Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
1.
Mol Plant ; 17(7): 1090-1109, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822523

RESUMO

The precise control of receptor levels is crucial for initiating cellular signaling transduction in response to specific ligands; however, such mechanisms regulating nodulation factor (NF) receptor (NFR)-mediated perception of NFs to establish symbiosis remain unclear. In this study, we unveil the pivotal role of the NFR-interacting RING-type E3 ligase 1 (NIRE1) in regulating NFR1/NFR5 homeostasis to optimize rhizobial infection and nodule development in Lotus japonicus. We demonstrated that NIRE1 has a dual function in this regulatory process. It associates with both NFR1 and NFR5, facilitating their degradation through K48-linked polyubiquitination before rhizobial inoculation. However, following rhizobial inoculation, NFR1 phosphorylates NIRE1 at a conserved residue, Tyr-109, inducing a functional switch in NIRE1, which enables NIRE1 to mediate K63-linked polyubiquitination, thereby stabilizing NFR1/NFR5 in infected root cells. The introduction of phospho-dead NIRE1Y109F leads to delayed nodule development, underscoring the significance of phosphorylation at Tyr-109 in orchestrating symbiotic processes. Conversely, expression of the phospho-mimic NIRE1Y109E results in the formation of spontaneous nodules in L. japonicus, further emphasizing the critical role of the phosphorylation-dependent functional switch in NIRE1. In summary, these findings uncover a fine-tuned symbiotic mechanism that a single E3 ligase could undergo a phosphorylation-dependent functional switch to dynamically and precisely regulate NF receptor protein levels.


Assuntos
Lotus , Proteínas de Plantas , Nodulação , Ubiquitina-Proteína Ligases , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lotus/metabolismo , Lotus/microbiologia , Lotus/genética , Ubiquitinação , Simbiose/fisiologia , Regulação da Expressão Gênica de Plantas , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia
2.
BMC Genomics ; 25(1): 648, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943098

RESUMO

BACKGROUND: Lotus (Nelumbo nucifera G.) is an important aquatic plant with high ornamental, economic, cultural and ecological values, but abiotic stresses seriously affect its growth and distribution. Q-type C2H2 zinc finger proteins (ZFPs) play an important role in plant growth development and environmental stress responses. Although the Q-type C2H2 gene family has been identified in some plants, limited reports has been carried out it in lotus. RESULTS: In this study, we identified 45 Q-type NnZFP members in lotus. Based on the phylogenetic tree, these Q-type NnZFP gene family members were divided into 4 groups, including C1-1i, C1-2i, C1-3i and C1-4i. Promoter cis-acting elements analysis indicated that most Q-type NnZFP gene family members in lotus were associated with response to abiotic stresses. Through collinearity analyses, no tandem duplication gene pairs and 14 segmental duplication gene pairs were identified, which showed that duplication events might play a key role in the expansion of the Q-type NnZFP gene family. The synteny results suggested that 54 and 28 Q-type NnZFP genes were orthologous to Arabidopsis and rice, respectively. The expression patterns of these Q-type NnZFP genes revealed that 30 Q-type NnZFP genes were expressed in at least one lotus tissue. Nn5g30550 showed relatively higher expression levels in all tested tissues. 12 genes were randomly selected with at least one gene from each phylogenetic clade, and the expression of these selected genes were confirmed by qRT-PCR (quantitative real-time polymerase chain reaction). The results indicated that Q-type NnZFP genes were extensively involved in cadmium, drought, salt and cold stresses responses. Among them, 11 genes responded to at least three different stress treatments, especially Nn2g12894, which induced by all four treatments. CONCLUSIONS: These results could increase our understanding of the characterization of the Q-type NnZFP gene family and provide relevant information for further functional analysis of Q-type NnZFP genes in plant development, and abiotic stress tolerance in lotus.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Nelumbo , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nelumbo/genética , Dedos de Zinco CYS2-HIS2/genética , Lotus/genética , Lotus/metabolismo , Lotus/crescimento & desenvolvimento , Genoma de Planta , Perfilação da Expressão Gênica
3.
Sci Rep ; 14(1): 10857, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740848

