Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.806
Filtrar
1.
Sci Adv ; 10(28): eadn0960, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996025

RESUMO

Celastrol (CEL), an active compound isolated from the root of Tripterygium wilfordii, exhibits broad anticancer activities. However, its poor stability, narrow therapeutic window and numerous adverse effects limit its applications in vivo. In this study, an adenosine triphosphate (ATP) activatable CEL-Fe(III) chelate was designed, synthesized, and then encapsulated with a reactive oxygen species (ROS)-responsive polymer to obtain CEL-Fe nanoparticles (CEL-Fe NPs). In normal tissues, CEL-Fe NPs maintain structural stability and exhibit reduced systemic toxicity, while at the tumor site, an ATP-ROS-rich tumor microenvironment, drug release is triggered by ROS, and antitumor potency is restored by competitive binding of ATP. This intelligent CEL delivery system improves the biosafety and bioavailability of CEL for cancer therapy. Such a CEL-metal chelate strategy not only mitigates the challenges associated with CEL but also opens avenues for the generation of CEL derivatives, thereby expanding the therapeutic potential of CEL in clinical settings.


Assuntos
Trifosfato de Adenosina , Triterpenos Pentacíclicos , Pró-Fármacos , Espécies Reativas de Oxigênio , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Trifosfato de Adenosina/metabolismo , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Linhagem Celular Tumoral , Triterpenos/química , Triterpenos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Quelantes/química , Quelantes/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Liberação Controlada de Fármacos , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Compostos Férricos/química
2.
Oncol Res ; 32(7): 1231-1237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948023

RESUMO

Background: Despite the availability of chemotherapy drugs such as 5-fluorouracil (5-FU), the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects. This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines (AGS and EPG85-257). Materials and Methods: In this in vitro study, AGS and EPG85-257 cells were treated with different concentrations of celastrol, 5-FU, and their combination. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The synergistic effect of 5-FU and celastrol was studied using Compusyn software. The DNA content at different phases of the cell cycle and apoptosis rate was measured using flow cytometry. Results: Co-treatment with low concentrations (10% inhibitory concentration (IC10)) of celastrol and 5-FU significantly reduced IC50 (p < 0.05) so that 48 h after treatment, IC50 was calculated at 3.77 and 6.9 µM for celastrol, 20.7 and 11.6 µM for 5-FU, and 5.03 and 4.57 µM for their combination for AGS and EPG85-257 cells, respectively. The mean percentage of apoptosis for AGS cells treated with celastrol, 5-FU, and their combination was obtained 23.9, 41.2, and 61.9, and for EPG85-257 cells 5.65, 46.9, and 55.7, respectively. In addition, the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase. Conclusions: Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells, additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.


Assuntos
Apoptose , Proliferação de Células , Sinergismo Farmacológico , Fluoruracila , Triterpenos Pentacíclicos , Neoplasias Gástricas , Triterpenos , Humanos , Triterpenos Pentacíclicos/farmacologia , Fluoruracila/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Triterpenos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ciclo Celular/efeitos dos fármacos
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 904-912, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38862448

RESUMO

OBJECTIVE: To explore the effect of pristimerin combined with cisplatin on proliferation and apoptosis of nasopharyngeal carcinoma cells. METHODS: CCK-8 assay was used to examine the survival rate of HNE-1 and CNE-2Z cells following treatment for 24 h with different concentrations of pristimerin, cisplatin or their combination. The changes in colony formation ability, apoptosis, and intracellular reactive oxygen species (ROS) levels of the treated cells were analyzed using colony formation assay and flow cytometry. Western blotting was performed to detect the changes in protein expressions in the cells. The effects of pre-treatment with NAC on proliferation, apoptosis, and PI3K/AKT signaling pathway were observed in pristimerin- and/or cisplatin-treated cells. RESULTS: Both pristimerin and cisplatin significantly lowered the survival rate of HNE-1 and CNE-2Z cells (P < 0.05). Compared with pristimerin or cisplatin alone, their combination more strongly inhibited survival and colony formation ability of the cells, increased cell apoptosis rate and intracellular ROS levels, upregulated the protein expressions of Bax, cleaved caspase-3, and cleaved PARP, and downregulated the protein expressions of Bcl-2, Mcl-1, PARP and p-PI3K and p-AKT (P < 0.05). NAC pretreatment significantly attenuated proliferation inhibition and apoptosis-promoting effects of pristimerin combined with cisplatin, and partially restored the downregulated protein expressions of p-PI3K and p-AKT in HNE-1 and CNE-2Z cells with the combined treatment (P < 0.05). CONCLUSION: Pristimerin can enhance cisplatin-induced proliferation inhibition and apoptosis in nasopharyngeal carcinoma cells, the mechanism of which may involve ROS-mediated deactivation of the PI3K/AKT signaling pathway.


