Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Trials ; 25(1): 566, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39192339

RESUMO

BACKGROUND: Infectious keratitis secondary to fungus or acanthamoeba often has a poor outcome despite receiving the best available medical therapy. In vitro rose bengal photodynamic therapy (RB-PDT) appears to be effective against fungal and acanthamoeba isolates (Atalay HT et al., Curr Eye Res 43:1322-5, 2018, Arboleda A et al. Am J Ophthalmol 158:64-70, 2014). In one published series, RB-PDT reduced the need for therapeutic penetrating keratoplasty in severe bacterial, fungal, and acanthamoeba keratitis not responsive to medical therapy. METHODS: This international, randomized, sham and placebo controlled 2-arm clinical trial randomizes patients with smear positive fungal and acanthamoeba and smear negative corneal ulcers in a 1:1 fashion to one of two treatment arms: 1) topical antimicrobial plus sham RB-PDT or 2) topical antimicrobial plus RB-PDT. DISCUSSION: We anticipate that RB-PDT will improve best spectacle-corrected visual acuity and also reduce complications such as corneal perforation and the need for therapeutic penetrating keratoplasty. This study will comply with the NIH Data Sharing Policy and Policy on the Dissemination of NIH-Funded Clinical Trial Information and the Clinical Trials Registration and Results Information Submission rule. Our results will be disseminated via ClinicalTrials.gov website, meetings, and journal publications. Our data will also be available upon reasonable request. TRIAL REGISTRATION: NCT, NCT05110001 , Registered on November 5, 2021.


Assuntos
Ceratite por Acanthamoeba , Infecções Oculares Fúngicas , Fotoquimioterapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Rosa Bengala , Humanos , Rosa Bengala/uso terapêutico , Fotoquimioterapia/métodos , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/diagnóstico , Infecções Oculares Fúngicas/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Método Duplo-Cego , Resultado do Tratamento , Acuidade Visual , Fármacos Fotossensibilizantes/uso terapêutico , Estudos Multicêntricos como Assunto , Luz Verde
2.
J Clin Pediatr Dent ; 48(4): 99-107, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39087219

RESUMO

Children with autism spectrum disorder (ASD) are frequently afflicted with sensory processing difficulties, which often impact their ability to cooperate with dental treatment. The objective of this pilot study was to determine the effects of green light exposure on behavior, pain, distress and anxiety in pediatric patients with ASD undergoing a dental prophylaxis. Twelve children diagnosed with ASD, aged 6-17 years, requiring a dental prophylaxis participated in this study. Participants completed two dental prophylaxes, three months apart, one in a standard white light-exposed dental operatory and one in a green light-exposed dental operatory. Behavioral cooperation, pain intensity, physiological stress and anxiety were assessed in all patients. The Wilcoxon matched-pairs signed rank test was used to estimate differences in measured outcomes according to the experimental condition. There was a trend towards reduced uncooperative behavior when children received a dental prophylaxis in the green light-exposed operatory (p = 0.06). Similar levels of heart rate variability (p = 0.41), salivary alpha amylase (p = 0.19), and salivary cortisol (p = 0.67) were observed at the start and end of each visit in both conditions. Green light exposure had no significant effect on pain intensity (p = 0.17) or behavioral anxiety (p = 0.31). These findings suggest a preliminary positive benefit of green light exposure on behavioral outcomes in pediatric patients with ASD and warrants a further, large-scale clinical trial.