RESUMO

The qRT-PCR technique has been regarded as an important tool for assessing gene expression diversity. Selection of appropriate reference genes is essential for validating deviation and obtaining reliable and accurate results. Lotus (Nelumbo nucifera Gaertn) is a common aquatic plant with important aesthetic, commercial, and cultural values. Twelve candidate genes, which are typically used as reference genes for qRT-PCR in other plants, were selected for this study. These candidate reference genes were cloned with, specific primers designed based on published sequences. In particular, the expression level of each gene was examined in different tissues and growth stages of Lotus. Notably, the expression stability of these candidate genes was assessed using the software programs geNorm and NormFinder. As a result, the most efficient reference genes for rootstock expansion were TBP and UBQ. In addition, TBP and EF-1α were the most efficient reference genes in various floral tissues, while ACT and GAPDH were the most stable genes at all developmental stages of the seed. CYP and GAPDH were the best reference genes at different stages of leaf development, but TUA was the least stable. Meanwhile, the gene expression profile of NnEXPA was analyzed to confirm the validity of the findings. It was concluded that, TBP and GAPDH were identified as the best reference genes. The results of this study may help researchers to select appropriate reference genes and thus obtain credible results for further quantitative RT-qPCR gene expression analyses in Lotus.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Nelumbo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase em Tempo Real/normas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Nelumbo/genética , Padrões de Referência , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Lotus/genética , Lotus/crescimento & desenvolvimento
5.
Nat Commun ; 15(1): 3568, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670968

RESUMO

Legume-rhizobia root-nodule symbioses involve the recognition of rhizobial Nod factor (NF) signals by NF receptors, triggering both nodule organogenesis and rhizobial infection. RinRK1 is induced by NF signaling and is essential for infection thread (IT) formation in Lotus japonicus. However, the precise mechanism underlying this process remains unknown. Here, we show that RinRK1 interacts with the extracellular domains of NF receptors (NFR1 and NFR5) to promote their accumulation at root hair tips in response to rhizobia or NFs. Furthermore, Flotillin 1 (Flot1), a nanodomain-organizing protein, associates with the kinase domains of NFR1, NFR5 and RinRK1. RinRK1 promotes the interactions between Flot1 and NF receptors and both RinRK1 and Flot1 are necessary for the accumulation of NF receptors at root hair tips upon NF stimulation. Our study shows that RinRK1 and Flot1 play a crucial role in NF receptor complex assembly within localized plasma membrane signaling centers to promote symbiotic infection.


Assuntos
Lotus , Proteínas de Membrana , Proteínas de Plantas , Raízes de Plantas , Lotus/metabolismo , Lotus/microbiologia , Lotus/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Transdução de Sinais , Simbiose , Regulação da Expressão Gênica de Plantas , Rhizobium/metabolismo
6.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38678008

RESUMO

The biological interactions between plants and their root microbiomes are essential for plant growth, and even though plant genotype (G), soil microbiome (M), and growth conditions (environment; E) are the core factors shaping root microbiome, their relationships remain unclear. In this study, we investigated the effects of G, M, and E and their interactions on the Lotus root microbiome and plant growth using an in vitro cross-inoculation approach, which reconstructed the interactions between nine Lotus accessions and four soil microbiomes under two different environmental conditions. Results suggested that a large proportion of the root microbiome composition is determined by M and E, while G-related (G, G × M, and G × E) effects were significant but small. In contrast, the interaction between G and M had a more pronounced effect on plant shoot growth than M alone. Our findings also indicated that most microbiome variations controlled by M have little effect on plant phenotypes, whereas G × M interactions have more significant effects. Plant genotype-dependent interactions with soil microbes warrant more attention to optimize crop yield and resilience.


