Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 25(2): 537-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21152872

RESUMO

The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to activate mitogen-activated protein kinases (MAPKs) depending on caspase and mammalian sterile 20-like kinase 1 activations. However, the upstream molecule of MAPKs has not yet been identified. The mitogen-activated protein kinase kinase 1 (MEKK1) and the apoptosis signal-regulating kinase 1 (ASK1) are considered to be possible candidates for the action of MAPKKKs induced by TRAIL and the possibility of reactive oxygen species involvement has also been investigated. We found that MEKK1/MEKK4 as opposed to ASK1, are responsible for TRAIL-induced c-Jun NH2-terminal kinase (JNK) or p38 activation, and that their catalytic activity is repressed by the caspase-8 inhibitor, suggesting that the caspase-8 activation induced by TRAIL is indispensible for MEKK activation. The 14-3-3 θ was also shown to interact with and to dissociate from MEKK1 by TRAIL treatment, thus implicating the 14-3-3 protein as a negative regulator of MEKK1 activation. Taken together, we show herein that the upstream molecule of the TRAIL-induced MAPK activation is MEKK, as opposed to ASK1, via the mediation of its signal through JNK/p38 in a caspase-8-dependent manner.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 1/fisiologia , MAP Quinase Quinase Quinase 4/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas 14-3-3/metabolismo , Anticorpos/farmacologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase Quinase 1/imunologia , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase Quinase 4/imunologia , MAP Quinase Quinase Quinase 4/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , RNA Interferente Pequeno/farmacologia
2.
Neuron ; 52(5): 789-801, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17145501

RESUMO

Periventricular heterotopia (PVH) is a congenital malformation of human cerebral cortex frequently associated with Filamin-A (FLN-A) mutations but the pathogenetic mechanisms remain unclear. Here, we show that the MEKK4 (MAP3K4) pathway is involved in Fln-A regulation and PVH formation. MEKK4(-/-) mice developed PVH associated with breaches in the neuroependymal lining which were largely comprised of neurons that failed to reach the cortical plate. RNA interference (RNAi) targeting MEKK4 also impaired neuronal migration. Expression of Fln was elevated in MEKK4(-/-) forebrain, most notably near sites of failed neuronal migration. Importantly, recombinant MKK4 protein precipitated a complex containing MEKK4 and Fln-A, and MKK4 mediated signaling between MEKK4 and Fln-A, suggesting that MKK4 may bridge these molecules during development. Finally, we showed that wild-type FLN-A overexpression inhibited neuronal migration. Collectively, our results demonstrate a link between MEKK4 and Fln-A that impacts neuronal migration initiation and provides insight into the pathogenesis of human PVH.


Assuntos
Movimento Celular/fisiologia , Proteínas Contráteis/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , MAP Quinase Quinase Quinase 4/fisiologia , Proteínas dos Microfilamentos/biossíntese , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Anticorpos Monoclonais , Antimetabólitos , Western Blotting , Bromodesoxiuridina , Diferenciação Celular/fisiologia , Movimento Celular/genética , Proteínas Contráteis/genética , Proteínas Contráteis/fisiologia , DNA Complementar/biossíntese , DNA Complementar/genética , Eletroporação , Feminino , Filaminas , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Imuno-Histoquímica , MAP Quinase Quinase Quinase 4/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Neurônios/ultraestrutura , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Fosforilação , Gravidez , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , RNA Interferente Pequeno/genética , Células-Tronco/fisiologia
3.
Mol Cell Biol ; 25(20): 8948-59, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16199873