Assuntos
Apoptose , Proliferação de Células , Cisplatino , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Cisplatino/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Proliferação de Células/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Triterpenos/farmacologia
4.
BMC Biotechnol ; 24(1): 39, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849803

RESUMO

BACKGROUND: Melia azedarach is known as a medicinal plant that has wide biological activities such as analgesic, antibacterial, and antifungal effects and is used to treat a wide range of diseases such as diarrhea, malaria, and various skin diseases. However, optimizing the extraction of valuable secondary metabolites of M. azedarach using alternative extraction methods has not been investigated. This research aims to develop an effective, fast, and environmentally friendly extraction method using Ultrasound-assisted extraction, methanol and temperature to optimize the extraction of two secondary metabolites, lupeol and stigmasterol, from young roots of M. azedarach using the response surface methodology. METHODS: Box-behnken design was applied to optimize different factors (solvent, temperature, and ultrasonication time). The amounts of lupeol and stigmasterol in the root of M. azedarach were detected by the HPLC-DAD. The required time for the analysis of each sample by the HPLC-DAD system was considered to be 8 min. RESULTS: The results indicated that the highest amount of lupeol (7.82 mg/g DW) and stigmasterol (6.76 mg/g DW) was obtained using 50% methanol at 45 °C and ultrasonication for 30 min, and 50% methanol in 35 °C, and ultrasonication for 30 min, respectively. Using the response surface methodology, the predicted conditions for lupeol and stigmasterol from root of M. azedarach were as follows; lupeol: 100% methanol, temperature 45 °C and ultrasonication time 40 min (14.540 mg/g DW) and stigmasterol 43.75% methanol, temperature 34.4 °C and ultrasonication time 25.3 min (5.832 mg/g DW). CONCLUSIONS: The results showed that the amount of secondary metabolites lupeol and stigmasterol in the root of M. azedarach could be improved by optimizing the extraction process utilizing response surface methodology.


Assuntos
Melia azedarach , Triterpenos Pentacíclicos , Estigmasterol , Triterpenos Pentacíclicos/metabolismo , Estigmasterol/metabolismo , Estigmasterol/isolamento & purificação , Estigmasterol/química , Melia azedarach/química , Cromatografia Líquida de Alta Pressão , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Extratos Vegetais/química , Temperatura , Solventes/química , Lupanos
5.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892215

RESUMO

In our previous study, two oleanane-type pentacyclic triterpenoids (oleanolic acid and maslinic acid) were reported to affect the N-glycosylation and intracellular trafficking of intercellular adhesion molecule-1 (ICAM-1). The present study was aimed at investigating the structure-activity relationship of 13 oleanane-type natural triterpenoids with respect to the nuclear factor κB (NF-κB) signaling pathway and the expression, intracellular trafficking, and N-glycosylation of the ICAM-1 protein in human lung adenocarcinoma A549 cells. Hederagenin, echinocystic acid, erythrodiol, and maslinic acid, which all possess two hydroxyl groups, decreased the viability of A549 cells. Celastrol and pristimerin, both of which possess an α,ß-unsaturated carbonyl group, decreased cell viability but more strongly inhibited the interleukin-1α-induced NF-κB signaling pathway. Oleanolic acid, moronic acid, and glycyrrhetinic acid interfered with N-glycosylation without affecting the cell surface expression of the ICAM-1 protein. In contrast, α-boswellic acid and maslinic acid interfered with the N-glycosylation of the ICAM-1 protein, which resulted in the accumulation of high-mannose-type N-glycans. Among the oleanane-type triterpenoids tested, α-boswellic acid and maslinic acid uniquely interfered with the intracellular trafficking and N-glycosylation of glycoproteins.


Assuntos
Molécula 1 de Adesão Intercelular , NF-kappa B , Ácido Oleanólico , Triterpenos Pentacíclicos , Transporte Proteico , Triterpenos , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Glicosilação , NF-kappa B/metabolismo , Relação Estrutura-Atividade , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Células A549 , Transporte Proteico/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/química , Triterpenos/farmacologia , Triterpenos/química , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
6.
Phytomedicine ; 131: 155790, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851099