Assuntos
Genótipo , Lotus , Microbiota , Raízes de Plantas , Microbiologia do Solo , Lotus/microbiologia , Lotus/crescimento & desenvolvimento , Lotus/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Microbiota/genética , Solo/química
7.
Plant Physiol Biochem ; 210: 108591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583314

RESUMO

Fresh lotus seeds are gaining favor with consumers for their crunchy texture and natural sweetness. However, the intricacies of sugar accumulation in lotus seeds remain elusive, which greatly hinders the quality improvement of fresh lotus seeds. This study endeavors to elucidate this mechanism by identifying and characterizing the sucrose synthase (SUS) gene family in lotus. Comprising five distinct members, namely NnSUS1 to NnSUS5, each gene within this family features a C-terminal glycosyl transferase1 (GT1) domain. Among them, NnSUS1 is the predominately expressed gene, showing high transcript abundance in the floral organs and cotyledons. NnSUS1 was continuously up-regulated from 6 to 18 days after pollination (DAP) in lotus cotyledons. Furthermore, NnSUS1 demonstrates co-expression relationships with numerous genes involved in starch and sucrose metabolism. To investigate the function of NnSUS1, a transient overexpression system was established in lotus cotyledons, which confirmed the gene's contribution to sugar accumulation. Specifically, transient overexpression of NnSUS1 in seed cotyledons leads to a significant increase in the levels of total soluble sugar, including sucrose and fructose. These findings provide valuable theoretical insights for improving sugar content in lotus seeds through molecular breeding methods.


Assuntos
Cotilédone , Glucosiltransferases , Lotus , Proteínas de Plantas , Cotilédone/genética , Cotilédone/metabolismo , Cotilédone/enzimologia , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Lotus/genética , Lotus/enzimologia , Lotus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/enzimologia , Sacarose/metabolismo , Açúcares/metabolismo
8.
J Exp Bot ; 75(11): 3542-3556, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38457346

RESUMO

The legume-rhizobium symbiosis represents a unique model within the realm of plant-microbe interactions. Unlike typical cases of pathogenic invasion, the infection of rhizobia and their residence within symbiotic cells do not elicit a noticeable immune response in plants. Nevertheless, there is still much to uncover regarding the mechanisms through which plant immunity influences rhizobial symbiosis. In this study, we identify an important player in this intricate interplay: Lotus japonicus PRP1, which serves as a positive regulator of plant immunity but also exhibits the capacity to decrease rhizobial colonization and nitrogen fixation within nodules. The PRP1 gene encodes an uncharacterized protein and is named Pathogenesis-Related Protein1, owing to its orthologue in Arabidopsis thaliana, a pathogenesis-related family protein (At1g78780). The PRP1 gene displays high expression levels in nodules compared to other tissues. We observed an increase in rhizobium infection in the L. japonicus prp1 mutants, whereas PRP1-overexpressing plants exhibited a reduction in rhizobium infection compared to control plants. Intriguingly, L. japonicus prp1 mutants produced nodules with a pinker colour compared to wild-type controls, accompanied by elevated levels of leghaemoglobin and an increased proportion of infected cells within the prp1 nodules. The transcription factor Nodule Inception (NIN) can directly bind to the PRP1 promoter, activating PRP1 gene expression. Furthermore, we found that PRP1 is a positive mediator of innate immunity in plants. In summary, our study provides clear evidence of the intricate relationship between plant immunity and symbiosis. PRP1, acting as a positive regulator of plant immunity, simultaneously exerts suppressive effects on rhizobial infection and colonization within nodules.


Assuntos
Lotus , Proteínas de Plantas , Nódulos Radiculares de Plantas , Simbiose , Lotus/genética , Lotus/microbiologia , Lotus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Rhizobium/fisiologia , Regulação da Expressão Gênica de Plantas
9.
Plant Mol Biol ; 114(2): 21, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368585

RESUMO

Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.


