Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.246
Filtrar
1.
Theor Appl Genet ; 137(7): 159, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872054

RESUMO

KEY MESSAGE: Integrated linkage and association analysis revealed genetic basis across multiple environments. The genes Zm00001d003102 and Zm00001d015905 were further verified to influence amylose content using gene-based association study. Maize kernel amylose is an important source of human food and industrial raw material. However, the genetic basis underlying maize amylose content is still obscure. Herein, we used an intermated B73 × Mo17 (IBM) Syn10 doubled haploid population composed of 222 lines and a germplasm set including 305 inbred lines to uncover the genetic control for amylose content under four environments. Linkage mapping detected 16 unique QTL, among which four were individually repeatedly identified across multiple environments. Genome-wide association study revealed 17 significant (P = 2.24E-06) single-nucleotide polymorphisms, of which two (SYN19568 and PZE-105090500) were located in the intervals of the mapped QTL (qAC2 and qAC5-3), respectively. According to the two population co-localized loci, 20 genes were confirmed as the candidate genes for amylose content. Gene-based association analysis indicated that the variants in Zm00001d003102 (Beta-16-galactosyltransferase GALT29A) and Zm00001d015905 (Sugar transporter 4a) affected amylose content across multi-environment. Tissue expression analysis showed that the two genes were specifically highly expressed in the ear and stem, respectively, suggesting that they might participate in sugar transport from source to sink organs. Our study provides valuable genetic information for breeding maize varieties with high amylose.


Assuntos
Amilose , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Amilose/metabolismo , Amilose/genética , Estudo de Associação Genômica Ampla , Fenótipo , Ligação Genética , Genes de Plantas , Genótipo , Estudos de Associação Genética
2.
Mil Med Res ; 11(1): 36, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863031

RESUMO

BACKGROUND: Dysregulation of enhancer transcription occurs in multiple cancers. Enhancer RNAs (eRNAs) are transcribed products from enhancers that play critical roles in transcriptional control. Characterizing the genetic basis of eRNA expression may elucidate the molecular mechanisms underlying cancers. METHODS: Initially, a comprehensive analysis of eRNA quantitative trait loci (eRNAQTLs) was performed in The Cancer Genome Atlas (TCGA), and functional features were characterized using multi-omics data. To establish the first eRNAQTL profiles for colorectal cancer (CRC) in China, epigenomic data were used to define active enhancers, which were subsequently integrated with transcription and genotyping data from 154 paired CRC samples. Finally, large-scale case-control studies (34,585 cases and 69,544 controls) were conducted along with multipronged experiments to investigate the potential mechanisms by which candidate eRNAQTLs affect CRC risk. RESULTS: A total of 300,112 eRNAQTLs were identified across 30 different cancer types, which exert their influence on eRNA transcription by modulating chromatin status, binding affinity to transcription factors and RNA-binding proteins. These eRNAQTLs were found to be significantly enriched in cancer risk loci, explaining a substantial proportion of cancer heritability. Additionally, tumor-specific eRNAQTLs exhibited high responsiveness to the development of cancer. Moreover, the target genes of these eRNAs were associated with dysregulated signaling pathways and immune cell infiltration in cancer, highlighting their potential as therapeutic targets. Furthermore, multiple ethnic population studies have confirmed that an eRNAQTL rs3094296-T variant decreases the risk of CRC in populations from China (OR = 0.91, 95%CI 0.88-0.95, P = 2.92 × 10-7) and Europe (OR = 0.92, 95%CI 0.88-0.95, P = 4.61 × 10-6). Mechanistically, rs3094296 had an allele-specific effect on the transcription of the eRNA ENSR00000155786, which functioned as a transcriptional activator promoting the expression of its target gene SENP7. These two genes synergistically suppressed tumor cell proliferation. Our curated list of variants, genes, and drugs has been made available in CancereRNAQTL ( http://canernaqtl.whu.edu.cn/#/ ) to serve as an informative resource for advancing this field. CONCLUSION: Our findings underscore the significance of eRNAQTLs in transcriptional regulation and disease heritability, pinpointing the potential of eRNA-based therapeutic strategies in cancers.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias , Locos de Características Quantitativas , Humanos , Elementos Facilitadores Genéticos/genética , Neoplasias/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias Colorretais/genética , Estudos de Casos e Controles , RNA/genética , China , RNAs Intensificadores
3.
Plant Cell Rep ; 43(7): 166, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862789

