from another set of twelve individuals for use in monocyte cell cultures to analyze L-CAT, CETP, and AMPK gene expressions. Low VO2max group pre-exercise exhibited higher postprandial leptin and total cholesterol concentrations than High VO2max group (p < 0.05). Exercise performed in high-intensity promoted a decreased leptin and NEFA levels (p < 0.05, for both), but for PAI-1 levels was decreased (p < 0.05) only for the Low VO2max group. Triacylglycerol levels decreased after all exercise sessions (p < 0.05) for both groups, and HDL-c exhibited decrease during moderate-intensity (p < 0.05), but this scenario was attenuated in Low VO2max group. Low VO2max individuals exhibit some metabolic-endocrine disruption, and acute aerobic exercise sessions performed at low, moderate, and high intensities are capable of modulating metabolic-endocrine parameters, mainly at high-intensity, in a physical fitness-dependent way, given that Low VO2max group was more responsive and seem to be able to appropriate more exercise-related benefits.
Assuntos
Exercício Físico/fisiologia , Lipoproteínas/sangue , Lipoproteínas/metabolismo , Adulto , Feminino , Hematócrito , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Consumo de Oxigênio , Aptidão Física/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triglicerídeos/sangueRESUMO
Fragmentation of tRNAs generates a family of small RNAs collectively known as tRNA-derived fragments. These fragments vary in sequence and size but have been shown to regulate many processes involved in cell homoeostasis and adaptations to stress. Additionally, the field of extracellular RNAs (exRNAs) is rapidly growing because exRNAs are a promising source of biomarkers in liquid biopsies, and because exRNAs seem to play key roles in intercellular and interspecies communication. Herein, we review recent descriptions of tRNA-derived fragments in the extracellular space in all domains of life, both in biofluids and in cell culture. The purpose of this review is to find consensus on which tRNA-derived fragments are more prominent in each extracellular fraction (including extracellular vesicles, lipoproteins and ribonucleoprotein complexes). We highlight what is becoming clear and what is still controversial in this field, in order to stimulate future hypothesis-driven studies which could clarify the role of full-length tRNAs and tRNA-derived fragments in the extracellular space.
Assuntos
Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Animais , Biomarcadores , Ácidos Nucleicos Livres , Meios de Cultivo Condicionados , Espaço Extracelular , Vesículas Extracelulares/metabolismo , Humanos , Lipoproteínas/metabolismo , Transporte de RNA , RNA de Transferência/química , RNA de Transferência/classificaçãoRESUMO
Brucella abortus, the causative agent of brucellosis, displays many resources to evade T cell responses conducive to persist inside the host. Our laboratory has previously showed that infection of human monocytes with B. abortus down-modulates the IFN-γ-induced MHC-II expression. Brucella outer membrane lipoproteins are structural components involved in this phenomenon. Moreover, IL-6 is the soluble factor that mediated MHC-II down-regulation. Yet, the MHC-II down-regulation exerted by lipoproteins was less marked than the one observed as consequence of infection. This led us to postulate that there should be other components associated with viable bacteria that may act together with lipoproteins in order to diminish MHC-II. Our group has recently demonstrated that B. abortus RNA (PAMP related to pathogens' viability or vita-PAMP) is involved in MHC-I down-regulation. Therefore, in this study we investigated if B. abortus RNA could be contributing to the down-regulation of MHC-II. This PAMP significantly down-modulated the IFN-γ-induced MHC-II surface expression on THP-1 cells as well as in primary human monocytes and murine bone marrow macrophages. The expression of other molecules up-regulated by IFN-γ (such as co-stimulatory molecules) was stimulated on monocytes treated with B. abortus RNA. This result shows that this PAMP does not alter all IFN-γ-induced molecules globally. We also showed that other bacterial and parasitic RNAs caused MHC-II surface expression down-modulation indicating that this phenomenon is not restricted to B. abortus. Moreover, completely degraded RNA was also able to reproduce the phenomenon. MHC-II down-regulation on monocytes treated with RNA and L-Omp19 (a prototypical lipoprotein of B. abortus) was more pronounced than in monocytes stimulated with both components separately. We also demonstrated that B. abortus RNA along with its lipoproteins decrease MHC-II surface expression predominantly by a mechanism of inhibition of MHC-II expression. Regarding the signaling pathway, we demonstrated that IL-6 is a soluble factor implicated in B. abortus RNA and lipoproteins-triggered MHC-II surface down-regulation. Finally, CD4+ T cells functionality was affected as macrophages treated with these components showed lower antigen presentation capacity. Therefore, B. abortus RNA and lipoproteins are two PAMPs that contribute to MHC-II down-regulation on monocytes/macrophages diminishing CD4+ T cell responses.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Macrófagos/imunologia , Monócitos/imunologia , RNA Bacteriano/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella abortus/genética , Brucella abortus/imunologia , Brucella abortus/fisiologia , Brucelose/imunologia , Brucelose/microbiologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Regulação para Baixo/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , RNA Bacteriano/genética , Células THP-1RESUMO
In insects, lipid transfer to the tissues is mediated by lipophorin, the major circulating lipoprotein, mainly through a nonendocytic pathway involving docking receptors. Currently, the role of such receptors in lipid metabolism remains poorly understood. In this work, we performed a histological characterization of the fat body of the Chagas' disease vector, Panstrongylus megistus (Burmeister), subjected to different nutritional conditions. In addition, we addressed the role of the ß-chain of ATP synthase (ß-ATPase) in the process of lipid transfer from lipophorin to the fat body. Fifth-instar nymphs in either fasting or fed condition were employed in the assays. Histological examination revealed that the fat body was composed by diverse trophocyte phenotypes. In the fasting condition, the cells were smaller and presented a homogeneous cytoplasmic content. The fat body of fed insects increased in size mainly due to the enlargement of lipid stores. In this condition, trophocytes contained abundant lipid droplets, and the rough endoplasmic reticulum was highly developed and mitochondria appeared elongated. Immunofluorescence assays showed that the ß-ATPase, a putative lipophorin receptor, was located on the surface of fat body cells colocalizing partially with lipophorin, which suggests their interaction. No changes in ß-ATPase expression were found in fasting and fed insects. Blocking the lipophorin-ß-ATPase interaction impaired the lipophorin-mediated lipid transfer to the fat body. The results showed that the nutritional status of the insect influenced the morphohistological features of the tissue. Besides, these findings suggest that ß-ATPase functions as a lipophorin docking receptor in the fat body.