Assuntos
Arabidopsis , Lotus , Arabidopsis/genética , Simbiose/genética , Genótipo , Agricultura , Evolução Biológica , Lotus/genética
10.
Plant Sci ; 342: 112036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365002

RESUMO

Drought stress often affects crop growth and even causes crop death, while aquaporins can maintain osmotic balance by transporting water across membranes, so it is important to study how to improve drought tolerance of crops by using aquaporins. In this work, we characterize a set of subfamily members named NIPs belonging to the family of aquaporins in Lotus japonicus, grouping 14 family members based on the sequence similarity in the aromatic/arginine (Ar/R) region. Among these members, LjNIP1;5 is one of the genes with the highest expression in roots which is induced by the AM fungus. In Lotus japonicus, LjNIP1;5 is highly expressed in symbiotic roots, and its promoter can be induced by drought stress and AM fungus. Root colonization analysis reveals that ljnip1:5 mutant exhibits lower mycorrhizal colonization than the wild type, with increasing the proportion of large arbuscule, and fewer arbuscule produced by symbiosis under drought stress. In the LjNIP1;5OE plant, we detected a strong antioxidant capacity compared to the control, and LjNIP1;5OE showed higher stem length under drought stress. Taken together, the current results facilitate our comprehensive understanding of the plant adaptive to drought stress with the coordination of the specific fungi.


Assuntos
Aquaporinas , Lotus , Micorrizas , Simbiose/genética , Lotus/genética , Lotus/metabolismo , Resistência à Seca , Aquaporinas/genética , Aquaporinas/metabolismo , Raízes de Plantas/metabolismo
11.
Plant Genome ; 17(1): e20429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243772

RESUMO

Circular RNAs (circRNAs) are covalently closed single-stranded RNAs, generated through a back-splicing process that links a downstream 5' site to an upstream 3' end. The only distinction in the sequence between circRNA and their linear cognate RNA is the back splice junction. Their low abundance and sequence similarity with their linear origin RNA have made the discovery and identification of circRNA challenging. We have identified almost 6000 novel circRNAs from Lotus japonicus leaf tissue using different enrichment, amplification, and sequencing methods as well as alternative bioinformatics pipelines. The different methodologies identified different pools of circRNA with little overlap. We validated circRNA identified by the different methods using reverse transcription polymerase chain reaction and characterized sequence variations using nanopore sequencing. We compared validated circRNA identified in L. japonicus to other plant species and showed conservation of high-confidence circRNA-expressing genes. This is the first identification of L. japonicus circRNA and provides a resource for further characterization of their function in gene regulation. CircRNAs identified in this study originated from genes involved in all biological functions of eukaryotic cells. The comparison of methodologies and technologies to sequence, identify, analyze, and validate circRNA from plant tissues will enable further research to characterize the function and biogenesis of circRNA in L. japonicus.


Assuntos
Lotus , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Lotus/genética , Lotus/metabolismo , RNA , Splicing de RNA , Regulação da Expressão Gênica
12.
J Plant Physiol ; 292: 154146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043244

RESUMO

Polyol/Monosaccharide Transporters (PLTs/PMTs) localized in the plasma membrane have previously been identified in plants. The physiological role and the functional properties of these proteins in legume plants are, however, unclear. Here we describe the functional analysis of LjPLT1, a plasma membrane-localized PLT protein from Lotus japonicus. The LjPLT1 gene was strongly expressed in the vascular tissue of roots, stems and leaves. Expression of the LjPLT1 cDNAs in yeast revealed that the protein functions as a broad-spectrum H+ -symporter for both linear polyols of sorbitol and mannitol, and cyclic polyol myo-inositol. It also catalyzes the transport of different hexoses, including fructose, glucose, galactose and mannose. Overexpression of LjPLT1 (OELjPLT1) results in inhibition of plant growth and a decrease in nodule nitrogenase activity in L. japonicus. The soluble sugars were increased in newly expanded leaves, roots and nodules but decreased in mature leaves in OELjPLT1 plants. In addition, the OELjPLT1 seedlings displayed an increased sensitivity to high content mannitol and boron toxicity, but neither drought nor salinity stresses. Taken together, the present study indicates that the LjPLT1 protein may participate in the translocation of hexoses/polyols to regulate multiple physiological and growth processes in L. japonicus.