RESUMO

BACKGROUND: A balanced protein homeostasis network helps cholangiocarcinoma (CCA) maintain their oncogenic growth, and disrupting proteostasis therapeutically will induce proteotoxic stress. Phosphatase and tensin homolog (PTEN) have been reported to be involved in proteostasis, and PTEN-associated pathways are commonly altered in CCA. Celastrol, a triterpene from plants, exhibits cytotoxic effects in various types of cancer. However, the underlying mechanisms remain unclear. PURPOSE: We investigated the therapeutic effect of celastrol in CCA and identified the molecular characteristics of tumors that were sensitive to celastrol. The target of celastrol was explored. We then evaluated the candidate combination therapeutic strategy to increase the effectiveness of celastrol in celastrol-insensitive CCA tumors. METHODS: Various CCA cells were categorized as either celastrol-sensitive or celastrol-insensitive based on their response to celastrol. The molecular characteristics of cells from different groups were determined by RNA-seq. PTEN status and its role in proteasome activity in CCA cells were investigated. The CMAP analysis, molecular docking, and functional assay were performed to explore the effect of celastrol on proteasome activities. The correlation between PTEN status and clinical outcomes, as well as proteasomal activity, were measured in CCA patients. The synergistic therapeutic effect of autophagy inhibitors on celastrol-insensitive CCA cells were measured. RESULTS: Diverse responses to celastrol were observed in CCA cells. PTEN expression varied among different CCA cells, and its status could impact cell sensitivity to celastrol: PTENhigh tumor cells were resistant to celastrol, while PTENlow cells were more sensitive. Celastrol induced proteasomal dysregulation in CCA cells by directly targeting PSMB5. Cells with low PTEN status transcriptionally promoted proteasome subunit expression in an AKT-dependent manner, making these cells more reliant on proteasomal activities to maintain proteostasis. This caused the PTENlow CCA cells sensitive to celastrol. A negative correlation was found between PTEN levels and the proteasome signature in CCA patients. Moreover, celastrol treatment could induce autophagy in PTENhigh CCA cells. Disrupting the autophagic pathway in PTENhigh CCA cells enhanced the cytotoxic effect of celastrol. CONCLUSION: PTEN status in CCA cells determines their sensitivity to celastrol, and autophagy inhibitors could enhance the anti-tumor effect in PTENhigh CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , PTEN Fosfo-Hidrolase , Triterpenos Pentacíclicos , Triterpenos , Colangiocarcinoma/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Humanos , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/tratamento farmacológico , Triterpenos/farmacologia , Simulação de Acoplamento Molecular , Tripterygium/química , Antineoplásicos Fitogênicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Bortezomib/farmacologia
7.
Anal Chim Acta ; 1312: 342755, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834267

RESUMO

BACKGROUND: Identifying drug-binding targets and their corresponding sites is crucial for drug discovery and mechanism studies. Limited proteolysis-coupled mass spectrometry (LiP-MS) is a sophisticated method used for the detection of compound and protein interactions. However, in some cases, LiP-MS cannot identify the target proteins due to the small structure changes or the lack of enrichment of low-abundant protein. To overcome this drawback, we developed a thermostability-assisted limited proteolysis-coupled mass spectrometry (TALiP-MS) approach for efficient drug target discovery. RESULTS: We proved that the novel strategy, TALiP-MS, could efficiently identify target proteins of various ligands, including cyclosporin A (a calcineurin inhibitor), geldanamycin (an HSP90 inhibitor), and staurosporine (a kinase inhibitor), with accurately recognizing drug-binding domains. The TALiP protocol increased the number of target peptides detected in LiP-MS experiments by 2- to 8-fold. Meanwhile, the TALiP-MS approach can not only identify both ligand-binding stability and destabilization proteins but also shows high complementarity with the thermal proteome profiling (TPP) and machine learning-based limited proteolysis (LiP-Quant) methods. The developed TALiP-MS approach was applied to identify the target proteins of celastrol (CEL), a natural product known for its strong antioxidant and anti-cancer angiogenesis effect. Among them, four proteins, MTHFD1, UBA1, ACLY, and SND1 were further validated for their strong affinity to CEL by using cellular thermal shift assay. Additionally, the destabilized proteins induced by CEL such as TAGLN2 and CFL1 were also validated. SIGNIFICANCE: Collectively, these findings underscore the efficacy of the TALiP-MS method for identifying drug targets, elucidating binding sites, and even detecting drug-induced conformational changes in target proteins in complex proteomes.