RESUMO

Skeletal disorders and neural tube closure defects represent clinically significant human malformations. The signaling networks regulating normal skeletal patterning and neurulation are largely unknown. Targeted mutation of the active site lysine of MEK kinase 4 (MEKK4) produces a kinase-inactive MEKK4 protein (MEKK4(K1361R)). Embryos homozygous for this mutation die at birth as a result of skeletal malformations and neural tube defects. Hindbrains of exencephalic MEKK4(K1361R) embryos show a striking increase in neuroepithelial cell apoptosis and a dramatic loss of phosphorylation of MKK3 and -6, mitogen-activated protein kinase kinases (MKKs) regulated by MEKK4 in the p38 pathway. Phosphorylation of MAPK-activated protein kinase 2, a p38 substrate, is also inhibited, demonstrating a loss of p38 activity in MEKK4(K1361R) embryos. In contrast, the MEK1/2-extracellular signal-regulated kinase 1 (ERK1)/ERK2 and MKK4-Jun N-terminal protein kinase pathways were unaffected. The p38 pathway has been shown to regulate the phosphorylation and expression of the small heat shock protein HSP27. Compared to the wild type, MEKK4(K1361R) fibroblasts showed significantly reduced phosphorylation of p38 and HSP27, with a corresponding heat shock-induced instability of the actin cytoskeleton. Together, these data demonstrate MEKK4 regulation of p38 and that substrates downstream of p38 control cellular homeostasis. The findings are the first demonstration that MEKK4-regulated p38 activity is critical for neurulation.


Assuntos
Desenvolvimento Ósseo/fisiologia , MAP Quinase Quinase Quinase 4/deficiência , Defeitos do Tubo Neural/enzimologia , Animais , Apoptose , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Desenvolvimento Ósseo/genética , DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Marcação de Genes , Humanos , MAP Quinase Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 4/fisiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Fenótipo , Fosforilação , Gravidez , Rombencéfalo/anormalidades , Rombencéfalo/enzimologia , Rombencéfalo/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
J Biol Chem ; 280(43): 35793-6, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16157600

RESUMO

TRAF4 has previously been shown to activate JNK through an unknown mechanism. Here, we show that endogenous TRAF4 and MEKK4 associate in both human K562 cells and mouse E10.5 embryos. TRAF4 interacts with the kinase domain of MEKK4. However, this association does not require MEKK4 kinase activity. The interaction of MEKK4 and TRAF4 are further demonstrated by the colocalization of TRAF4 and MEKK4 in cells. Importantly, although TRAF4 has little or no ability to activate JNK independently, coexpression of TRAF4 and MEKK4 results in synergistic activation of JNK that is inhibited by a kinase-inactive mutant of MEKK4, MEKK4K1361R. MEKK4 binds the TRAF domain of TRAF4 and MEKK4/TRAF4 activation of JNK is inhibited by expression of the TRAF domain. Furthermore, TRAF4 stimulates MEKK4 kinase activity by promoting MEKK4 oligomerization and JNK activation can be stimulated by chemical induction of MEKK4 dimerization. The findings identify MEKK4 as the MAPK kinase kinase for TRAF4 regulation of the JNK pathway.


Assuntos
MAP Quinase Quinase Quinase 4/fisiologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/fisiologia , Animais , Western Blotting , Células COS , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Citoplasma/metabolismo , DNA Complementar/metabolismo , Dimerização , Ativação Enzimática , Vetores Genéticos , Humanos , Imunoprecipitação , Células K562 , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 4/metabolismo , Camundongos , Microscopia de Fluorescência , Mutação , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Fator 4 Associado a Receptor de TNF , Transfecção
5.
Proc Natl Acad Sci U S A ; 102(10): 3846-51, 2005 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-15731347

RESUMO

Neural tube defects (NTDs) are prevalent human birth defects. Mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK), are implicated in facilitating neural tube closure, yet upstream regulators remain to be identified. Here, we show that MAP kinase kinase kinase 4 (MEKK4) is strongly expressed in the developing neuroepithelium. Mice deficient in MEKK4 develop highly penetrant NTDs that cannot be rescued by supplementation with folic acid or inositol. Unlike most mouse models of NTDs, MEKK4 mutant embryos display genetically co-segregated exencephaly and spina bifida, recapitulating the phenotypes observed in human patients. To identify downstream targets of MEKK4 during neural tube development, we examined the activity of MAP kinase kinase 4 (MKK4), a signaling intermediate between MAP kinase kinase kinase and JNK/p38. We found a significant reduction in MKK4 activity in MEKK4-deficient neuroepithelium at sites of neural tube closure. MAPK pathways are key regulators of cell apoptosis and proliferation. Analyses of the neuroepithelium in MEKK4-deficient embryos showed massively elevated apoptosis before and during neural tube closure, suggesting an antiapoptotic role for MEKK4 during development. In contrast, proliferation of MEKK4-deficient neuroepithelial cells appeared to be largely unaffected. MEKK4 therefore plays a critical role in regulating MKK4 activity and apoptotic cell death during neural tube development. Disruption of this signaling pathway may be clinically relevant to folate-resistant human NTDs.


