Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Synth Biol ; 10(6): 1531-1544, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34100588

RESUMO

The monoterpene alcohols acyclic nerol and bicyclic borneol are widely applied in the food, cosmetic, and pharmaceutical industries. The emerging synthetic biology enables microbial production to be a promising alternative for supplying monoterpene alcohols in an efficient and sustainable approach. In this study, we combined metabolic and plant monoterpene synthase engineering to improve the de novo production of nerol and borneol in prene-overproducing Escherichia coli. We engineered the growth-orthogonal neryl diphosphate (NPP) as the universal precursor of monoterpene alcohol biosynthesis and coexpressed nerol synthase (GmNES) from Glycine max to generate nerol or coexpressed the truncated bornyl diphosphate synthase (LdtBPPS) from Lippia dulcis for borneol production. Further, through site-directed mutation of LdtBPPS based on the structural simulation, we screened multiple variants that markedly elevated the production of acyclic nerol or bicyclic borneol, of which the LdtBPPSS488T mutant outperformed the wild-type LdtBPPS on borneol synthesis and the LdtBPPSF612A variant was superior to GmNES on nerol production. Subsequently, we overexpressed the endogenous Nudix hydrolase NudJ to facilitate the dephosphorylation of precursors and boosted the production of nerol and borneol from glucose. Finally, after the optimization of the fermentation process, the engineered strain ENO2 produced 966.55 mg/L nerol, and strain ENB57 generated 87.20 mg/L borneol in a shake flask, achieving the highest reported titers of nerol and borneol in microbes to date. This work shows a combinatorial engineering strategy for microbial production of natural terpene alcohols.


Assuntos
Monoterpenos Acíclicos/metabolismo , Álcoois/metabolismo , Canfanos/metabolismo , Escherichia coli/metabolismo , Liases Intramoleculares/genética , Engenharia Metabólica/métodos , Engenharia de Proteínas/métodos , Escherichia coli/genética , Fermentação , Glucose/metabolismo , Liases Intramoleculares/metabolismo , Lippia/enzimologia , Mutagênese Sítio-Dirigida/métodos , Pirofosfatases/metabolismo , Glycine max/enzimologia , Biologia Sintética/métodos , Nudix Hidrolases
2.
Biochem Biophys Res Commun ; 490(3): 963-968, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28655616

RESUMO

Lippia dulcis (Aztec sweet herb) contains the potent natural sweetener hernandulcin, a sesquiterpene ketone found in the leaves and flowers. Utilizing the leaves for agricultural application is challenging due to the presence of the bitter-tasting and toxic monoterpene, camphor. To unlock the commercial potential of L. dulcis leaves, the first step of camphor biosynthesis by a bornyl diphosphate synthase needs to be elucidated. Two putative monoterpene synthases (LdTPS3 and LdTPS9) were isolated from L. dulcis leaf cDNA. To elucidate their catalytic functions, E. coli-produced recombinant enzymes with truncations of their chloroplast transit peptides were assayed with geranyl diphosphate (GPP). In vitro enzyme assays showed that LdTPS3 encodes bornyl diphosphate synthase (thus named LdBPPS) while LdTPS9 encodes linalool synthase. Interestingly, the N-terminus of LdBPPS possesses two arginine-rich (RRX8W) motifs, and enzyme assays showed that the presence of both RRX8W motifs completely inhibits the catalytic activity of LdBPPS. Only after the removal of the putative chloroplast transit peptide and the first RRX8W, LdBPPS could react with GPP to produce bornyl diphosphate. LdBPPS is distantly related to the known bornyl diphosphate synthase from sage in a phylogenetic analysis, indicating a converged evolution of camphor biosynthesis in sage and L. dulcis. The discovery of LdBPPS opens up the possibility of engineering L. dulcis to remove the undesirable product, camphor.