Assuntos
Transtorno do Espectro Autista , Luz Verde , Adolescente , Criança , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/psicologia , Comportamento Infantil/efeitos da radiação , Ansiedade ao Tratamento Odontológico/prevenção & controle , Ansiedade ao Tratamento Odontológico/psicologia , Profilaxia Dentária/métodos , Frequência Cardíaca , Hidrocortisona/análise , Luz , Medição da Dor , Projetos Piloto , Saliva/química , Saliva/metabolismo
3.
Photobiomodul Photomed Laser Surg ; 42(8): 514-523, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39150379

RESUMO

Background: Although low-level laser therapy (LLLT) is a widely used noninvasive treatment because of photobiomodulation effects, its application for xerostomia remained uncertain. Tight junctions (TJs), mainly composed of claudins, occludin, and ZO family members, are crucial structures that determine material transport through paracellular pathway in salivary gland epithelial cells. This work aimed to investigate whether LLLT affected salivary secretion through epithelial TJs. Methods: Transepithelial electrical resistance (TER) measurement and paracellular permeability assay were applied to evaluate paracellular permeability in submandibular gland (SMG)-C6 cells after irradiation with 540 nm green light. Immunofluorescence and western blot were used to detect the expression of TJ proteins. Quantitative phosphoproteomics were performed to explore possible intracellular signals. Results: We found that irradiation with 540 nm green light significantly decreased TER values while increased paracellular transport in SMG-C6 cells. 540 nm green light-induced redistribution of claudin-1, -3, and -4, but not occludin or ZO-1. Moreover, above phenomena were abolished by preincubation with capsazepine, an antagonist of transient receptor potential vanilloid subtype 1. Notably, irradiation with 540 nm green light on the skin covering the whole submandibular gland regions promoted salivary secretion and attenuated lymphocytic infiltration in 21-week-old non-obese diabetic mice (n = 5 per group), a xerostomia animal model for Sjögren's syndrome. Through in-depth bioinformatics analysis and expression verification, ERK1/2 and EphA2 served as potential canonical and noncanonical signals underlying 540 nm green light. Conclusions: Our findings uncovered the novel therapeutic effects of 540 nm green light on xerostomia through regulation on the expression and distribution of TJs.


Assuntos
Terapia com Luz de Baixa Intensidade , Animais , Camundongos , Glândula Submandibular/efeitos da radiação , Glândula Submandibular/metabolismo , Saliva/metabolismo , Xerostomia/etiologia , Junções Íntimas/efeitos da radiação , Junções Íntimas/metabolismo , Ratos , Luz Verde
4.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062804

RESUMO

Light quality not only directly affects the photosynthesis of green plants but also plays an important role in regulating the development and movement of leaf stomata, which is one of the key links for plants to be able to carry out normal growth and photosynthesis. By sensing changes in the light environment, plants actively regulate the expansion pressure of defense cells to change stomatal morphology and regulate the rate of CO2 and water vapor exchange inside and outside the leaf. In this study, Cucumis melo was used as a test material to investigate the mitigation effect of different red, blue, and green light treatments on short-term drought and to analyze its drought-resistant mechanism through transcriptome and metabolome analysis, so as to provide theoretical references for the regulation of stomata in the light environment to improve the water use efficiency. The results of the experiment showed that after 9 days of drought treatment, increasing the percentage of green light in the light quality significantly increased the plant height and fresh weight of the treatment compared to the control (no green light added). The addition of green light resulted in a decrease in leaf stomatal conductance and a decrease in reactive oxygen species (ROS) content, malondialdehyde MDA content, and electrolyte osmolality in the leaves of melon seedlings. It indicated that the addition of green light promoted drought tolerance in melon seedlings. Transcriptome and metabolome measurements of the control group (CK) and the addition of green light treatment (T3) showed that the addition of green light treatment not only effectively regulated the synthesis of abscisic acid (ABA) but also significantly regulated the hormonal pathway in the hormones such as jasmonic acid (JA) and salicylic acid (SA). This study provides a new idea to improve plant drought resistance through light quality regulation.