Assuntos
Proteólise , Humanos , Espectrometria de Massas/métodos , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/química , Benzoquinonas/química , Benzoquinonas/farmacologia , Temperatura , Triterpenos Pentacíclicos/química , Ciclosporina/farmacologia , Ciclosporina/química , Ciclosporina/metabolismo , Estaurosporina/farmacologia , Estaurosporina/metabolismo , Ligantes , Descoberta de Drogas , Sítios de Ligação
8.
Eur J Pharm Biopharm ; 201: 114352, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851459

RESUMO

Subconjunctival fibrosis is critical to the outcomes of several ophthalmic conditions or procedures, such as glaucoma filtering surgery. This study aimed to investigate the anti-fibrotic effect of celastrol on subconjunctival fibrosis and to further reveal the underlying mechanisms. We used celastrol-loaded nanomicelles hydrogel hybrid as a sustained-release drug. A rabbit model of subconjunctival fibrosis following silicone implantation was used for in vivo study, and TGF-ß1-induced human pterygium fibroblast (HPF) activation as an in vitro model. The effects of celastrol on inhibiting TGF-ß1-induced migration and proliferation of HPFs were evaluated by scratch wound assay and CCK-8, respectively. Immunofluorescence and western blotting were used to examine the effect of celastrol on the expression of α-SMA, collagen I, fibronectin, and the targets of the Hippo signaling pathway. We found that in vivo celastrol treatment reduced the expression of YAP and TAZ in subconjunctival tissue. Moreover, celastrol alleviated collagen deposition and subconjunctival fibrosis at 8 weeks. No obvious tissue toxicity was observed in the rabbit models. Mechanistically, celastrol significantly inhibited TGF-ß1-induced proliferation and migration of HPFs. Pretreatment of HPFs with celastrol also suppressed the TGF-ß1-induced protein expression of α-SMA, collagen I, fibronectin, TGF-ßRII, phosphorylated Smad2/3, YAP, TAZ, and TEAD1. In conclusion, celastrol effectively prevented subconjunctival fibrosis through inhibiting TGF-ß1/Smad2/3-YAP/TAZ pathway. Celastrol could serve as a promising therapy for subconjunctival fibrosis.


Assuntos
Fibrose , Glaucoma , Triterpenos Pentacíclicos , Animais , Coelhos , Fibrose/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Glaucoma/cirurgia , Glaucoma/tratamento farmacológico , Humanos , Silicones , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Masculino , Hidrogéis , Triterpenos/farmacologia , Triterpenos/administração & dosagem , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fator de Crescimento Transformador beta1/metabolismo , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/patologia , Túnica Conjuntiva/metabolismo , Próteses e Implantes/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Preparações de Ação Retardada , Doenças da Túnica Conjuntiva/prevenção & controle
9.
ACS Appl Mater Interfaces ; 16(27): 35447-35462, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940537

RESUMO

Membranous nephropathy (MN) is a common immune-mediated glomerular disease that requires the development of safe and highly effective therapies. Celastrol (CLT) has shown promise as a therapeutic molecule candidate, but its clinical use is currently limited due to off-target toxicity. Given that excess levels of reactive oxygen species (ROS) contributing to podocyte damage is a key driver of MN progression to end-stage renal disease, we rationally designed ROS-responsive cationic polymeric nanoparticles (PPS-CPNs) with a well-defined particle size and surface charge by employing poly(propylene sulfide)-polyethylene glycol (PPS-PEG) and poly(propylene sulfide)-polyethylenimine (PPS-PEI) to selectively deliver CLT to the damaged glomerulus for MN therapy. Experimental results show that PPS-CPNs successfully crossed the fenestrated endothelium, accumulated in the glomerular basement membrane (GBM), and were internalized by podocytes where rapid drug release was triggered by the overproduction of ROS, thereby outperforming nonresponsive CLT nanotherapy to alleviate subepithelial immune deposits, podocyte foot process effacement, and GBM expansion in a rat MN model. Moreover, the ROS-responsive CLT nanotherapy was associated with significantly lower toxicity to major organs than free CLT. These results suggest that encapsulating CLT into PPS-CPNs can improve efficacy and reduce toxicity as a promising treatment option for MN.


Assuntos
Glomerulonefrite Membranosa , Nanopartículas , Triterpenos Pentacíclicos , Podócitos , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/patologia , Ratos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Polietilenoglicóis/química , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Ratos Sprague-Dawley , Humanos , Masculino , Polímeros/química , Polímeros/farmacologia , Sulfetos/química , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Polietilenoimina/química , Portadores de Fármacos/química
10.
Toxicol In Vitro ; 99: 105867, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848824

RESUMO

Pristimerin (Pris), a bioactive triterpenoid compound extracted from the Celastraceae and Hippocrateaceae families, has been reported to exhibit an anti-cancer property on various cancers. However, the effects of Pris on esophageal cancer are poorly investigated. This current study sought to explore the activity and underlying mechanism of Pris against human esophageal squamous cell carcinoma (ESCC) cells. We demonstrated that Pris showed cytotoxicity in TE-1 and TE-10 ESCC cell lines, and significantly inhibited cell viability in a concentration dependent manner. Pris induced G0/G1 phase arrest and triggered apoptosis. It was also observed that the intracellular ROS level was remarkedly increased by Pris treatment. Besides, the function of Pris mediating the activation of ER stress and the inhibition of AKT/GSK3ß signaling pathway in TE-1 and TE-10 cells was further confirmed, which resulted in cell growth inhibition. And moreover, we revealed that all of the above pathways were regulated through ROS generation. In conclusion, our findings suggested that Pris might be considered as a novel natural compound for the developing anti-cancer drug candidate for human esophageal cancer.