RESUMO

KEY MESSAGE: Unraveling genetic markers for MYMIV resistance in urdbean, with 8 high-confidence marker-trait associations identified across diverse environments, provides crucial insights for combating MYMIV disease, informing future breeding strategies. Globally, yellow mosaic disease (YMD) causes significant yield losses, reaching up to 100% in favorable environments within major urdbean cultivating regions. The introgression of genomic regions conferring resistance into urdbean cultivars is crucial for combating YMD, including resistance against mungbean yellow mosaic India virus (MYMIV). To uncover the genetic basis of MYMIV resistance, we conducted a genome-wide association study (GWAS) using three multi-locus models in 100 diverse urdbean genotypes cultivated across six individual and two combined environments. Leveraging 4538 high-quality single nucleotide polymorphism (SNP) markers, we identified 28 unique significant marker-trait associations (MTAs) for MYMIV resistance, with 8 MTAs considered of high confidence due to detection across multiple GWAS models and/or environments. Notably, 4 out of 28 MTAs were found in proximity to previously reported genomic regions associated with MYMIV resistance in urdbean and mungbean, strengthening our findings and indicating consistent genomic regions for MYMIV resistance. Among the eight highly significant MTAs, one localized on chromosome 6 adjacent to previously identified quantitative trait loci for MYMIV resistance, while the remaining seven were novel. These MTAs contain several genes implicated in disease resistance, including four common ones consistently found across all eight MTAs: receptor-like serine-threonine kinases, E3 ubiquitin-protein ligase, pentatricopeptide repeat, and ankyrin repeats. Previous studies have linked these genes to defense against viral infections across different crops, suggesting their potential for further basic research involving cloning and utilization in breeding programs. This study represents the first GWAS investigation aimed at identifying resistance against MYMIV in urdbean germplasm.


Assuntos
Begomovirus , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Vigna , Vigna/genética , Vigna/virologia , Resistência à Doença/genética , Begomovirus/fisiologia , Begomovirus/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Genoma de Planta/genética , Genótipo , Marcadores Genéticos
4.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864891

RESUMO

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Assuntos
Fósforo , Amido , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Amido/metabolismo , Fósforo/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Fenótipo
5.
Commun Biol ; 7(1): 724, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866948

RESUMO

Most genetic variants associated with fertility in mammals fall in non-coding regions of the genome and it is unclear how these variants affect fertility. Here we use genome-wide association summary statistics for Heifer puberty (pubertal or not at 600 days) from 27,707 Bos indicus, Bos taurus and crossbred cattle; multi-trait GWAS signals from 2119 indicine cattle for four fertility traits, including days to calving, age at first calving, pregnancy status, and foetus age in weeks (assessed by rectal palpation of the foetus); and expression quantitative trait locus for whole blood from 489 indicine cattle, to identify 87 putatively functional genes affecting cattle fertility. Our analysis reveals a significant overlap between the set of cattle and previously reported human fertility-related genes, impling the existence of a shared pool of genes that regulate fertility in mammals. These findings are crucial for developing approaches to improve fertility in cattle and potentially other mammals.


Assuntos
Fertilidade , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Bovinos/genética , Fertilidade/genética , Estudo de Associação Genômica Ampla/veterinária , Feminino , Polimorfismo de Nucleotídeo Único
6.
J Headache Pain ; 25(1): 100, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867170

RESUMO

BACKGROUND: Currently, the treatment and prevention of migraine remain highly challenging. Mendelian randomization (MR) has been widely used to explore novel therapeutic targets. Therefore, we performed a systematic druggable genome-wide MR to explore the potential therapeutic targets for migraine. METHODS: We obtained data on druggable genes and screened for genes within brain expression quantitative trait locis (eQTLs) and blood eQTLs, which were then subjected to two-sample MR analysis and colocalization analysis with migraine genome-wide association studies data to identify genes highly associated with migraine. In addition, phenome-wide research, enrichment analysis, protein network construction, drug prediction, and molecular docking were performed to provide valuable guidance for the development of more effective and targeted therapeutic drugs. RESULTS: We identified 21 druggable genes significantly associated with migraine (BRPF3, CBFB, CDK4, CHD4, DDIT4, EP300, EPHA5, FGFRL1, FXN, HMGCR, HVCN1, KCNK5, MRGPRE, NLGN2, NR1D1, PLXNB1, TGFB1, TGFB3, THRA, TLN1 and TP53), two of which were significant in both blood and brain (HMGCR and TGFB3). The results of phenome-wide research showed that HMGCR was highly correlated with low-density lipoprotein, and TGFB3 was primarily associated with insulin-like growth factor 1 levels. CONCLUSIONS: This study utilized MR and colocalization analysis to identify 21 potential drug targets for migraine, two of which were significant in both blood and brain. These findings provide promising leads for more effective migraine treatments, potentially reducing drug development costs.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Transtornos de Enxaqueca , Humanos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/tratamento farmacológico , Locos de Características Quantitativas/genética , Predisposição Genética para Doença/genética , Encéfalo/metabolismo
7.
Theor Appl Genet ; 137(7): 146, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834825

