Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 112(6): 1083-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23979904

RESUMO

BACKGROUND AND AIMS: Long-lived underground populations of mycoheterotrophic gametophytes and attached sporophytes at various developmental stages occur in lycophytes. Young underground sporophytes obtain carbon solely from the gametophyte and establish nutritional independence only after reaching the soil surface, which may take several years. This prolonged period of matrotrophy exceeds that of bryophytes. The foot is massive and provides the lifeline for sporophyte establishment, yet the fine structure of the placental region is unexplored in lycophytes with underground gametophytes. METHODS: Gametophytes with attached embryos/young sporophytes of Lycopodium obscurum were collected in nature, processed and examined by light and transmission electron microscopy. KEY RESULTS: Three ultrastructurally distinct regions were identified within a single foot of a sporophyte emerging from the soil. Young foot regions actively divide, and have direct contact with and show little differentiation from gametophyte cells. In unlobed foot areas, cells in both generations exhibit polarity in content and indicate unidirectional transport of carbon reserves into the foot toward the developing shoot and root. The foot has inconspicuous wall ingrowths. Highly lobed foot regions contain peripheral transfer cells with prominent wall ingrowths that absorb nutrients from degenerating gametophyte cells. CONCLUSIONS: Variability within a single placenta is consistent with an invasive and long-lived foot. The late appearance of wall ingrowths in transfer cells reflects this dynamic ever-growing embryo. Placental features in lycophytes are related to the unique reorientation of all embryonic regions during development. Small placentas with wall ingrowths in both generations characterize ephemeral embryos in green gametophytes, while short-lived and repositioning embryos of heterosporous taxa are devoid of transfer cells. Transfer cell evolution across embryophytes is riddled with homoplasy and reflects diverse patterns of embryology. Scrutiny of placental evolution must include consideration of nutritional status and life history strategies of the gametophyte and young sporophyte.


Assuntos
Células Germinativas Vegetais/ultraestrutura , Lycopodium/ultraestrutura , Carbono/metabolismo , Diferenciação Celular , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/fisiologia , Lycopodium/genética , Lycopodium/crescimento & desenvolvimento , Lycopodium/fisiologia , Microscopia Eletrônica de Transmissão , Filogenia , Sementes/crescimento & desenvolvimento , Solo
3.
New Phytol ; 177(3): 790-801, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17971070

RESUMO

This study characterizes the molecular and phylogenetic identity of fungi involved in arbuscular mycorrhizal (AM) associations in extant Huperzia and Lycopodium (Lycopodiaceae). Huperzia and Lycopodium are characterized by a life cycle with long-lived autotrophic sporophytes and long-lived mycoheterotrophic (obtain all organic carbon from fungal symbionts) gametophytes. 18S ribosomal DNA was isolated and sequenced from Glomus symbionts in autotrophic sporophytes of seven species of Huperzia and Lycopodium and mycoheterotrophic Huperzia gametophytes collected from the Páramos of Ecuador. Phylogenetic analyses recovered four Glomus A phylotypes in a single clade (MH3) that form AM associations with Huperzia and Lycopodium. In addition, phylogenetic analyses of Glomus symbionts from other nonphotosynthetic plants demonstrate that most AM fungi that form mycoheterotrophic associations belong to at least four specific clades of Glomus A. These results suggest that most mycoheterotrophic plants that form AM associations do so with restricted clades of Glomus A. Moreover, the correspondence of identity of AM symbionts in Huperzia sporophytes and gametophytes raises the possibility that photosynthetic sporophytes are a source of carbon to conspecific mycoheterotrophic gametophytes via shared fungal networks.


Assuntos
DNA Fúngico/isolamento & purificação , Huperzia/microbiologia , Lycopodium/microbiologia , Micorrizas/genética , Filogenia , RNA Ribossômico 18S/genética , Huperzia/fisiologia , Lycopodium/fisiologia , Microscopia , Micorrizas/fisiologia , Simbiose/fisiologia
4.
Photochem Photobiol Sci ; 6(6): 689-94, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17549272

RESUMO

Spore chemistry is at the centre of investigations aimed at producing a proxy record of harmful ultraviolet radiation (UV-B) through time. A biochemical proxy is essential owing to an absence of long-term (century or more) instrumental records. Spore cell material contains UV-B absorbing compounds that appear to be synthesised in variable amounts dependent on the ambient UV-B flux. To facilitate these investigations we have developed a rapid method for detecting variations in spore chemistry using combined thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Our method was tested using spores obtained from five populations of the tropical lycopsid Lycopodium cernuum growing across an altitudinal gradient (650-1981 m a.s.l.) in S.E. Asia with the assumption that they experienced a range of UV-B radiation doses. Thermochemolysis and subsequent pyrolysis liberated UV-B pigments (ferulic and para-coumaric acid) from the spores. All of the aromatic compounds liberated from spores by thermochemolysis and pyrolysis were active in UV-B protection. The various functional groups associated with UV-B protecting pigments were rapidly detected by micro-FTIR and included the aromatic C[double bond, length as m-dash]C absorption band which was exclusive to the pigments. We show increases in micro-FTIR aromatic absorption (1510 cm(-1)) with altitude that may reflect a chemical response to higher UV-B flux. Our results indicate that rapid chemical analyses of historical spore samples could provide a record ideally suited to investigations of a proxy for stratospheric O3 layer variability and UV-B flux over historical (century to millennia) timescales.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Esporos/química , Raios Ultravioleta/efeitos adversos , Biopolímeros/análise , Calefação , Hidrocarbonetos Aromáticos/análise , Hidrólise , Lycopodium/fisiologia , Ozônio/química , Pigmentos Biológicos/análise , Esporos/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...