Assuntos
Antineoplásicos , Apoptose , Sobrevivência Celular , Estresse do Retículo Endoplasmático , Neoplasias Esofágicas , Glicogênio Sintase Quinase 3 beta , Triterpenos Pentacíclicos , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Triterpenos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Triterpenos Pentacíclicos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Triterpenos/farmacologia , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo
11.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38836332

RESUMO

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Assuntos
Nanotubos de Carbono , Triterpenos Pentacíclicos , Pneumonia , Transdução de Sinais , Triterpenos , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanotubos de Carbono/toxicidade , NF-kappa B/metabolismo , Triterpenos Pentacíclicos/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/prevenção & controle , Pneumonia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia
12.
Metab Brain Dis ; 39(5): 661-678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842663

RESUMO

This study examines the effectiveness of lupeol and metformin in a mouse model of dementia generated by intracerebroventricular streptozotocin (i.c.v., STZ). Dementia was induced in Swiss mice with the i.c.v. administration of STZ at a dosage of 3 mg/kg on the first and third day. The assessment of dementia involved an examination of the Morris Water Maze (MWM) performance, as well as a number of biochemical and histological studies. STZ treatment resulted in significant decrease in MWM performance; various biochemical alterations (increase in brain acetyl cholinesterase (AChE) activity, thiobarbituric acid reactive species (TBARS), nitrite/nitrate, and reduction in nuclear factor erythroid 2 related factor-2 (Nrf-2), reduced glutathione (GSH) levels) and neuroinflammation [increased myeloperoxidase (MPO) activity & neutrophil infiltration]. The administration of Lupeol (50 mg/kg & 100 mg/kg; p.o.) and Metformin (150 mg/kg & 300 mg/kg; p.o.) demonstrated a considerable reduction in the behavioral, biochemical, and histological alterations produced by STZ. Low dose combination of lupeol (50 mg/kg; p.o.) and Metformin (150 mg/kg; p.o.) produced more pronounced effect than that of high doses of either agent alone. It is concluded that Lupeol and Metformin has shown efficacy in dementia with possible synergism between the two and can be explored as potential therapeutic agents for managing dementia of Alzheimer's disease (AD) type.


Assuntos
Demência , Modelos Animais de Doenças , Metformina , Triterpenos Pentacíclicos , Estreptozocina , Animais , Triterpenos Pentacíclicos/uso terapêutico , Triterpenos Pentacíclicos/farmacologia , Metformina/farmacologia , Metformina/uso terapêutico , Estreptozocina/toxicidade , Camundongos , Demência/tratamento farmacológico , Demência/induzido quimicamente , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Aprendizagem em Labirinto/efeitos dos fármacos , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Lupanos
13.
Steroids ; 208: 109457, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917951

RESUMO

Betulonic acid benzyl ester 1 has been subjected to a series of structural modifications for the purpose of new triterpenoid synthesis and evaluating for anticancer activity. The one-pot two step synthesis of 2α-(aminomethyl)betulinic acid benzyl ester derivatives 3a-f (yield 46-69 %) was achieved by the Mannich reaction of compound 1 with methyleneiminium salts, generated in situ from N,N-disubstituted bis(amino)methanes 2a-f by the action of acetyl chloride in dichloromethane, and subsequent reduction of aminomethylation products with sodium borohydride. Minor 2ß-(aminomethyl) triterpenoids 4c,d,f were also isolated (yield 6-15 %). We found, that the stereoselective reaction of triterpenoid 1 with acetylides, generated at -78 °C from alkynes in the presence of n-BuLi, has been useful and noteworthy as the key step in providing of new alkyne substituted triterpenoids - benzyl 3-alkynyl-3-deoxy-2(3),20(29)-lupadiene-28-oates or 3-deoxy-2(3)-dehydro-28-oxoallobetulin derivative. The new compounds were examined for anticancer activity against the human cell lines (MTT assay). All tested derivatives were non-toxic on human fibroblasts. The 3-(phenylethynyl)lupa-2(3),20(29)-diene 9 showed selective cytotoxicity on cervical cancer cell lines. Tumor cells death trigged by the most active compound 4f resulted from apoptotic processes. These data make the series of synthesized 2 or 3 substituted lupane derivatives as promising compounds with anticancer potential.