RESUMO

KEY MESSAGE: The major QTL Sdp1.1+ controlling seed dormancy in cowpea was finely mapped, and two CCoAOMT1 genes were identified as candidate genes for the dormancy. Seed dormancy in wild cowpea may be useful in breeding cultivated cowpea with pre-harvest sprouting resistance. A previous study identified a major quantitative trait locus (QTL) for seed dormancy, Sdp1.1+ , using the population of the cross between cultivated cowpea 'JP81610' and wild cowpea 'JP89083.' However, the molecular basis of seed dormancy in cowpea is not yet known. In this study, we aimed to finely map the locus Sdp1.1+ and identify candidate gene(s) for it. Germination tests demonstrated that the seed coat is the major factor controlling seed dormancy in the wild cowpea JP89083. Microscopic observations revealed that wild cowpea seeds, unlike cultivated cowpea seeds, possessed a palisade cuticle layer. Fine mapping using a large F2 population of the cross JP81610 × JP89083 grown in Thailand revealed a single QTL, Sdp1.1+ , controlling seed dormancy. The Sdp1.1+ was confirmed using a small F2 population of the same cross grown in Japan. The Sdp1.1+ was mapped to a 37.34-Kb region containing three genes. Two closely linked genes, Vigun03g278900 (VuCCoAOMT1a) and Vigun03g290000 (VuCCoAOMT1b), located 4.844 Kb apart were considered as candidate genes for seed dormancy. The two genes encoded caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1). DNA sequencing and alignment of VuCCoAOMT1a and VuCCoAOMT1b between JP89083 and JP81610 revealed a single nucleotide polymorphism (SNP) causing an amino acid change in VuCCoAOMT1a and several SNPs leading to six amino acid changes in VuCCoAOMT1b. Altogether, these results indicate that VuCCoAOMT1a and VuCCoAOMT1b are candidate genes controlling physical seed dormancy in the wild cowpea JP89083.


Assuntos
Mapeamento Cromossômico , Germinação , Metiltransferases , Dormência de Plantas , Locos de Características Quantitativas , Sementes , Vigna , Dormência de Plantas/genética , Vigna/genética , Vigna/crescimento & desenvolvimento , Vigna/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Metiltransferases/genética , Metiltransferases/metabolismo , Germinação/genética , Genes de Plantas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Theor Appl Genet ; 137(7): 155, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858311

RESUMO

White lupin (Lupinus albus L.) is a high-protein grain legume alternative to soybean in Central Europe, but its cultivation is risky due to the fungal disease anthracnose that can cause severe yield damage. In addition, management of seed alkaloids is critical for human nutrition and animal feed. We report on a white lupin collection of genebank accessions, advanced breeding lines and cultivars that was genotyped and phenotypically characterized for anthracnose resistance and seed alkaloids and protein levels. Using genotyping by sequencing (GBS), SeqSNP-targeted GBS, BiomarkX genotyping and Sanger sequencing, a genetic resource of genome-wide SNPs for white lupin was established. We determined anthracnose resistance in two years field trials at four locations with infection rows and measured seed alkaloids and protein levels by near-infrared spectroscopy (NIRS). Few white lupin breeding lines showed anthracnose resistance comparable or better than Celina and Frieda, currently the best commercial cultivars in Germany. NIRS estimates for seed alkaloids and protein levels revealed variation in the white lupin collection. Using genome-wide association studies (GWAS), we identified SNPs significantly associated with anthracnose resistance in the field representing known and new genomic regions. We confirmed the pauper locus and detected new SNP markers significantly associated with seed alkaloids. For the first time, we present loci associated with total grain protein content. Finally, we tested the potential of genomic prediction (GP) in predicting the phenotype of these three quantitative traits. Application of results and resources are discussed in the context of fostering breeding programs for white lupin.


