Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139.247
Filtrar
1.
Sci Transl Med ; 16(750): eadk9811, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838134

RESUMO

Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.


Assuntos
Osso e Ossos , Fator de Crescimento Insulin-Like II , Animais , Fator de Crescimento Insulin-Like II/metabolismo , Humanos , Osso e Ossos/metabolismo , Camundongos , Transdução de Sinais , Músculo Esquelético/metabolismo , Osteogênese , Músculos/metabolismo , Masculino , Feminino , Osteoclastos/metabolismo
2.
Nat Commun ; 15(1): 4935, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858388

RESUMO

Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Polaridade Celular , Distrofina , Músculos , Via de Sinalização Wnt , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Distrofina/metabolismo , Distrofina/genética , Músculos/metabolismo , Proteínas Desgrenhadas/metabolismo , Proteínas Desgrenhadas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Membrana Celular/metabolismo , Complexo de Proteínas Associadas Distrofina/metabolismo , Complexo de Proteínas Associadas Distrofina/genética , Proteínas Wnt/metabolismo , Transdução de Sinais
3.
PeerJ ; 12: e17216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699190

RESUMO

This study is the first to determine the levels of heavy metals in commercially important fish species, namely Lates niloticus and Oreochromis niloticus and the potential human health risks associated with their consumption. A total of 120 fish samples were collected from the lower Omo river and Omo delta, with 60 samples from each water source. The fish tissue samples (liver and muscle) were analyzed using a flame atomic absorption spectrometer for nine heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). The human health risk assessment tools used were the target hazard quotient (THQ), the hazard index (HI), and the target cancer risk (TCR). The mean levels of heavy metals detected in the liver and muscle of L. niloticus from the lower Omo river generally occurred in the order Fe > Zn > Pb> Cu > Mn> Cr > Co > Ni and Pb > Cu > Mn > Co > Ni, respectively. The mean levels of metals in the muscle and liver tissues of O. niloticus were in the order Fe > Pb > Zn > Mn > Cu > Cr > Co > Ni and Pb > Zn > Mn > Fe > Cu > Co > Ni, respectively. Similarly, the mean levels of heavy metals detected in the liver and muscle of L. niloticus from Omo delta occurred in the order Fe > Zn > Pb > Cu > Mn > Cr > Co > Ni and Fe > Pb > Zn > Mn > Cu > Co > Cr > Ni, respectively. The mean levels in the muscle and liver tissues of O. niloticus from the Omo delta were in the order Fe > Pb > Zn > Mn > Cu > Cr > Co > Ni and Pb > Fe > Zn > Mn > Co > Cu > Ni, respectively. The study revealed that the THQ values were below 1, indicating that consumption of L. niloticus and O. niloticus from the studied sites does not pose a potential non-carcinogenic health risk. Although the TCR values for Pb in this study were within the tolerable range, it's mean concentration in the muscle and liver tissues of both fish species from the two water bodies exceeded the permissible limit established by FAO/WHO. This is a warning sign for early intervention, and it emphasizes the need for regular monitoring of freshwater fish. Therefore, it is imperative to investigate the pollution levels and human health risks of heavy metals in fish tissues from lower Omo river and Omo delta for environmental and public health concerns.


Assuntos
Contaminação de Alimentos , Lagos , Metais Pesados , Rios , Poluentes Químicos da Água , Metais Pesados/análise , Humanos , Animais , Rios/química , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos adversos , Contaminação de Alimentos/análise , Lagos/química , Etiópia , Peixes , Monitoramento Ambiental/métodos , Fígado/química , Fígado/metabolismo , Ciclídeos/metabolismo , Músculos/química , Músculos/metabolismo
4.
J Agric Food Chem ; 72(20): 11820-11835, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38710668