Assuntos
Antineoplásicos , Triterpenos , Humanos , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Triterpenos Pentacíclicos
14.
Int Immunopharmacol ; 137: 112394, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38852517

RESUMO

BACKGROUND: Ferroptosis is a distinct iron-dependent non-apoptotic type of programmed cell death that is implicated in the pathophysiology of rheumatoid arthritis (RA). Although asiatic acid (AA) is documented to have significant anti-inflammatory effects in various diseases, it is not known whether it can regulate RA via ferroptosis. METHODS: The effects of AA on rheumatoid arthritis fibroid-like synoviocytes (RA-FLS) were assessed in vitro, and a rat model of type II collagen-induced arthritis (CIA) was established to evaluate the effectiveness of AA treatment in vivo. RESULTS: AA significantly reduced both viability and colony formation in cultured RA-FLS, while increasing the levels of reactive oxygen species (ROS), ferrous iron (Fe2+), malondialdehyde (MDA), and lactate dehydrogenase (LDH), as well as the expression of COX2. Furthermore, AA induced ferroptosis in RA-FLS by promoting Fe2+ accumulation through downregulation of the expression of Keap1 and FTH1 and upregulation of Nrf2 and HMOX1. In vivo, AA treatment was found to reduce toe swelling and the arthritis score in CIA rats, as well as relieve inflammation and ankle damage and significantly upregulate the expression of Nrf2 and HMOX1 in the synovial fluid. CONCLUSION: Treatment with AA significantly reduced the viability of RA-FLS and triggered ferroptosis by promoting accumulation of Fe2+via the Nrf2-HMOX1 pathway, and was effective in relieving inflammation in CIA model rats. These findings suggest that the use of AA may be a promising strategy for the clinical treatment of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ferroptose , Fator 2 Relacionado a NF-E2 , Triterpenos Pentacíclicos , Transdução de Sinais , Sinoviócitos , Animais , Ferroptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Triterpenos Pentacíclicos/uso terapêutico , Triterpenos Pentacíclicos/farmacologia , Artrite Experimental/tratamento farmacológico , Humanos , Ratos , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Masculino , Células Cultivadas , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase (Desciclizante)
15.
Int J Nanomedicine ; 19: 5707-5718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882540

RESUMO

Background: Rheumatoid Arthritis (RA) involves prolonged inflammation of the synovium, damaging joints and causing stiffness and deformity. Celastrol (Cel), derived from the Chinese herbal medicine Tripterygium wilfordii Hook F, offers immunosuppressive effects for RA treatment but is limited by poor solubility and bioavailability. Purpose: In this study, long-circulating Cel-loaded liposomes (Cel-LPs) were used to increase the pharmacokinetics of Cel, thereby improving drug delivery and efficacy for the treatment of RA. Methods: Cel-LPs were prepared and administered orally and intravenously to compare the elimination half-life of drugs and bioavailability of Cel. Cel-LPs were prepared using the lipid thin-layer-hydration-extrusion method. Human rheumatoid arthritis synovial (MH7A) cells were used to investigate the compatibility of Cel-LPs. The pharmacokinetic studies were performed on male Sprague-Dawley (SD) rats. Results: The Cel-LPs had an average size of 72.20 ± 27.99 nm, a PDI of 0.267, a zeta potential of -31.60 ± 6.81 mV, 78.77 ± 5.69% drug entrapment efficiency and sustained release (5.83 ± 0.42% drug loading). The cytotoxicity test showed that liposomes had excellent biocompatibility and the fluorescence microscope diagram indicated that liposome entrapment increased intracellular accumulation of Rhodamine B by MH7A cells. Furthermore, the results exhibited that Cel-LPs improved the pharmacokinetics of Cel by increasing the elimination half-life (t1/2) to 11.71 hr, mean residence time (MRT(0-∞)) to 7.98 hr and apparent volume of distribution (Vz/F) to 44.63 L/kg in rats, compared to the Cel solution. Conclusion: In this study, liposomes were demonstrated to be effective in optimizing the delivery of Cel, enabling the formulation of Cel-LPs with prolonged blood circulation and sustained release characteristics. This formulation enhanced the intravenous solubility and bioavailability of Cel, developing a foundation for its clinical application in RA and providing insights on poorly soluble drug management.