Assuntos
Alcaloides , Resistência à Doença , Lupinus , Fenótipo , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Sementes , Lupinus/genética , Lupinus/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sementes/genética , Sementes/química , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Melhoramento Vegetal , Estudos de Associação Genética
9.
Theor Appl Genet ; 137(7): 156, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858297

RESUMO

KEY MESSAGE: Phenomic prediction implemented on a large diversity set can efficiently predict seed germination, capture low-effect favorable alleles that are not revealed by GWAS and identify promising genetic resources. Oilseed rape faces many challenges, especially at the beginning of its developmental cycle. Achieving rapid and uniform seed germination could help to ensure a successful establishment and therefore enabling the crop to compete with weeds and tolerate stresses during the earliest developmental stages. The polygenic nature of seed germination was highlighted in several studies, and more knowledge is needed about low- to moderate-effect underlying loci in order to enhance seed germination effectively by improving the genetic background and incorporating favorable alleles. A total of 17 QTL were detected for seed germination-related traits, for which the favorable alleles often corresponded to the most frequent alleles in the panel. Genomic and phenomic predictions methods provided moderate-to-high predictive abilities, demonstrating the ability to capture small additive and non-additive effects for seed germination. This study also showed that phenomic prediction estimated phenotypic values closer to phenotypic values than GEBV. Finally, as the predictive ability of phenomic prediction was less influenced by the genetic structure of the panel, it is worth using this prediction method to characterize genetic resources, particularly with a view to design prebreeding populations.


Assuntos
Alelos , Brassica napus , Germinação , Fenótipo , Locos de Características Quantitativas , Sementes , Germinação/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Fenômica/métodos , Genômica/métodos , Genótipo , Melhoramento Vegetal/métodos
10.
Sci Rep ; 14(1): 13316, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858489

RESUMO

Flag leaf (FL) dimension has been reported as a key ecophysiological aspect for boosting grain yield in wheat. A worldwide winter wheat panel consisting of 261 accessions was tested to examine the phenotypical variation and identify quantitative trait nucleotides (QTNs) with candidate genes influencing FL morphology. To this end, four FL traits were evaluated during the early milk stage under two growing seasons at the Leibniz Institute of Plant Genetics and Crop Plant Research. The results showed that all leaf traits (Flag leaf length, width, area, and length/width ratio) were significantly influenced by the environments, genotypes, and environments × genotypes interactions. Then, a genome-wide association analysis was performed using 17,093 SNPs that showed 10 novel QTNs that potentially play a role in modulating FL morphology in at least two environments. Further analysis revealed 8 high-confidence candidate genes likely involved in these traits and showing high expression values from flag leaf expansion until its senescence and also during grain development. An important QTN (wsnp_RFL_Contig2177_1500201) was associated with FL width and located inside TraesCS3B02G047300 at chromosome 3B. This gene encodes a major facilitator, sugar transporter-like, and showed the highest expression values among the candidate genes reported, suggesting their positive role in controlling flag leaf and potentially being involved in photosynthetic assimilation. Our study suggests that the detection of novel marker-trait associations and the subsequent elucidation of the genetic mechanism influencing FL morphology would be of interest for improving plant architecture, light capture, and photosynthetic efficiency during grain development.


Assuntos
Alelos , Estudo de Associação Genômica Ampla , Fenótipo , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Genótipo , Variação Genética , Característica Quantitativa Herdável
11.
BMC Genomics ; 25(1): 582, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858624

RESUMO

BACKGROUND: Carcass traits are essential economic traits in the commercial pig industry. However, the genetic mechanism of carcass traits is still unclear. In this study, we performed a genome-wide association study (GWAS) based on the specific-locus amplified fragment sequencing (SLAF-seq) to study seven carcass traits on 223 four-way intercross pigs, including dressing percentage (DP), number of ribs (RIB), skin thinkness (ST), carcass straight length (CSL), carcass diagonal length (CDL), loin eye width (LEW), and loin eye thickness (LET). RESULTS: A total of 227,921 high-quality single nucleotide polymorphisms (SNPs) were detected to perform GWAS. A total of 30 SNPs were identified for seven carcass traits using the mixed linear model (MLM) (p < 1.0 × 10- 5), of which 9 SNPs were located in previously reported quantitative trait loci (QTL) regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43 to 16.32%. Furthermore, 11 candidate genes (LYPLAL1, EPC1, MATN2, ZFAT, ZBTB10, ZNF704, INHBA, SMYD3, PAK1, SPTBN2, and ACTN3) were found for carcass traits in pigs. CONCLUSIONS: The GWAS results will improve our understanding of the genetic basis of carcass traits. We hypothesized that the candidate genes associated with these discovered SNPs would offer a biological basis for enhancing the carcass quality of pigs in swine breeding.