Assuntos
Lotus , Polímeros , Lotus/genética , Lotus/metabolismo , Monossacarídeos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana/metabolismo , Raízes de Plantas/metabolismo , Manitol/metabolismo , Hexoses/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814354

RESUMO

Flooding significantly hampers global forage production. In flood-prone regions, Lotus tenuis and Lotus corniculatus are common forage legumes, yet little is known about their responses to partial or complete submergence. To address this, we evaluated 10 Lotus accessions subjected to 11days of either partial or complete submergence, analysing growth traits related to tolerance and recovery after de-submergence. Principal component analyses revealed that submergence associated growth parameters were linked to L. corniculatus accessions, whereas recovery was associated with L. tenuis accessions. Notably, in L. tenuis , recovery from complete submergence positively correlated with leaf mass fraction but negatively with root mass fraction, showing an opposite pattern than in L. corniculatus . Encouragingly, no trade-off was found between inherent growth capacity and submergence tolerance (both partial and complete) or recovery ability, suggesting genetic selection for increased tolerance would not compromise growth potential. L. tenuis exhibited accessions with both partial and complete submergence tolerance, making them versatile for flood-prone environments, whereas L. corniculatus accessions were better suited for partial submergence. These findings offer valuable insights to enhance forage production in flood-prone areas and guide the selection of appropriate Lotus accessions for specific flood conditions.


Assuntos
Lotus , Lotus/genética , Inundações
14.
Planta ; 259(1): 10, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041705

RESUMO

MAIN CONCLUSION: The complexes involving MYBPA2, TT2b, and TT8 proteins are the critical regulators of ANR and LAR genes to promote the biosynthesis of proanthocyanidins in the leaves of Lotus spp. The environmental impact and health of ruminants fed with forage legumes depend on the herbage's concentration and structure of proanthocyanidins (PAs). Unfortunately, the primary forage legumes (alfalfa and clover) do not contain substantial levels of PAs. No significant progress has been made to induce PAs to agronomically valuable levels in their edible organs by biotechnological approaches thus far. Building this trait requires a profound knowledge of PA regulators and their interplay in species naturally committed to accumulating these metabolites in the target organs. Against this background, we compared the shoot transcriptomes of two inter-fertile Lotus species, namely Lotus tenuis and Lotus corniculatus, polymorphic for this trait, to search for differentially expressed MYB and bHLH genes. We then tested the expression of the above-reported regulators in L. tenuis x L. corniculatus interspecific hybrids, several Lotus spp., and different L. corniculatus organs with contrasting PA levels. We identified a novel MYB activator and MYB-bHLH-based complexes that, when expressed in Nicotiana benthamiana, trans-activated the promoters of L. corniculatus anthocyanidin reductase and leucoanthocyanidin reductase 1 genes. The last are the two critical structural genes for the biosynthesis of PAs in Lotus spp. Competition between MYB activators for the transactivation of these promoters also emerged. Overall, by employing Lotus as a model genus, we refined the transcriptional network underlying PA biosynthesis in the herbage of legumes. These findings are crucial to engineering this trait in pasture legumes.