RESUMO

Physicochemical properties and protein alterations in Ovalipes punctatus during cold-chain transportation were examined via sensory scores, water-holding capacity (WHC), glucose (GLU) content, catalase (CAT) activity, urea nitrogen (UN) content, and tandem mass tag (TMT)-based proteomic analysis. The results revealed that sensory characteristics and texture of crab muscle deteriorated during transportation. Proteomic analysis revealed 442 and 470 different expressed proteins (DEPs) in crabs after 18 h (FC) and 36 h (DC) of transportation compared with live crabs (LC). Proteins related to muscle structure and amino acid metabolism significantly changed, as evidenced by the decreased WHC and sensory scores of crab muscle. Glycolysis, calcium signaling, and peroxisome pathways were upregulated in the FC/LC comparison, aligning with the changes in GLU content and CAT activity, revealing the stress response of energy metabolism and immune response in crabs during 0-18 h of transportation. The downregulated tricarboxylic acid (TCA) cycle and carcinogenesis-reactive oxygen species pathways were correlated with the decreasing trend in CAT activity, suggesting a gradual retardation in both energy and antioxidant metabolism in crabs during 18-36 h of transportation. Furthermore, the regulated purine nucleoside metabolic and nucleoside diphosphate-related processes, with the increasing changes in UN content, revealed the accumulation of metabolites in crabs.


Assuntos
Braquiúros , Músculos , Proteômica , Animais , Braquiúros/metabolismo , Braquiúros/química , Músculos/metabolismo , Músculos/química , Meios de Transporte , Frutos do Mar/análise , Temperatura Baixa , Espectrometria de Massas em Tandem , Alimentos Marinhos/análise
5.
Sci Rep ; 14(1): 10863, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740831

RESUMO

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Assuntos
Cricetulus , Cininas , Neuropeptídeos , Peristaltismo , Animais , Cininas/metabolismo , Células CHO , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Músculos/metabolismo , Músculos/fisiologia , Carrapatos/metabolismo , Carrapatos/fisiologia , Rhipicephalus/metabolismo , Rhipicephalus/fisiologia , Rhipicephalus/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética
6.
J Morphol ; 285(6): e21712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798246

RESUMO

Although the monophyly of Paraneoptera (=hemipteroid orders or Acercaria, composed of Psocodea, Thysanoptera and Hemiptera) has been widely accepted morphologically, the results from molecular phylogenetic and phylogenomic analyses contradict this hypothesis. In particular, phylogenomic analyses provide strong bootstrap support for the sister group relationship between Psocodea and Holometabola, that is, paraphyly of Paraneoptera. Here, we examined the pterothoracic musculature of Paraneoptera, as well as a wide range of other neopterous insect orders, and analysed its phylogenetic implication. By using the synchrotron microcomputed tomography (µCT) and parsimony-based ancestral state reconstruction, several apomorphic conditions suggesting the monophyly of Paraneoptera, such as the absence of the II/IIItpm7, IIscm3, IIIspm2 and IIIscm3 muscles, were identified. In contrast, no characters supporting Psocodea + Holometabola were recovered from the thoracic muscles. These results provide additional support for the monophyly of Paraneoptera, together with the previously detected morphological apomorphies of the head, wing base, and abdomen.


Assuntos
Neópteros , Filogenia , Microtomografia por Raio-X , Animais , Neópteros/anatomia & histologia , Neópteros/genética , Neópteros/classificação , Músculos/anatomia & histologia , Tórax/anatomia & histologia
7.
Mar Drugs ; 22(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786589

RESUMO

Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 µg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.


Assuntos
Sulfatos de Condroitina , Linguado , Glicosaminoglicanos , Espectrometria de Massas em Tandem , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/química , Cromatografia Líquida de Alta Pressão , Osso e Ossos/química , Pele/química , Pele/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/isolamento & purificação , Músculos/química
8.
Mar Drugs ; 22(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38786597

RESUMO

Abnormal melanogenesis can lead to hyperpigmentation. Tyrosinase (TYR), a key rate-limiting enzyme in melanin production, is an important therapeutic target for these disorders. We investigated the TYR inhibitory activity of hydrolysates extracted from the muscle tissue of Takifugu flavidus (TFMH). We used computer-aided virtual screening to identify a novel peptide that potently inhibited melanin synthesis, simulated its binding mode to TYR, and evaluated functional efficacy in vitro and in vivo. TFMH inhibited the diphenolase activities of mTYR, reducing TYR substrate binding activity and effectively inhibiting melanin synthesis. TFMH indirectly reduced cAMP response element-binding protein phosphorylation in vitro by downregulating melanocortin 1 receptor expression, thereby inhibiting expression of the microphthalmia-associated transcription factor, further decreasing TYR, tyrosinase related protein 1, and dopachrome tautomerase expression and ultimately impeding melanin synthesis. In zebrafish, TFMH significantly reduced black spot formation. TFMH (200 µg/mL) decreased zebrafish TYR activity by 43% and melanin content by 52%. Molecular dynamics simulations over 100 ns revealed that the FGFRSP (T-6) peptide stably binds mushroom TYR via hydrogen bonds and ionic interactions. T-6 (400 µmol/L) reduced melanin content in B16F10 melanoma cells by 71% and TYR activity by 79%. In zebrafish, T-6 (200 µmol/L) inhibited melanin production by 64%. TFMH and T-6 exhibit good potential for the development of natural skin-whitening cosmetic products.