Assuntos
Cânfora/metabolismo , Liases Intramoleculares/metabolismo , Lippia/enzimologia , Sesquiterpenos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/química , Arginina/metabolismo , Liases Intramoleculares/química , Liases Intramoleculares/genética , Lippia/química , Lippia/genética , Lippia/metabolismo , Filogenia
3.
Braz J Biol ; 73(3): 617-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24212703

RESUMO

This study aimed to investigate the effects of ethylene biosynthesis inhibitors on oxidative metabolisms and the in vitro conservation of Lippia filifolia, using the lipid peroxidation index (TBARS), antioxidative enzymes and pigments as biomarkers. We found that EDTA, sodium thiosulfate (STS) and especially Co had protective effects on oxidative stress in tissues cultured in vitro, resulting in a delay of the senescence and the reduction of subcultures frequency, contributing to the germplasm conservation of this species.


Assuntos
Etilenos/antagonistas & inibidores , Peroxidação de Lipídeos/efeitos dos fármacos , Lippia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Biomarcadores/análise , Etilenos/farmacologia , Lippia/enzimologia , Pigmentos Biológicos/análise , Substâncias Reativas com Ácido Tiobarbitúrico
4.
Metab Eng ; 20: 198-211, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24060453

RESUMO

Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and sub-cellular localization of VoGES and LdGES were characterized in stable transformed tobacco and using transient expression in Nicotiana benthamiana. Transgenic tobacco expressing VoGES or LdGES accumulate geraniol, oxidized geraniol compounds like geranial, geranic acid and hexose conjugates of these compounds to similar levels. Geraniol emission of leaves was lower than that of flowers, which could be related to higher levels of competing geraniol-conjugating activities in leaves. GFP-fusions of the two GES proteins show that VoGES resides (as expected) predominantly in the plastids, while LdGES import into to the plastid is clearly impaired compared to that of VoGES, resulting in both cytosolic and plastidic localization. Geraniol production by VoGES and LdGES in N. benthamiana was nonetheless very similar. Expression of a truncated version of VoGES or LdGES (cytosolic targeting) resulted in the accumulation of 30% less geraniol glycosides than with the plastid targeted VoGES and LdGES, suggesting that the substrate geranyl diphosphate is readily available, both in the plastids as well as in the cytosol. The potential role of GES in the engineering of the TIA pathway in heterologous hosts is discussed.


Assuntos
Proteínas de Cloroplastos/biossíntese , Citosol/enzimologia , Lippia/enzimologia , Monoéster Fosfórico Hidrolases/biossíntese , Plastídeos/enzimologia , Valeriana/enzimologia , Monoterpenos Acíclicos , Proteínas de Cloroplastos/genética , Lippia/genética , Monoéster Fosfórico Hidrolases/genética , Plastídeos/genética , Especificidade da Espécie , Terpenos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Valeriana/genética
5.
Braz. j. biol ; 73(3): 617-621, ago. 2013. tab
Artigo em Inglês | LILACS | ID: lil-689866

RESUMO

This study aimed to investigate the effects of ethylene biosynthesis inhibitors on oxidative metabolisms and the in vitro conservation of Lippia filifolia, using the lipid peroxidation index (TBARS), antioxidative enzymes and pigments as biomarkers. We found that EDTA, sodium thiosulfate (STS) and especially Co had protective effects on oxidative stress in tissues cultured in vitro, resulting in a delay of the senescence and the reduction of subcultures frequency, con-tributing to the germplasm conservation of this species.


O objetivo deste estudo foi investigar os efeitos de inibidores da biossíntese do etileno no metabolismo oxidativo e na conservação in vitro de Lippia filifolia. Para isso, foram avaliados o índice de peroxidação lipídica (TBARS), a atividade de enzimas antioxidativas e o conteúdo de pigmentos fotossintéticos e de antocianinas. Os resultados evidenciaram que o EDTA, o tiossulfato de sódio (STS) e, especialmente, o Co apresentaram ação protetora sobre o estresse oxidativo nos tecidos, o que resultou em atraso no início da senescência das culturas e na redução da frequência dos subcultivos, contribuindo para a conservação do germoplasma dessa espécie.