Assuntos
Apoptose , MAP Quinase Quinase Quinase 4/fisiologia , Defeitos do Tubo Neural/etiologia , Animais , Encéfalo/anormalidades , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/metabolismo
6.
Proc Natl Acad Sci U S A ; 102(2): 361-6, 2005 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-15623554

RESUMO

Somites in vertebrates are periodic segmented structures that give rise to the vertebrae and muscles of body. Somites are generated from presomitic mesoderm (PSM), but it is not fully understood how cellular differentiation and segment formation are achieved in the anterior PSM. We report here that zebrafish gadd45beta1 and gadd45beta2 genes are periodically expressed as paired stripes adjacent to the neural tube in the anterior PSM region where presomitic cells mature. In mammals, it is known that GADD45 (growth arrest and DNA damage) family proteins play a role in cell-cycle control. We found that both knockdown and overexpression of gadd45beta genes caused somite defects with different consequences for marker gene expression. Knockdown of gadd45beta genes with antisense morpholino oligonucleotides caused a broad expansion of mesp-a in the PSM, and both cyclic expression of her1 and segmented expression of MyoD were disorganized. On the other hand, injection of gadd45beta1 or gadd45beta2 suppressed expression of mesp-a and her1 in anterior PSM and MyoD in paraxial mesoderm. These results indicate that regulated expression of gadd45beta genes in the anterior PSM is required for somite segmentation.


Assuntos
Fase de Clivagem do Zigoto/fisiologia , Proteínas/genética , Somitos/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinase 4/fisiologia , Mesoderma/fisiologia , Dados de Sequência Molecular , Proteínas/química , Proteínas/fisiologia , Transdução de Sinais , Peixe-Zebra , Proteínas GADD45
7.
Biochem J ; 388(Pt 1): 17-28, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15601262

RESUMO

IFNgamma (interferon-gamma) binding to its cognate receptor results, through JAK (Janus kinase), in direct activation of receptor-bound STAT1 (signal transducer and activator of transcription 1), although there is evidence for additional activation of a MAPK (mitogen-activated protein kinase) pathway. In the present paper, we report IFNgamma-dependent activation of the MEKK4 (MAPK/extracellular-signal-regulated kinase kinase kinase 4) pathway in HaCaT human keratinocytes. MEKK4 is tyrosine-phosphorylated and the IFNgamma-dependent phosphorylation requires intracellular calcium. Calcium-dependent phosphorylation of MEKK4 is mediated by Pyk2. Moreover, MEKK4 and Pyk2 co-localize in an IFNgamma-dependent manner in the perinuclear region. Furthermore, the calcium-binding protein, annexin II, and the calcium-regulated kinase, Pyk2, co-immunoprecipitate with MEKK4 after treatment with IFNgamma. Immunofluorescence imaging of HaCaT cells shows an IFNgamma-dependent co-localization of annexin II with Pyk2 in the perinuclear region, suggesting that annexin II mediates the calcium-dependent regulation of Pyk2. Tyrosine phosphorylation of MEKK4 correlates with its activity to phosphorylate MKK6 (MAPK kinase 6) in vitro and subsequent p38 MAPK activation in an IFNgamma-dependent manner. Additional studies demonstrate that the SH2 (Src homology 2)-domain-containing tyrosine phosphatase SHP2 co-immunoprecipitates with MEKK4 in an IFNgamma-dependent manner and co-localizes with MEKK4 after IFNgamma stimulation in the perinuclear region in HaCaT cells. Furthermore, we provide evidence that SHP2 dephosphorylates MEKK4 and Pyk2, terminating the MEKK4-dependent branch of the IFNgamma signalling pathway.


Assuntos
Anexina A2/fisiologia , Interferon gama/fisiologia , MAP Quinase Quinase Quinase 4/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Anexina A2/química , Sinalização do Cálcio , Linhagem Celular , Humanos , Interferon gama/química , Queratinócitos/fisiologia , MAP Quinase Quinase 6/fisiologia , MAP Quinase Quinase Quinase 4/química , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Transdução de Sinais , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...