Assuntos
Cucumis melo , Secas , Luz , Estresse Fisiológico , Cucumis melo/fisiologia , Cucumis melo/metabolismo , Cucumis melo/efeitos da radiação , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/genética , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Fotossíntese/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Plântula/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/fisiologia , Metaboloma , Luz Verde , Luz Azul
5.
ACS Biomater Sci Eng ; 10(6): 3806-3812, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38709857

RESUMO

In this work, for the first time, we demonstrate light control of a therapeutic protein's release from a depot in the subcutaneous layer of the skin. The subcutaneous layer is a standard location for therapeutic protein depots due to its large size and ease of access, but prior attempts to utilize this space failed because insufficient light can reach this deeper layer. An analysis of existing biophysical literature suggested that an increase of photoactivation wavelength from 365 to 500 nm could allow an increase of depot irradiation in the subcutaneous by >100-fold. We therefore used a green light-activated thio-coumarin-based material and demonstrated robust release of a therapeutic, insulin, in response to skin illumination with an LED light source. We further demonstrated that this release is ultrafast, as fast or faster than any commercially used insulin, while maintaining the native insulin sequence. This release of insulin was then accompanied by a robust reduction in blood glucose, demonstrating the retention of bioactivity despite the synthetic processing required to generate the material. In addition, we observed that the material exhibits slow basal release of insulin, even in the absence of light, potentially through biochemical or photochemical unmasking of insulin. Thus, these materials can act much like the healthy pancreas does: releasing insulin at a slow basal rate and then, upon skin irradiation, releasing an ultrafast bolus of native insulin to reduce postprandial blood glucose excursions.


Assuntos
Insulina , Luz , Animais , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Humanos , Pele/metabolismo , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Cumarínicos/química , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/metabolismo , Masculino , Luz Verde
6.
Curr Eye Res ; 49(9): 942-948, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38747449

RESUMO

PURPOSE: To investigate corneal biomechanical changes after corneal cross-linking (CXL) treatments with rose bengal-green light (RB-CXL) and riboflavin-UVA (RF-CXL). METHODS: A total of 60 freshly enucleated lamb eyes were obtained for this experimental study. Fifteen eyes were treated with RB-CXL using 0.1% RB solution (Group 1), 15 eyes were treated with RB-CXL using 0.2% RB solution (Group 2), 15 eyes were treated with RF-CXL using 0.1% RF solution (Group 3), and 15 eyes were used as controls (Group 4). The same treatment protocol (10-minute irradiation using a total of 5.4 J/cm2 energy) was applied to all treatment groups. To evaluate corneal biomechanical changes, the stress-strain test was used for both the treated and control corneas. The elastic modulus was calculated using the tension strain curves obtained during the test. RESULTS: The average elastic modulus values were calculated to be 18.9, 23.5, 22.3, and 14.1 MPa in Groups 1, 2, 3, and 4, respectively. Statistically significant differences were found between the groups (p < 0.001 for Group 1 vs. 2; p < 0.001 for Group 1 vs. 3; p < 0.001 for Group 1 vs. 4; p = 0.002 for Group 2 vs. 3; p < 0.001 for Group 2 vs. 4; and p < 0.001 for Group 3 vs. 4). CONCLUSIONS: In this study, the efficacy of RB-CXL treatment applied using different concentrations of RB solutions at a total energy of 5.4 J/cm2 was investigated, and 0.2% RB solution was found to have at least as much and even more effective than the RF-CXL (0.1% RF) on the corneal elasticity module. These results are encouraging for the treatment of ectatic corneas particularly below 400 µm. It is considered that the findings obtained from this study will guide future experimental and clinical studies.


Assuntos
Córnea , Elasticidade , Fotoquimioterapia , Fármacos Fotossensibilizantes , Riboflavina , Rosa Bengala , Raios Ultravioleta , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Córnea/efeitos dos fármacos , Córnea/fisiopatologia , Reagentes de Ligações Cruzadas , Modelos Animais de Doenças , Módulo de Elasticidade , Elasticidade/efeitos dos fármacos , Elasticidade/fisiologia , Elasticidade/efeitos da radiação , Corantes Fluorescentes , Luz Verde , Ceratocone/tratamento farmacológico , Ceratocone/fisiopatologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/uso terapêutico , Rosa Bengala/farmacologia , Ovinos
7.
Curr Biol ; 34(10): R507-R509, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772340

RESUMO

Arbuscular mycorrhiza, an ancient symbiosis with soil fungi, support mineral nutrition in most plants. How roots recognize such symbiotic fungi has long been debated. Recent research identifies a Medicago truncatula receptor as a key player in triggering symbiont accommodation responses.