Assuntos
Lotus , Proantocianidinas , Lotus/genética , Lotus/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proantocianidinas/genética , Antocianinas/metabolismo , Oxirredutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Physiol Plant ; 175(6): e14084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148200

RESUMO

Isoflavonoids are mostly produced by legumes although little is known about why and how legumes are able to regulate the biosynthesis of these particular compounds. Understanding the role of potential regulatory genes of the isoflavonoid biosynthetic pathway constitutes an important topic of research. The LORE1 mutation of the gene encoding the transcription factor MYB36 allowed the identification of this gene as a regulator of isoflavonoid biosynthesis in Lotus japonicus plants. The levels of several isoflavonoid compounds were considerably lower in two lines of Ljmyb36 mutant plants compared to the WT. In addition, we found that Ljmyb36 mutant plants were significantly smaller and showed a substantial decrease in the chlorophyll levels under normal growth conditions. The analysis of plants subjected to different types of abiotic stress conditions further revealed that mutant plants presented a higher sensitivity than WT plants, indicating that the MYB36 transcription factor is also involved in the stress response in L. japonicus plants.


Assuntos
Lotus , Lotus/genética , Lotus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação/genética , Regulação da Expressão Gênica de Plantas/genética
16.
BMC Genomics ; 24(1): 719, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017402

RESUMO

BACKGROUND: Adventitious roots (ARs) represent an important organ system for water and nutrient uptake in lotus plants because of degeneration of the principal root. The WUSCHEL-related homeobox (WOX) gene regulates plant development and growth by affecting the expression of several other genes. In this study, three WOX genes, NnWOX1-1, NnWOX4-3, and NnWOX5-1, were isolated and their functions were assessed in Arabidopsis plants. RESULTS: The full lengths of NnWOX1-1, NnWOX4-3, and NnWOX5-1 were 1038, 645, and 558 bp, encoding 362, 214, and 185 amino acid residues, respectively. Phylogenetic analysis classified NnWOX1-1 and NnWOX4-3 encoding proteins into one group, and NnWOX5-1 and MnWOX5 encoding proteins exhibited strong genetic relationships. The three genes were induced by sucrose and indoleacetic acid (IAA) and exhibited organ-specific expression characteristics. In addition to improving root growth and salt tolerance, NnWOX1-1 and NnWOX4-3 promoted stem development in transgenic Arabidopsis plants. A total of 751, 594, and 541 genes, including 19, 19, and 13 respective genes related to ethylene and IAA metabolism and responses, were enhanced in NnWOX1-1, NnWOX4-3, and NnWOX5-1 transgenic plants, respectively. Further analysis showed that ethylene production rates in transgenic plants increased, whereas IAA, peroxidase, and lignin content did not significantly change. Exogenous application of ethephon on lotus seedlings promoted AR formation and dramatically increased the fresh and dry weights of the plants. CONCLUSIONS: NnWOX1-1, NnWOX4-3, and NnWOX5-1 influence root formation, stem development, and stress adaptation in transgenic Arabidopsis plants by affecting the transcription of multiple genes. Among these, changes in gene expression involving ethylene metabolism and responses likely critically affect the development of Arabidopsis plants. In addition, ethylene may represent an important factor affecting AR formation in lotus seedlings.


Assuntos
Arabidopsis , Lotus , Nelumbo , Arabidopsis/metabolismo , Nelumbo/genética , Lotus/genética , Lotus/metabolismo , Filogenia , Raízes de Plantas/metabolismo , Etilenos/farmacologia , Etilenos/metabolismo , Plântula/genética , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
BMC Biol ; 21(1): 176, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592232

RESUMO

BACKGROUND: Lotus corniculatus is a widely distributed perennial legume whose great adaptability to different environments and resistance to barrenness make it an excellent forage and ecological restoration plant. However, its molecular genetics and genomic relationships among populations are yet to be uncovered. RESULT: Here we report on a genomic variation map from worldwide 272 L. corniculatus accessions by genome resequencing. Our analysis suggests that L. corniculatus accessions have high genetic diversity and could be further divided into three subgroups, with the genetic diversity centers were located in Transcaucasia. Several candidate genes and SNP site associated with CNglcs content and growth traits were identified by genome-wide associated study (GWAS). A non-synonymous in LjMTR was responsible for the decreased expression of CNglcs synthesis genes and LjZCD was verified to positively regulate CNglcs synthesis gene CYP79D3. The LjZCB and an SNP in LjZCA promoter were confirmed to be involved in plant growth. CONCLUSION: This study provided a large number of genomic resources and described genetic relationship and population structure among different accessions. Moreover, we attempt to provide insights into the molecular studies and breeding of CNglcs and growth traits in L. corniculatus.