Assuntos
Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Suínos/genética , Cruzamentos Genéticos , Carne
12.
BMC Cancer ; 24(1): 714, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858644

RESUMO

BACKGROUND: Our study aims to explore the relationship, shared gene signature, and the underlying mechanisms that connect rheumatoid arthritis (RA) to colorectal cancer (CRC). METHODS: Mendelian randomization (MR) analysis was conducted to assess the causality between RA and CRC. Summary statistic data-based Mendelian randomization (SMR) leveraging eQTL data was employed to identify the CRC-related causal genes. Integrated analyses of single-cell RNA sequencing and bulk RNA sequencing were employed to comprehensively investigate the shared gene signature and potential mechanisms underlying the pathogenesis of both RA and CRC. Predictive analysis of the shared hub gene in CRC immunotherapy response was performed. Pan-cancer analyses were conducted to explore the potential role of MYO9A in 33 types of human tumors. RESULTS: MR analysis suggested that RA might be associated with a slight increased risk of CRC (Odds Ratio = 1.04, 95% Confidence Interval = 1.01-1.07, P = 0.005). SMR analysis combining transcriptome analyses identified MYO9A as a causal gene in CRC and a shared gene signature in both RA and CRC. MYO9A may contribute to tumor suppression, while downregulation of MYO9A may impact CRC tumorigenesis by disrupting epithelial polarity and architecture, resulting in a worse prognosis in CRC. Additionally, MYO9A shows promise as a powerful predictive biomarker for cancer prognosis and immunotherapy response in CRC. Pan-cancer analyses demonstrated MYO9A may have a protective role in the occurrence and progression of various human cancers. CONCLUSION: RA might be associated with a slight increased risk of CRC. MYO9A is a shared gene signature and a potential immune-related therapeutic target for both CRC and RA. Targeting the MYO9A-mediated loss of polarity and epithelial architecture could be a novel therapeutic approach for CRC.


Assuntos
Artrite Reumatoide , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Análise da Randomização Mendeliana , Miosinas/genética , Perfilação da Expressão Gênica , Transcriptoma , Locos de Características Quantitativas , Prognóstico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Multiômica
13.
Nat Genet ; 56(6): 1310-1318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831010

RESUMO

While genome-wide association studies are increasingly successful in discovering genomic loci associated with complex human traits and disorders, the biological interpretation of these findings remains challenging. Here we developed the GSA-MiXeR analytical tool for gene set analysis (GSA), which fits a model for the heritability of individual genes, accounting for linkage disequilibrium across variants and allowing the quantification of partitioned heritability and fold enrichment for small gene sets. We validated the method using extensive simulations and sensitivity analyses. When applied to a diverse selection of complex traits and disorders, including schizophrenia, GSA-MiXeR prioritizes gene sets with greater biological specificity compared to standard GSA approaches, implicating voltage-gated calcium channel function and dopaminergic signaling for schizophrenia. Such biologically relevant gene sets, often with fewer than ten genes, are more likely to provide insights into the pathobiology of complex diseases and highlight potential drug targets.


Assuntos
Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Esquizofrenia , Humanos , Estudo de Associação Genômica Ampla/métodos , Esquizofrenia/genética , Herança Multifatorial/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Predisposição Genética para Doença , Mapeamento Cromossômico/métodos , Simulação por Computador , Característica Quantitativa Herdável
14.
Nat Genet ; 56(6): 1057-1068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858456

RESUMO

Genotype × environment interactions (GxE) have long been recognized as a key mechanism underlying human phenotypic variation. Technological developments over the past 15 years have dramatically expanded our appreciation of the role of GxE in both gene regulation and complex traits. The richness and complexity of these datasets also required parallel efforts to develop robust and sensitive statistical and computational approaches. Although our understanding of the genetic architecture of molecular and complex traits has been maturing, a large proportion of complex trait heritability remains unexplained. Furthermore, there are increasing efforts to characterize the effect of environmental exposure on human health. We therefore review GxE in human gene regulation and complex traits, advocating for a comprehensive approach that jointly considers genetic and environmental factors in human health and disease.