Assuntos
Lipossomos , Triterpenos Pentacíclicos , Ratos Sprague-Dawley , Triterpenos , Triterpenos Pentacíclicos/farmacocinética , Triterpenos Pentacíclicos/administração & dosagem , Animais , Lipossomos/química , Lipossomos/farmacocinética , Triterpenos/farmacocinética , Triterpenos/química , Triterpenos/administração & dosagem , Masculino , Humanos , Administração Intravenosa , Ratos , Disponibilidade Biológica , Linhagem Celular , Artrite Reumatoide/tratamento farmacológico , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos
16.
J Nanobiotechnology ; 22(1): 305, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822364

RESUMO

BACKGROUND: Renal fibrosis is a progressive process associated with chronic kidney disease (CKD), contributing to impaired kidney function. Active constituents in traditional Chinese herbs, such as emodin (EMO) and asiatic acid (AA), exhibit potent anti-fibrotic properties. However, the oral administration of EMO and AA results in low bioavailability and limited kidney accumulation. Additionally, while oral probiotics have been accepted for CKD treatment through gut microbiota modulation, a significant challenge lies in ensuring their viability upon administration. Therefore, our study aims to address both renal fibrosis and gut microbiota imbalance through innovative co-delivery strategies. RESULTS: In this study, we developed yeast cell wall particles (YCWPs) encapsulating EMO and AA self-assembled nanoparticles (NPYs) and embedded them, along with Lactobacillus casei Zhang, in chitosan/sodium alginate (CS/SA) microgels. The developed microgels showed significant controlled release properties for the loaded NPYs and prolonged the retention time of Lactobacillus casei Zhang (L. casei Zhang) in the intestine. Furthermore, in vivo biodistribution showed that the microgel-carried NPYs significantly accumulated in the obstructed kidneys of rats, thereby substantially increasing the accumulation of EMO and AA in the impaired kidneys. More importantly, through hitchhiking delivery based on yeast cell wall and positive modulation of gut microbiota, our microgels with this synergistic strategy of therapeutic and modulatory interactions could regulate the TGF-ß/Smad signaling pathway and thus effectively ameliorate renal fibrosis in unilateral ureteral obstruction (UUO) rats. CONCLUSION: In conclusion, our work provides a new strategy for the treatment of renal fibrosis based on hitchhiking co-delivery of nanodrugs and probiotics to achieve synergistic effects of disease treatment and targeted gut flora modulation.


Assuntos
Fibrose , Microbioma Gastrointestinal , Rim , Nanopartículas , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos , Administração Oral , Masculino , Rim/patologia , Rim/efeitos dos fármacos , Nanopartículas/química , Microgéis/química , Lacticaseibacillus casei , Probióticos/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Quitosana/química , Alginatos/química , Triterpenos Pentacíclicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Distribuição Tecidual , Parede Celular
17.
Nanotechnology ; 35(33)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829163

RESUMO

Dry eye disease (DED) is a major global eye disease leading to severe eye discomfort and even vision impairment. The incidence of DED has been gradually increasing with the high frequency of use of electronic devices. It has been demonstrated that celastrol (Cel) has excellent therapeutic efficacy in ocular disorders. However, the poor water solubility and short half-life of Cel limit its further therapeutic applications. In this work, a reactive oxygen species (ROS) sensitive polymeric micelle was fabricated for Cel delivery. The micelles improve the solubility of Cel, and the resulting Cel loaded micelles exhibit an enhanced intervention effect for DED. Thein vitroresults demonstrated that Cel-nanomedicine had a marked ROS responsive release behavior. The results ofin vitroandin vivoexperiments demonstrated that Cel has excellent biological activities to alleviate inflammation in DED by inhibiting TLR4 signaling activation and reducing pro-inflammatory cytokine expression. Therefore, the Cel nanomedicine can effectively eliminate ocular inflammation, promote corneal epithelial repair, and restore the number of goblet cells and tear secretion, providing a new option for the treatment of DED.


Assuntos
Síndromes do Olho Seco , Micelas , Nanomedicina , Triterpenos Pentacíclicos , Espécies Reativas de Oxigênio , Triterpenos , Síndromes do Olho Seco/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Nanomedicina/métodos , Triterpenos/farmacologia , Triterpenos/química , Inflamação/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Humanos , Lágrimas/metabolismo , Lágrimas/efeitos dos fármacos
18.
ACS Synth Biol ; 13(6): 1798-1808, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748665