Assuntos
Medicago truncatula , Micorrizas , Simbiose , Simbiose/fisiologia , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Luz , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Luz Verde
8.
Biotechnol Prog ; 40(4): e3462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641974

RESUMO

Light management strategy is crucial for improving microalgal production in terms of higher biomass and economically valuable bioactive molecules. However, green light has received less attention in developing light managements for algae and higher plant due to its low absorption rate by chlorophyll. In this study, the effects of green light supplementation, in the combination with red and blue light were investigated in Haematococcus pluvialis. 10% and 20% of green light supplementations were applied in 3:2 ratios of red and blue LED light combinations as an expense of red-light. Growth rates, chlorophyll concentration, and dry weight were measured to assess the growth kinetics of H. pluvialis along with the relative transcript accumulations of four mRNAs: Rubisco, PTOX2, PsaB, and PsbS. Growth rates, chlorophyll concentrations and dry weight were found significantly higher in presence of 10% green light supplementation compared to red and blue light combinations. The relative transcript accumulations of Rubisco and PsbS genes showed significant upregulation at the end of the experiments (with the fold change of 42.91 ± 12.08 and 98.57 ± 27.38, respectively, relative to the beginning of the experiments) compared to combinations of red and blue light (fold change of 19.09 ± 3.0 and 47.77 ± 14.21, respectively, relative to beginning of the experiments). PsaB and PTOX2 transcripts did not show significant accumulation differences between treatments. It seems that green light has a dose dependent additive effect on the growth rate of H. pluvialis. The upregulation of Rubisco and PsbS may indicate green light dependent carbon assimilation and light-harvesting response in H. pluvialis.


Assuntos
Luz , Clorofila/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Clorófitas/genética , Clorófitas/efeitos da radiação , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Microalgas/efeitos da radiação , Microalgas/genética , Luz Verde
10.
Inorg Chem ; 63(17): 7973-7983, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38616353

RESUMO

Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.


Assuntos
Catepsinas , Luz Verde , Fotoquimioterapia , Fármacos Fotossensibilizantes , Rutênio , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Estrutura Molecular , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Rutênio/química , Rutênio/farmacologia
11.
Inorg Chem ; 63(16): 7493-7503, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38578920

RESUMO

The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 µM and 88, respectively, under white light irradiation and ca. 1.9 µM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 µM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.


Assuntos
Antineoplásicos , Complexos de Coordenação , Luz , Piridinas , Rutênio , Humanos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Catálise , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Luz Verde , Células HeLa , Estrutura Molecular , Processos Fotoquímicos , Piridinas/química , Piridinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Rutênio/farmacologia
12.
Accid Anal Prev ; 200: 107534, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552346