Assuntos
Regulação da Expressão Gênica , Interação Gene-Ambiente , Genótipo , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Fenótipo , Locos de Características Quantitativas
15.
Theor Appl Genet ; 137(6): 145, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822827

RESUMO

KEY MESSAGE: qLA3.1, controlling leaf angle in tomato, was fine-mapped to an interval of 4.45 kb on chromosome A03, and one gene encoding auxin response factor was identified as a candidate gene. Leaf angle is a crucial trait in plant architecture that plays an important role in achieving optimal plant structure. However, there are limited reports on gene localization, cloning, and the function of plant architecture in horticultural crops, particularly regarding leaf angle. In this study, we selected 'Z3' with erect leaves and 'Heinz1706' with horizontal leaves as the phenotype and cytological observation. We combined bulked segregant analysis and fine genetic mapping to identify a candidate gene, known as, i.e., qLA3.1, which was related to tomato leaf angle. Through multiple analyses, we found that Solyc03g113410 was the most probably candidate for qLA3.1, which encoded the auxin response factor SlARF11 in tomato and was homologous to OsARF11 related to leaf angle in rice. We discovered that silencing SlARF11 resulted in upright leaves, while plants with over-expressed SlARF11 exhibited horizontal leaves. We also found that cultivars with erect leaves had a mutation from base G to base A. Moreover, quantitative analysis of plants treated with hormones indicated that SlARF11 might participate in cell elongation and the activation of genes related to auxin and brassinosteroid pathways. Transcriptome analysis further validated that SlARF11 may regulate leaf angle through hormone signaling pathways. These data support the idea that the auxin response factor SlARF11 may have an important function in tomato leaf petiole angles.


Assuntos
Mapeamento Cromossômico , Fenótipo , Folhas de Planta , Proteínas de Plantas , Locos de Características Quantitativas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
16.
BMC Genomics ; 25(1): 559, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840048

RESUMO

BACKGROUND: The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT: The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION: We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.


Assuntos
Variação Genética , Seleção Genética , Sequenciamento Completo do Genoma , Bovinos/genética , Animais , Sequenciamento Completo do Genoma/métodos , Desequilíbrio de Ligação , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Genoma , Genética Populacional , Cruzamento , Locos de Características Quantitativas , Fenótipo
17.
Genet Sel Evol ; 56(1): 42, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844868

RESUMO

BACKGROUND: Female fertility is an important trait in dairy cattle. Identifying putative causal variants associated with fertility may help to improve the accuracy of genomic prediction of fertility. Combining expression data (eQTL) of genes, exons, gene splicing and allele specific expression is a promising approach to fine map QTL to get closer to the causal mutations. Another approach is to identify genomic differences between cows selected for high and low fertility and a selection experiment in New Zealand has created exactly this resource. Our objective was to combine multiple types of expression data, fertility traits and allele frequency in high- (POS) and low-fertility (NEG) cows with a genome-wide association study (GWAS) on calving interval in Australian cows to fine-map QTL associated with fertility in both Australia and New Zealand dairy cattle populations. RESULTS: Variants that were significantly associated with calving interval (CI) were strongly enriched for variants associated with gene, exon, gene splicing and allele-specific expression, indicating that there is substantial overlap between QTL associated with CI and eQTL. We identified 671 genes with significant differential expression between POS and NEG cows, with the largest fold change detected for the CCDC196 gene on chromosome 10. Our results provide numerous candidate genes associated with female fertility in dairy cattle, including GYS2 and TIGAR on chromosome 5 and SYT3 and HSD17B14 on chromosome 18. Multiple QTL regions were located in regions with large numbers of copy number variants (CNV). To identify the causal mutations for these variants, long read sequencing may be useful. CONCLUSIONS: Variants that were significantly associated with CI were highly enriched for eQTL. We detected 671 genes that were differentially expressed between POS and NEG cows. Several QTL detected for CI overlapped with eQTL, providing candidate genes for fertility in dairy cattle.


Assuntos
Fertilidade , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Bovinos/genética , Fertilidade/genética , Feminino , Estudo de Associação Genômica Ampla/veterinária , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Frequência do Gene
18.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38832465

RESUMO

BACKGROUND: As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. RESULTS: We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. CONCLUSIONS: RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.