RESUMO

Betulinic acid (BA) is a lupane-type triterpenoid with potent anticancer and anti-HIV activities. Its great potential in clinical applications necessitates the development of an efficient strategy for BA synthesis. This study attempted to achieve efficient BA biosynthesis in Saccharomyces cerevisiae using systematic metabolic engineering strategies. First, a de novo BA biosynthesis pathway in S. cerevisiae was constructed, which yielded a titer of 14.01 ± 0.21 mg/L. Then, by enhancing the BA synthesis pathway and dynamic inhibition of the competitive pathway, a greater proportion of the metabolic flow was directed toward BA synthesis, achieving a titer of 88.07 ± 5.83 mg/L. Next, acetyl-CoA and NADPH supply was enhanced, which increased the BA titer to 166.43 ± 1.83 mg/L. Finally, another BA synthesis pathway in the peroxisome was constructed. Dual regulation of the peroxisome and cytoplasmic metabolism increased the BA titer to 210.88 ± 4.76 mg/L. Following fed-batch fermentation process modification, the BA titer reached 682.29 ± 8.16 mg/L. Overall, this work offers a guide for building microbial cell factories that are capable of producing terpenoids with efficiency.


Assuntos
Ácido Betulínico , Engenharia Metabólica , NADP , Triterpenos Pentacíclicos , Saccharomyces cerevisiae , Triterpenos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Triterpenos Pentacíclicos/metabolismo , Triterpenos/metabolismo , NADP/metabolismo , Acetilcoenzima A/metabolismo , Fermentação , Vias Biossintéticas/genética
19.
Reprod Toxicol ; 126: 108604, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703919

RESUMO

Tripterygium glycosides (TG) is extracted from the roots of Chinese herbal medicine named Tripterygium wilfordii Hook F (TwHF). TG tablets are the representative TwHF-based agents with anti-inflammatory and immunomodulatory activities for treating rheumatoid arthritis. Although the curative effect of TG is remarkable, the clinical application is limited by a variety of organ toxicity. One of the most serious side-effects induced by TG is damage of the male reproductive system and the toxic mechanism is still not fully elucidated. TG-induced testicular injury was observed in male mice by treated with different concentrations of TG. The results showed that TG induced a significant decrease in testicular index. Pathological observation showed that spermatogenic cells were obviously shed, arranged loosely, and the spermatogenic epithelium was thin compared with control mice. In addition, the toxic effect of TG on mouse spermatogonia GC-1 cells was investigated. The results displayed that TG induced significant cytotoxicity in mouse GC-1 cells. To explore the potential toxic components that triggered testicular injury, the effects of 8 main components of TG on the viability of GC-1 cells were detected. The results showed that celastrol was the most toxic component of TG to GC-1 cells. Western blot analysis showed that LC3-II and the ratio of LC3-II/LC3-I were significantly increased and the expression level of p62 were decreased in both TG and celastrol treated cells, which indicated the significant activation of autophagy in spermatogonia cells. Therefore, autophagy plays an important role in the testicular injury induced by TG, and inhibition of autophagy is expected to reduce the testicular toxicity of TG.


Assuntos
Autofagia , Glicosídeos , Triterpenos Pentacíclicos , Espermatogônias , Testículo , Tripterygium , Triterpenos , Animais , Masculino , Tripterygium/química , Tripterygium/toxicidade , Autofagia/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologia , Glicosídeos/toxicidade , Glicosídeos/farmacologia , Espermatogônias/efeitos dos fármacos , Camundongos , Triterpenos/farmacologia , Triterpenos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos
20.
Pharmacol Res ; 204: 107208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729587

RESUMO

Cancer cell line is commonly used for discovery and development of anti-cancer drugs. It is generally considered that drug response remains constant for a certain cell line due to the identity of genetics thus protein patterns. Here, we demonstrated that cancer cells continued dividing even after reaching confluence, in that the proteomics was changed continuously and dramatically with strong relevance to cell division, cell adhesion and cell metabolism, indicating time-dependent intrinsically reprogramming of cells during expansion. Of note, the inhibition effect of most anti-cancer drugs was strikingly attenuated in culture cells along with cell expansion, with the strongest change at the third day when cells were still expanding. Profiling of an FDA-approved drug library revealed that attenuation of response with cell expansion is common for most drugs, an exception was TAK165 that was a selective inhibitor of mitochondrial respiratory chain complex I. Finally, we screened a panel of natural products and identified four pentacyclic triterpenes as selective inhibitors of cancer cells under prolonged growth. Taken together, our findings underscore that caution should be taken in evaluation of anti-cancer drugs using culture cells, and provide agents selectively targeting overgrowth cancer cells.


Assuntos
Antineoplásicos , Proliferação de Células , Proteômica , Humanos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Tempo , Produtos Biológicos/farmacologia , Triterpenos Pentacíclicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...