RESUMO

Mobility and environmental benefits of Green Light Optimal Speed Advisory (GLOSA) systems have been reported by many previous research studies, however, there is insufficient knowledge on the safety implications of such an application. For safe deployment of GLOSA system, it is most critical to identify and address potential safety issues in the design process. It can be argued that implementation of GLOSA system can improve safety by reducing traffic conflicts associated with the interrupted traffic flow at signalised intersections. However, more research findings are needed from field and simulation based studies to evaluate the impacts on safety under a variety of real-world scenarios. As part of the LEVITATE (Societal Level Impacts of Connected and Automated Vehicles) project under European Union's Horizon 2020 Programme, the main objective of this study is to examine the safety impacts of GLOSA under mixed traffic compositions with varying market penetration rates (MPR) of connected and automated vehicles (CAVs). A calibrated and validated microsimulation model (developed in Aimsun) of the greater Manchester area was used for this study where three signalised intersections in a corridor were identified for implementing GLOSA system. An improved algorithm was developed by identifying the potential issues/limitations in some of the GLOSA algorithms found in literature. Behaviours of CAVs were modelled based on the findings of a comprehensive literature review. Safety analysis was performed through processing the simulated vehicular trajectories in the surrogate safety assessment model (SSAM) by the Federal Highway Administration (FHWA). The surrogate safety assessment results showed small improvement in safety with the GLOSA implementation at multiple intersections in the test network only at low MPR (20%) scenarios of CAVs, as compared to the respective without GLOSA scenarios. No or rather slightly lower improvement in safety was observed with GLOSA implementation under mixed fleet scenarios with 40 % or higher 1st Generation or 2nd Generation CAVs, as compared to the respective scenarios without GLOSA. The implementation of GLOSA system was also found to have some impact on the traffic conflict types (although not consistent across all MPR scenarios), where rear-end conflicts were found to decrease while a slight increase was observed in lane-change conflicts.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Humanos , Acidentes de Trânsito/prevenção & controle , Segurança , Luz Verde , Simulação por Computador
13.
Angew Chem Int Ed Engl ; 63(13): e202315726, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38329885

RESUMO

We have developed a photochemical protecting group that enables wavelength selective uncaging using green versus violet light. Change of the exocyclic oxygen of the laser dye coumarin-102 to sulfur, gave thio-coumarin-102, a new chromophore with an absorption ratio at 503/402 nm of 37. Photolysis of thio-coumarin-102 caged γ-aminobutyric acid was found to be highly wavelength selective on neurons, with normalized electrical responses >100-fold higher in the green versus violet channel. When partnered with coumarin-102 caged glutamate, we could use whole cell violet and green irradiation to fire and block neuronal action potentials with complete orthogonality. Localized irradiation of different dendritic segments, each connected to a neuronal cell body, in concert with 3-dimenional Ca2+ imaging, revealed that such inputs could function independently. Chemical signaling in living cells always involves a complex balance of multiple pathways, use of (thio)-coumarin-102 caged compounds will enable arbitrarily timed flashes of green and violet light to interrogate two independent pathways simultaneously.


Assuntos
Luz Verde , Neurônios , Neurônios/metabolismo , Fotólise , Cumarínicos/química , Ácido Glutâmico/metabolismo
14.
Environ Sci Pollut Res Int ; 31(14): 20772-20791, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393568

RESUMO

Light is a basic requirement to drive carbon metabolism in plants and supports life on earth. Spectral quality greatly affects plant morphology, physiology, and metabolism of various biochemical pathways. Among visible light spectrum, red, blue, and green light wavelengths affect several mechanisms to contribute in plant growth and productivity. In addition, supplementation of red, blue, or green light with other wavelengths showed vivid effects on the plant biology. However, response of plants differs in different species and growing conditions. This review article provides a detailed view and interpretation of existing knowledge and clarifies underlying mechanisms that how red, blue, and green light spectra affect plant morpho-physiological, biochemical, and molecular parameters to make a significant contribution towards improved crop production, fruit quality, disease control, phytoremediation potential, and resource use efficiency.


Assuntos
Luz Verde , Plantas , Fenômenos Fisiológicos Vegetais , Desenvolvimento Vegetal , Luz
15.
Neurosurg Focus ; 56(1): E7, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163345