Assuntos
Lotus , Lotus/genética , Melhoramento Vegetal , Loci Gênicos , Demografia
18.
Plant Signal Behav ; 18(1): 2218670, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37288791

RESUMO

Adventitious roots (ARs), developing from non-root tissue, play an important role in some plants. Here, the molecular mechanism of AR differentiation in Lotus japonicus L. (L. japonicus) with the transformed chicken interferon alpha gene (ChIFNα) encoding cytokine was studied. ChIFNα transgenic plants (TP) were identified by GUS staining, PCR, RT-PCR, and ELISA. Up to 0.175 µg/kg rChIFNα was detected in TP2 lines. Expressing rChIFNα promotes AR development by producing longer roots than controls. We found that the effect was enhanced with the auxin precursor IBA treatment in TP. IAA contents, POD, and PPO activities associated with auxin regulation were higher than wild type (WT) in TP and exogenous ChIFNα treatment plants. Transcriptome analysis revealed 48 auxin-related differentially expressed genes (DEGs) (FDR < 0.05), which expression levels were verified by RT-qPCR analysis. GO enrichment analysis of DEGs also highlighted the auxin pathway. Further analysis found that ChIFNα significantly enhanced auxin synthesis and signaling mainly with up-regulated genes of ALDH, and GH3. Our study reveals that ChIFNα can promote plant AR development by mediating auxin regulation. The findings help explore the role of ChIFNα cytokines and expand animal gene sources for the molecular breeding of growth regulation of forage plants.


Assuntos
Ácidos Indolacéticos , Lotus , Animais , Ácidos Indolacéticos/metabolismo , Lotus/genética , Lotus/metabolismo , Interferon-alfa/genética , Interferon-alfa/metabolismo , Galinhas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
19.
PLoS Biol ; 21(5): e3002127, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200394

RESUMO

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Assuntos
Lotus , Micorrizas , Rhizobium , Micorrizas/genética , Lotus/genética , Lotus/metabolismo , Lotus/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Rhizobium/metabolismo , Raízes de Plantas/metabolismo , Mutação , Simbiose/genética , Fosfotransferases/metabolismo , Polissacarídeos/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Plant Physiol Biochem ; 198: 107675, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043997

RESUMO

Bicolor flower lotus is rare with high ornamental value. During the long history of breeding and artificial selection, a very famous lotus cultivar 'Da Sajin' with red and white picotee bicolor petals were obtained. In order to reveal the mechanism underlying the formation of its picotee bicolor pattern in the petal, an integrative metabolomics and proteomics analyses were conducted between red and white parts of its petals. The results showed that the defect of anthocyanidin 3-O-glucosyltransferases (UFGTs) accumulation resulted in the failure of the glycosylation of anthocyanidin, the last step of anthocyanin biosynthesis in white part of the petals. And proteomic data and biochemical analysis showed that the defect of UFGTs accumulation is not related to their transcription, but because of their degradation. Function of one differentially accumulated NnUFGT were proven being involved in anthocyanin biosynthesis through both in-vitro enzyme assay and in-vivo transgenic analyses. This regulation on the protein accumulation of structural genes in anthocyanin biosynthesis was not explored in any other plants, and hence supposed to be a novel mechanism for the formation of picotee bicolor pattern flower. The results not only provide some new insights into the understanding of lotus flower coloration, but also might assist the breeding of flower lotus.


Assuntos
Lotus , Nelumbo , Antocianinas/metabolismo , Nelumbo/genética , Nelumbo/metabolismo , Lotus/genética , Lotus/metabolismo , Proteômica , Melhoramento Vegetal , Pigmentação/genética , Flores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...