Assuntos
Etilenos/antagonistas & inibidores , Peroxidação de Lipídeos/efeitos dos fármacos , Lippia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Biomarcadores/análise , Etilenos/farmacologia , Lippia/enzimologia , Pigmentos Biológicos/análise , Substâncias Reativas com Ácido Tiobarbitúrico
6.
Arch Biochem Biophys ; 527(1): 37-44, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22867794

RESUMO

Hernandulcin, a C15 sesquiterpene ketone, is a natural sweetener isolated from the leaves of Lippia dulcis. It is a promising sugar substitute due to its safety and low caloric potential. However, the biosynthesis of hernandulcin in L. dulcis remains unknown. The first biochemical step of hernandulcin is the synthesis of (+)-epi-α-bisabolol from farnesyl diphosphate, which is presumed to be catalyzed by a unique sesquiterpene synthase in L. dulcis. In order to decipher hernandulcin biosynthesis, deep transcript sequencings (454 and Illumina) were performed, which facilitated the molecular cloning of five new sesquiterpene synthase cDNAs from L. dulcis. In vivo activity evaluation of these cDNAs in yeast identified them as the sesquiterpene synthases for α-copaene/δ-cadinene, bicyclogermacrene, ß-caryophyllene, trans-α-bergamotene, and α-bisabolol. The engineered yeast could synthesize a significant amount (~0.3 mg per mL) of α-bisabolol in shake-flask cultivation. This efficient in vivo production was congruent with the competent kinetic properties of recombinant α-bisabolol synthase (K(m) 4.8 µM and k(cat) 0.04 s(-1)). Detailed chemical analyses of the biosynthesized α-bisabolol confirmed its configuration to be (+)-epi-α-bisabolol, the core skeleton of hernandulcin. These results demonstrated that enzymatic, stereoselective synthesis of (+)-epi-α-bisabolol can be achieved, promising the heterologous production of a natural sweetener, hernandulcin.


Assuntos
Lippia/enzimologia , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Edulcorantes/metabolismo , Transferases/metabolismo , Clonagem Molecular , DNA Complementar/genética , Genes de Plantas , Microbiologia Industrial , Lippia/química , Lippia/genética , Lippia/metabolismo , Dados de Sequência Molecular , Sesquiterpenos Monocíclicos , Proteínas de Plantas/genética , Sesquiterpenos/química , Edulcorantes/química , Transcriptoma , Transferases/genética , Leveduras/genética , Leveduras/metabolismo
7.
Metab Eng ; 13(4): 414-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21296182

RESUMO

Many terpenoids are known to have antifungal properties and overexpression of these compounds in crops is a potential tool in disease control. In this study, 15 different mono- and sesquiterpenoids were tested in vitro against two major pathogenic fungi of maize (Zea mays), Colletotrichum graminicola and Fusarium graminearum. Among all tested terpenoids, geranic acid showed very strong inhibitory activity against both fungi (MIC<46 µM). To evaluate the possibility of enhancing fungal resistance in maize by overexpressing geranic acid, we generated transgenic plants with the geraniol synthase gene cloned from Lippia dulcis under the control of a ubiquitin promoter. The volatile and non-volatile metabolite profiles of leaves from transgenic and control lines were compared. The headspaces collected from intact seedlings of transgenic and control plants were not significantly different, although detached leaves of transgenic plants emitted 5-fold more geranyl acetate compared to control plants. Non-targeted LC-MS profiling and LC-MS-MS identification of extracts from maize leaves revealed that the major significantly different non-volatile compounds were 2 geranic acid derivatives, a geraniol dihexose and 4 different types of hydroxyl-geranic acid-hexoses. A geranic acid glycoside was the most abundant, and identified by NMR as geranoyl-6-O-malonyl-ß-d-glucopyranoside with an average concentration of 45µM. Fungal bioassays with C. graminicola and F. graminearum did not reveal an effect of these changes in secondary metabolite composition on plant resistance to either fungus. The results demonstrate that metabolic engineering of geraniol into geranic acid can rely on the existing default pathway, but branching glycosylation pathways must be controlled to achieve accumulation of the aglycones.


Assuntos
Antifúngicos/metabolismo , Doenças das Plantas/prevenção & controle , Folhas de Planta , Plantas Geneticamente Modificadas , Terpenos/metabolismo , Zea mays , Monoterpenos Acíclicos , Colletotrichum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Lippia/enzimologia , Lippia/genética , Doenças das Plantas/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...