RESUMO

OBJECTIVE: This study aimed to rigorously assess the accuracy of mixed-reality neuronavigation (MRN) in comparison with magnetic neuronavigation (MN) through a comprehensive phantom-based experiment. It introduces a novel dimension by examining the influence of blue-green light (BGL) on MRN accuracy, a previously unexplored avenue in this domain. METHODS: Twenty-nine phantoms, each meticulously marked with 5-6 fiducials, underwent CT scans as part of the navigation protocol. A 3D model was then superimposed onto a 3D-printed plaster skull using a semiautomatic registration process. The study meticulously evaluated the accuracy of both navigation techniques by pinpointing specific markers on the plaster surface. Precise measurements were then taken using digital calipers, with navigation conducted under three distinct lighting conditions: indirect white light (referred to as no light [NL]), direct white light (WL), and BGL. The research enlisted two operators with distinct levels of experience, one senior and one junior, to ensure a comprehensive analysis. The study was structured into two distinct experiments (experiment 1 [MN] and experiment 2 [MRN]) conducted by the two operators. Data analysis focused on calculating average and median values within subgroups, considering variables such as the type of lighting, precision, and recording time. RESULTS: In experiment 1, no statistically significant differences emerged between the two operators. However, in experiment 2, notable disparities became apparent, with the senior operator recording longer times but achieving higher precision. Most significantly, BGL consistently demonstrated a capacity to enhance accuracy in MRN across both experiments. CONCLUSIONS: This study demonstrated the substantial positive influence of BGL on MRN accuracy, providing profound implications for the design and implementation of mixed-reality systems. It also emphasized that integrating BGL into mixed-reality environments could profoundly improve user experience and performance. Further research is essential to validate these findings in real-world settings and explore the broader potential of BGL in a variety of mixed-reality applications.


Assuntos
Realidade Aumentada , Neuronavegação , Humanos , Neuronavegação/métodos , Luz Verde , Tomografia Computadorizada por Raios X , Crânio
16.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 1-14, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38258628

RESUMO

The fungal bioluminescence pathway (FBP) is a metabolic pathway responsible for the generation of bioluminescence derived from fungi. This pathway utilizes caffeic acid as the substrate, generating a high-energy intermediate, and the decomposition of which yields green fluorescence with a wavelength of approximately 520 nm. The FBP is evolutionally conserved in luminescent fungal groups. Unlike other bioluminescent systems, the FBP is particularly suitable for engineering applications in eukaryotic organisms, especially in plants. Currently, metabolically engineered luminescent plants are able to emit visible light to illuminate its surroundings, which can be visualized clearly in the dark. The fungal bioluminescent system could be explored in various applications in molecular biology, biosensors and glowing ornamental plants, and even green lighting along city streets.


Assuntos
Luz , Luminescência , Fluorescência , Eucariotos , Luz Verde
17.
J Biomed Opt ; 29(1): 017001, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38188965

RESUMO

Significance: The study of sublingual microcirculation offers valuable insights into vascular changes and overcomes some limitations of peripheral microcirculation assessment. Videomicroscopy and pulse oximetry have been used to assess microcirculation, providing insights into organ perfusion beyond macrohemodynamics parameters. However, both techniques have important limitations that preclude their use in clinical practice. Aim: To address this, we propose a non-invasive approach using photoplethysmography (PPG) to assess microcirculation. Approach: Two experiments were performed on different samples of 31 subjects. First, multi-wavelength, finger PPG signals were compared before and while applying pressure on the sensor to determine if PPG signals could detect changes in peripheral microcirculation. For the second experiment, PPG signals were acquired from the ventral region of the tongue, aiming to assess the microcirculation through features calculated from the PPG signal and its first derivative. Results: In experiment 1, 13 out of 15 features extracted from green PPG signals showed significant differences (p<0.05) before and while pressure was applied to the sensor, suggesting that green light could detect flow distortion in superficial capillaries. In experiment 2, 15 features showed potential application of PPG signal for sublingual microcirculation assessment. Conclusions: The PPG signal and its first derivative have the potential to effectively assess microcirculation when measured from the fingertip and the tongue. The assessment of sublingual microcirculation was done through the extraction of 15 features from the green PPG signal and its first derivative. Future studies are needed to standardize and gain a deeper understanding of the evaluated features.