Assuntos
Mineração de Dados , Estudo de Associação Genômica Ampla , Oryza , Locos de Características Quantitativas , Oryza/genética , Software , Epigenômica/métodos , Biologia Computacional/métodos , Polimorfismo de Nucleotídeo Único , Genômica/métodos , Genoma de Planta , Mapeamento Cromossômico , Bases de Dados Genéticas
19.
BMC Cancer ; 24(1): 680, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834983

RESUMO

BACKGROUND: Drug repurposing provides a cost-effective approach to address the need for lung cancer prevention and therapeutics. We aimed to identify actionable druggable targets using Mendelian randomization (MR). METHODS: Summary-level data of gene expression quantitative trait loci (eQTLs) were sourced from the eQTLGen resource. We procured genetic associations with lung cancer and its subtypes from the TRICL, ILCCO studies (discovery) and the FinnGen study (replication). We implemented Summary-data-based Mendelian Randomization analysis to identify potential therapeutic targets for lung cancer. Colocalization analysis was further conducted to assess whether the identified signal pairs shared a causal genetic variant. FINDINGS: In the main analysis dataset, we identified 55 genes that demonstrate a causal relationship with lung cancer and its subtypes. However, in the replication cohort, only three genes were found to have such a causal association with lung cancer and its subtypes, and of these, HYKK (also known as AGPHD1) was consistently present in both the primary analysis dataset and the replication cohort. Following HEIDI tests and colocalization analyses, it was revealed that HYKK (AGPHD1) is associated with an increased risk of squamous cell carcinoma of the lung, with an odds ratio and confidence interval of OR = 1.28,95%CI = 1.24 to 1.33. INTERPRETATION: We have found that the HYKK (AGPHD1) gene is associated with an increased risk of squamous cell carcinoma of the lung, suggesting that this gene may represent a potential therapeutic target for both the prevention and treatment of lung squamous cell carcinoma.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Análise da Randomização Mendeliana , Locos de Características Quantitativas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Reposicionamento de Medicamentos , Terapia de Alvo Molecular/métodos
20.
Front Immunol ; 15: 1394438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835753

RESUMO

Background: Ankylosing spondylitis (AS) is a complex condition with a significant genetic component. This study explored circulating proteins as potential genetic drug targets or biomarkers to prevent AS, addressing the need for innovative and safe treatments. Methods: We analyzed extensive data from protein quantitative trait loci (pQTLs) with up to 1,949 instrumental variables (IVs) and selected the top single-nucleotide polymorphism (SNP) associated with AS risk. Utilizing a two-sample Mendelian randomization (MR) approach, we assessed the causal relationships between identified proteins and AS risk. Colocalization analysis, functional enrichment, and construction of protein-protein interaction networks further supported these findings. We utilized phenome-wide MR (phenMR) analysis for broader validation and repurposing of drugs targeting these proteins. The Drug-Gene Interaction database (DGIdb) was employed to corroborate drug associations with potential therapeutic targets. Additionally, molecular docking (MD) techniques were applied to evaluate the interaction between target protein and four potential AS drugs identified from the DGIdb. Results: Our analysis identified 1,654 plasma proteins linked to AS, with 868 up-regulated and 786 down-regulated. 18 proteins (AGER, AIF1, ATF6B, C4A, CFB, CLIC1, COL11A2, ERAP1, HLA-DQA2, HSPA1L, IL23R, LILRB3, MAPK14, MICA, MICB, MPIG6B, TNXB, and VARS1) that show promise as therapeutic targets for AS or biomarkers, especially MAPK14, supported by evidence of colocalization. PhenMR analysis linked these proteins to AS and other diseases, while DGIdb analysis identified potential drugs related to MAPK14. MD analysis indicated strong binding affinities between MAPK14 and four potential AS drugs, suggesting effective target-drug interactions. Conclusion: This study underscores the utility of MR analysis in AS research for identifying biomarkers and therapeutic drug targets. The involvement of Th17 cell differentiation-related proteins in AS pathogenesis is particularly notable. Clinical validation and further investigation are essential for future applications.


Assuntos
Biomarcadores , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Locos de Características Quantitativas , Espondilite Anquilosante , Espondilite Anquilosante/genética , Espondilite Anquilosante/tratamento farmacológico , Humanos , Predisposição Genética para Doença , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Análise da Randomização Mendeliana , Simulação de Acoplamento Molecular , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...