Assuntos
Melaninas , Melanoma Experimental , Monofenol Mono-Oxigenase , Takifugu , Peixe-Zebra , Animais , Melaninas/biossíntese , Takifugu/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Camundongos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Oxirredutases Intramoleculares/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Simulação de Dinâmica Molecular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38749208

RESUMO

Pigmentation genes expressed in skin, body muscle and tail of Thai-flag compared with Blue, White and Red varieties of Siamese fighting fish Betta splendens were identified. In total, 22,919 new unigenes were found. Pearson correlation and PCA analysis revealed that expression profiles of genes in muscle, skin and tail across solid color variety were similar. In contrast, those in skin and red tail part of Thai-flag were closely related but they showed different expression profiles with the white tail part. Moreover, 21,347-64,965 SNPs were identified in exonic regions of identified genes. In total, 28,899 genes were differentially expressed between paired comparisons of libraries where 13,907 genes (48.12 %) were upregulated and 14,992 genes (51.88 %) were downregulated. DEGs between paired libraries were 106-5775 genes relative to the compared libraries (56-2982 and 50-2782 for upregulated and downregulated DEGs). Interestingly, 432 pigmentation genes of B. splendens were found. Of these, 297 DEGs showed differential expression between varieties. Many DEGs in melanogenesis (Bsmcr1r, Bsmcr5r, and Bsslc2a15b), tyrosine metabolism (Bstyr, Bstyrp1b and Bsdct), stripe repressor (BsAsip1 and BsAsip2b), pteridine (Bsgch2) and carotenoid (BsBco2) biosynthesis were downregulated in the Thai-flag compared with solid color varieties. Expression of Bsbco1l, Bsfrem2b, Bskcnj13, Bszic2a and Bspah in skin, muscle and tail of Thai-flag, Blue, Red and White varieties was analyzed by qRT-PCR and revealed differential expression between fish varieties and showed anatomical tissue-preferred expression patterns in the same fish variety. The information could be applied to assist genetic-based development of new B. splendens varieties in the future.


Assuntos
Pigmentação , Animais , Pigmentação/genética , Peixes/genética , Proteínas de Peixes/genética , Pele/metabolismo , Tailândia , Músculos/metabolismo , Cauda , Pigmentação da Pele/genética , Transcriptoma , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , População do Sudeste Asiático
10.
Proc Natl Acad Sci U S A ; 121(21): e2319060121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753516

RESUMO

Multicellular organisms are composed of many tissue types that have distinct morphologies and functions, which are largely driven by specialized proteomes and interactomes. To define the proteome and interactome of a specific type of tissue in an intact animal, we developed a localized proteomics approach called Methionine Analog-based Cell-Specific Proteomics and Interactomics (MACSPI). This method uses the tissue-specific expression of an engineered methionyl-tRNA synthetase to label proteins with a bifunctional amino acid 2-amino-5-diazirinylnonynoic acid in selected cells. We applied MACSPI in Caenorhabditis elegans, a model multicellular organism, to selectively label, capture, and profile the proteomes of the body wall muscle and the nervous system, which led to the identification of tissue-specific proteins. Using the photo-cross-linker, we successfully profiled HSP90 interactors in muscles and neurons and identified tissue-specific interactors and stress-related interactors. Our study demonstrates that MACSPI can be used to profile tissue-specific proteomes and interactomes in intact multicellular organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteoma , Proteômica , Animais , Caenorhabditis elegans/metabolismo , Proteômica/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Proteoma/metabolismo , Metionina tRNA Ligase/metabolismo , Metionina tRNA Ligase/genética , Proteínas de Choque Térmico HSP90/metabolismo , Especificidade de Órgãos , Músculos/metabolismo , Neurônios/metabolismo
11.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792037

RESUMO

Hydrazine, a highly toxic compound, demands sensitive and selective detection methods. Building upon our previous studies with pre-coumarin OFF-ON sensors for fluoride anions, we extended our strategy to hydrazine sensing by adapting phenol protecting groups (propionate, levulinate, and γ-bromobutanoate) to our pre-coumarin scaffold. These probes reacted with hydrazine, yielding a fluorescent signal with low micromolar limits of detection. Mechanistic studies revealed that hydrazine deprotection may be outperformed by a retro-Knoevenagel reaction, where hydrazine acts as a nucleophile and a base yielding a fluorescent diimide compound (6,6'-((1E,1'E)-hydrazine-1,2diylidenebis(methaneylylidene))bis(3(diethylamino)phenol, 7). Additionally, our pre-coumarins unexpectedly reacted with primary amines, generating a fluorescent signal corresponding to phenol deprotection followed by cyclization and coumarin formation. The potential of compound 3 as a theranostic Turn-On coumarin precursor was also explored. We propose that its reaction with ALDOA produced a γ-lactam, blocking the catalytic nucleophilic amine in the enzyme's binding site. The cleavage of the ester group in compound 3 induced the formation of fluorescent coumarin 4. This fluorescent signal was proportional to ALDOA concentration, demonstrating the potential of compound 3 for future theranostic studies in vivo.


Assuntos
Cumarínicos , Hidrazinas , Cumarínicos/química , Hidrazinas/química , Animais , Coelhos , Corantes Fluorescentes/química , Músculos/metabolismo , Fluorescência , Estrutura Molecular
12.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38774939

RESUMO

Anurans undergo significant physiological changes when exposed to environmental stressors such as low temperatures and humidity. Energy metabolism and substrate management play a crucial role in their survival success. Therefore, understanding the role of the gluconeogenic pathway and demonstrating its existence in amphibians is essential. In this study, we exposed the subtropical frog Boana pulchella to cooling (-2.5°C for 24 h) and dehydration conditions (40% of body water loss), followed by recovery (24 h), and assessed gluconeogenesis activity from alanine, lactate, glycerol and glutamine in the liver, muscle and kidney. We report for the first time that gluconeogenesis activity by 14C-alanine and 14C-lactate conversion to glucose occurs in the muscle tissue of frogs, and this tissue activity is influenced by environmental conditions. Against the control group, liver gluconeogenesis from 14C-lactate and 14C-glycerol was lower during cooling and recovery (P<0.01), and gluconeogenesis from 14C-glutamine in the kidneys was also lower during cooling (P<0.05). In dehydration exposure, gluconeogenesis from 14C-lactate in the liver was lower during recovery, and that from 14C-alanine in the muscle was lower during dehydration (P<0.05). Moreover, we observed that gluconeogenesis activity and substrate preference respond differently to cold and dehydration. These findings highlight tissue-specific plasticity dependent on the nature of the encountered stressor, offering valuable insights for future studies exploring this plasticity, elucidating the importance of the gluconeogenic pathway and characterizing it in anuran physiology.


Assuntos
Anuros , Temperatura Baixa , Desidratação , Gluconeogênese , Animais , Gluconeogênese/fisiologia , Anuros/fisiologia , Anuros/metabolismo , Desidratação/fisiopatologia , Fígado/metabolismo , Rim/metabolismo , Rim/fisiologia , Músculos/metabolismo , Músculos/fisiologia , Masculino
13.
Chemosphere ; 359: 142289, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723690

RESUMO

The speciation of arsenic in fish has been widely investigated, but bioaccumulation and biotransformation of inorganic As in different tissues of Nile tilapia (Oreochromis niloticus) are not fully understood. The present study aimed to investigate the bioaccumulation of As in Nile tilapia, as well as to evaluate the distribution of the main arsenic species (As(III), As(V), MMA, DMA, and AsB) in liver, stomach, gill, and muscle, after controlled exposures to As(III) and As(V) at concentrations of 5.0 and 10.0 mg L-1 during periods of 1 and 7 days. Total As was determined by inductively coupled plasma mass spectroscopy (ICP-MS). For both exposures (As(III) and As(V)), the total As levels after 7-day exposure were highest in the liver and lowest in the muscle. Overall, the Nile tilapia exposed to As(III) showed higher tissue levels of As after the treatments, compared to As(V) exposure. Speciation of arsenic present in the tissues employed liquid chromatography coupled to ICP-MS (LC-ICP-MS), revealing that the biotransformation of As included As(V) reduction to As(III), methylation to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and subsequent conversion to nontoxic arsenobetaine (AsB), which was the predominant arsenic form. Finally, the interactions and antagonistic effects of selenium in the bioaccumulation processes were tested by the combined exposure to As(III), the most toxic species of As, together with tetravalent selenium (Se(IV)). The results indicated a 4-6 times reduction of arsenic toxicity in the tilapia.


Assuntos
Arsênio , Bioacumulação , Biotransformação , Ciclídeos , Fígado , Selênio , Poluentes Químicos da Água , Animais , Arsênio/metabolismo , Ciclídeos/metabolismo , Poluentes Químicos da Água/metabolismo , Selênio/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Brânquias/metabolismo , Músculos/metabolismo
14.
Ecotoxicol Environ Saf ; 279: 116514, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810286

RESUMO

The aim of this study is to evaluate the toxic effects of different concentrations of cigarette butt leachate (CBL) (0.0, 0.5, 1, 1.5, and 2.0 µL L-1) on blood biochemistry, oxidative stress biomarkers, and the biochemical profile of the liver and muscle of Nile tilapia fish (Oreochromis niloticus) after 21 days. Increased activity of lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) in plasma, and decreased activity of alkaline phosphatase (ALP) in fish exposed to CBL, indicated cytotoxicity. Elevated cholesterol, triglycerides, and glucose levels, coupled with reduced total protein, albumin, and globulin levels in the plasma, indicated impaired liver function in the fish. An increase in creatinine showed kidney damage. Increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, along with the decrease in liver glutathione (GSH) content and total antioxidant capacity in the hepatocytes of fish exposed to CBL, indicated the occurrence of oxidative stress. Malondialdehyde (MDA) elevation indicated heightened lipid peroxidation in CBL-exposed fish hepatocytes. Raman spectroscopy revealed altered biochemical profiles in fish liver and muscle post-CBL exposure. The results demonstrated that exposure to CBL led to a decrease in phospholipid levels, collagen destruction, changes in phenylalanine levels, and a decrease in the levels of lipids, proteins, and nucleic acids in fish liver and muscle tissue. Furthermore, the metabolites and compounds of cigarette butt juice were detectable in the liver and muscle tissue of fishes. In conclusion, this study showed that exposure to CBL can have adverse effects on fish health.


Assuntos
Biomarcadores , Ciclídeos , Fígado , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Ciclídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/sangue , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Metaboloma/efeitos dos fármacos , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Catalase/metabolismo
15.
Dev Biol ; 512: 57-69, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750688

RESUMO

Understanding the developmental processes and signaling pathways involved in larval myogenesis and metamorphosis is crucial for comprehending the life history and adaptive strategies of marine organisms. In this study, we investigated the temporal and spatial patterns of myogenesis in the mussel Mytilus coruscus (Mc), focusing on the emergence and transformation of major muscle groups during different larval stages. We also explored the role of the Hedgehog (Hh) signaling pathway in regulating myogenesis and larval metamorphosis. The results revealed distinct developmental stages characterized by the emergence of specific muscular components, such as velum retractor muscles and anterior adductor muscles, in D-veliger and umbo larvae, which are responsible for the planktonic stage. In the pediveliger stage, posterior ventral, posterior adductor, and foot muscles appeared. After larval metamorphosis, the velum structure and its corresponding retractor muscles degenerate, indicating the transition from planktonic to benthic life. We observed a conserved pattern of larval musculature development and revealed a high degree of conservation across bivalve species, with comparable emergence times during myogenesis. Furthermore, exposure to the Hh signaling inhibitor cyclopamine impaired larval muscle development, reduced larval swimming activity, and inhibited larval metamorphosis in M. coruscus. Cyclopamine-mediated inhibition of Hh signaling led to reduced expression of four key genes within the Hh signaling pathway (McHh, McPtc, McSmo, and McGli) and the striated myosin heavy chain gene (McMHC). It is hypothesised that the abnormal larval muscle development in cyclopamine-treated groups may be an indirect effect due to disrupted McMHC expression. We provide evidence for the first time that cyclopamine treatment inhibited larval metamorphosis in bivalves, highlighting the potential involvement of Hh signaling in mediating larval muscle development and metamorphosis in M. coruscus. The present study provides insights into the dynamic nature of myogenesis and the regulatory role of the Hh signaling pathway during larval development and metamorphosis in M. coruscus. The results obtained in this study contribute to a better understanding of the evolutionary significance of Hh signaling in bivalves and shed light on the mechanisms underlying larval muscle development and metamorphosis in marine invertebrates.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Larva , Metamorfose Biológica , Desenvolvimento Muscular , Mytilus , Transdução de Sinais , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mytilus/crescimento & desenvolvimento , Mytilus/metabolismo , Alcaloides de Veratrum/farmacologia , Músculos/metabolismo
16.
J Cell Sci ; 137(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38757366

RESUMO

Nesprin proteins, which are components of the linker of nucleoskeleton and cytoskeleton (LINC) complex, are located within the nuclear envelope and play prominent roles in nuclear architecture. For example, LINC complex proteins interact with both chromatin and the cytoskeleton. Here, we report that the Drosophila Nesprin MSP300 has an additional function in autophagy within larval body wall muscles. RNAi-mediated MSP300 knockdown in larval body wall muscles resulted in defects in the contractile apparatus, muscle degeneration and defective autophagy. In particular, MSP300 knockdown caused accumulation of cytoplasmic aggregates that contained poly-ubiquitylated cargo, as well as the autophagy receptor ref(2)P (the fly homolog of p62 or SQSTM) and Atg8a. Furthermore, MSP300 knockdown larvae expressing an mCherry-GFP-tagged Atg8a transgene exhibited aberrant persistence of the GFP signal within these aggregates, indicating failure of autophagosome maturation. These autophagy deficits were similar to those exhibited by loss of the endoplasmic reticulum (ER) fusion protein Atlastin (Atl), raising the possibility that Atl and MSP300 might function in the same pathway. In support of this possibility, we found that a GFP-tagged MSP300 protein trap exhibited extensive localization to the ER. Alteration of ER-directed MSP300 might abrogate important cytoskeletal contacts necessary for autophagosome completion.


Assuntos
Autofagia , Proteínas de Drosophila , Proteostase , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Retículo Endoplasmático/metabolismo , Músculos/metabolismo , Larva/metabolismo , Larva/genética , Proteínas dos Microfilamentos , Proteínas Musculares
17.
J Hazard Mater ; 473: 134699, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795488

RESUMO

Identifying metabolism and detoxification mechanisms of Hg in biota has important implications for biomonitoring, ecotoxicology, and food safety. Compared to marine mammals and waterbirds, detoxification of MeHg in fish is understudied. Here, we investigated Hg detoxification in Atlantic bluefin tuna Thunnus thynnus using organ-specific Hg and Se speciation data, stable Hg isotope signatures, and Hg and Se particle measurements in multiple tissues. Our results provide evidence for in vivo demethylation and biomineralization of HgSe particles, particularly in spleen and kidney. We observed a maximum range of 1.83‰ for δ202Hg between spleen and lean muscle, whereas Δ199Hg values were similar across all tissues. Mean percent methylmercury ranged from 8% in spleen to 90% in lean muscle. The particulate masses of Hg and Se were higher in spleen and kidney (Hg: 61% and 59%, Se: 12% and 6%, respectively) compared to muscle (Hg: 2%, Se: 0.05%). Our data supports the hypothesis of an organ-specific, two-step detoxification of methylmercury in wild marine fish, consisting of demethylation and biomineralization, like reported for waterbirds. While mass dependent fractionation signatures were highly organ specific, stable mass independent fractionation signatures across all tissues make them potential candidates for source apportionment studies of Hg using ABFT.


Assuntos
Isótopos de Mercúrio , Compostos de Metilmercúrio , Atum , Poluentes Químicos da Água , Animais , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Atum/metabolismo , Isótopos de Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Rim/metabolismo , Baço/metabolismo , Inativação Metabólica , Mercúrio/metabolismo , Mercúrio/análise , Monitoramento Ambiental/métodos , Músculos/metabolismo , Músculos/química , Selênio/metabolismo , Selênio/análise
18.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619242

RESUMO

Powerful genetic and molecular tools available in mouse systems neuroscience research have enabled researchers to interrogate motor system function with unprecedented precision in head-fixed mice performing a variety of tasks. The small size of the mouse makes the measurement of motor output difficult, as the traditional method of electromyographic (EMG) recording of muscle activity was designed for larger animals like cats and primates. Pending commercially available EMG electrodes for mice, the current gold-standard method for recording muscle activity in mice is to make electrode sets in-house. This article describes a refinement of established procedures for hand fabrication of an electrode set, implantation of electrodes in the same surgery as headplate implantation, fixation of a connector on the headplate, and post-operative recovery care. Following recovery, millisecond-resolution EMG recordings can be obtained during head-fixed behavior for several weeks without noticeable changes in signal quality. These recordings enable precise measurement of forelimb muscle activity alongside in vivo neural recording and/or perturbation to probe mechanisms of motor control in mice.


Assuntos
Mãos , Extremidade Superior , Animais , Camundongos , Eletrodos , Membro Anterior , Músculos
19.
Medicine (Baltimore) ; 103(16): e37929, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640262

RESUMO

RATIONALE: Fibromyalgia (FM) is characterized by idiopathic persistent chronic pain in the ligaments or musculoskeletal system, and more than half of the patients with FM might have migraine headaches. Direct musculoskeletal intervention could be a non-pharmacological management to relieve symptoms. However, patients with severe FM often have intense pain from only a soft touch, thereby rendering musculoskeletal intervention challenging. PATIENT CONCERNS: A 47-year-old man had progressing intense pain, and this affected his everyday life. There were no abnormal physical findings on laboratory examination such as levels of complement, antinuclear antibodies, and C-reactive protein, which were within normal limits. Magnetic resonance imaging did not indicate abnormalities. DIAGNOSES, INTERVENTIONS, AND OUTCOMES: The patient satisfied the American College of Rheumatology criteria. Finally, we made a final diagnosis of fibromyalgia. The therapeutic intervention of Kanshoho, the unique muscle relaxation technique with low force, relieved his pain. LESSONS: If Kanshoho is carefully applied in a state of hospitalization under surveillance by an experienced physician, it could be a promising muscle relaxation method. Relaxing the trapezius muscle and reducing its intramuscular pressure might be key in treating patients with severe FM. However, it needs elucidation of its mechanism.


Assuntos
Dor Crônica , Fibromialgia , Masculino , Humanos , Pessoa de Meia-Idade , Fibromialgia/complicações , Fibromialgia/terapia , Fibromialgia/diagnóstico , Terapia de Relaxamento , Dor Crônica/diagnóstico , Ligamentos , Músculos , Relaxamento Muscular
20.
Proc Natl Acad Sci U S A ; 121(16): e2320416121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588428

RESUMO

Pores through ion channels rapidly transport small inorganic ions along their electrochemical gradients. Here, applying single-channel electrophysiology and mutagenesis to the archetypal muscle nicotinic acetylcholine receptor (AChR) channel, we show that a conserved pore-peripheral salt bridge partners with those in the other subunits to regulate ion transport. Disrupting the salt bridges in all five receptor subunits greatly decreases the amplitude of the unitary current and increases its fluctuations. However, disrupting individual salt bridges has unequal effects that depend on the structural status of the other salt bridges. The AChR ε- and δ-subunits are structurally unique in harboring a putative palmitoylation site near each salt bridge and bordering the lipid membrane. The effects of disrupting the palmitoylation sites mirror those of disrupting the salt bridges, but the effect of disrupting either of these structures depends on the structural status of the other. Thus, rapid ion transport through the AChR channel is maintained by functionally interdependent salt bridges linking the pore to the lipid membrane.


Assuntos
Receptores Colinérgicos , Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Músculos , Transporte de Íons , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...