Assuntos
Luz Verde , Soalho Bucal , Humanos , Valores de Referência , Microcirculação , Fotopletismografia
18.
Transl Vis Sci Technol ; 13(1): 30, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38289609

RESUMO

Purpose: The purpose of this study was to determine if concurrent riboflavin/UV-A light (RF/UV-A) and rose Bengal/green light (RB/green) epi-off PACK-CXL enhances corneal resistance to enzymatic digestion compared to separate chromophore/light treatments. Methods: Ex vivo porcine corneas were allocated as follows. Group A corneas were soaked with riboflavin (RF) and were either not irradiated (A1, controls) or were irradiated with 10 (A2) or 15 J/cm² (A3) UV-A light at 365 nm, respectively. Group B corneas were soaked with RB and either not irradiated (B1, controls) or were illuminated with 10 (B2) or 15 J/cm² (B3) green light at 525 nm, respectively. Corneas in group C were soaked with both RF and RB and were either not irradiated (C1, controls) or were subjected to the same session consecutive 10 J/cm2 (C2) or 15 J/cm2 (C3) UV-A and green light exposure. Following treatment, all corneas were exposed to 0.3% collagenase A to assess digestion time until corneal button dissolution. Results: A1 to A3 digestion times were 21.38, 30.5, and 32.25 hours, respectively, with A2 and A3 showing increased resistance to A1. B1-3 had digestion times of 31.2, 33.81, and 34.38 hours, with B3 resisting more than B1. C1 to C3 times were 33.47, 39.81, and 51.94 hours; C3 exhibited superior resistance to C1 and C2 (both P < 0.05). Conclusions: Same-session combined RF/UV-A and RB/green PACK-cross-linking significantly increases corneal enzymatic digestion resistance over standalone treatments. Translational Relevance: Combining RF-based and RB-based PACK-CXL considerably increases corneal collagenase digestion resistance, potentially minimizing ulcer size in clinical contexts.


Assuntos
Crosslinking Corneano , Rosa Bengala , Animais , Suínos , Rosa Bengala/farmacologia , Luz Verde , Córnea , Riboflavina/farmacologia , Colagenases , Digestão
19.
Luminescence ; 39(1): e4555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37461122

RESUMO

A green phosphor Sr2 ZnGe2 O7 :Mn2+ with a melilite structure was prepared using a high-temperature solid-state reaction. When the 535 nm emission was monitored, the excitation spectrum of the Sr2 ZnGe2 O7 :Mn2+ was found to contain two excitation bands in the ultraviolet (UV) region. When excited by UV light, the sample shows bright green emission at 535 nm, which corresponds to the distinctive transition of Mn2+ (4 T1 →6 A1 ). Moreover, the quantum efficiency of Sr2 ZnGe2 O7 :Mn2+ could reach 67.6%. Finally, a high-performance white-light-emitting diode (WLED) with a low correlated colour temperature of 4632 K and a high colour rendering index (CRI) of 92.3 were packaged by coating commercial blue and red phosphors with an optimized Sr2 ZnGe2 O7 :Mn2+ sample on a 310 nm UV chip. This indicated that Sr2 ZnGe2 O7 :Mn2+ has the potential application as a green component in the WLED lighting field.


Assuntos
Substâncias Luminescentes , Substâncias Luminescentes/química , Luz Verde , Luminescência , Raios Ultravioleta
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008076

RESUMO

The fungal bioluminescence pathway (FBP) is a metabolic pathway responsible for the generation of bioluminescence derived from fungi. This pathway utilizes caffeic acid as the substrate, generating a high-energy intermediate, and the decomposition of which yields green fluorescence with a wavelength of approximately 520 nm. The FBP is evolutionally conserved in luminescent fungal groups. Unlike other bioluminescent systems, the FBP is particularly suitable for engineering applications in eukaryotic organisms, especially in plants. Currently, metabolically engineered luminescent plants are able to emit visible light to illuminate its surroundings, which can be visualized clearly in the dark. The fungal bioluminescent system could be explored in various applications in molecular biology, biosensors and glowing ornamental plants, and even green lighting along city streets.


Assuntos
Luminescência , Luz , Fluorescência , Eucariotos , Luz Verde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA