Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10941, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740807

RESUMO

Bartonella quintana, the causative agent of trench fever, is an intracellular bacterium that infects human erythrocytes and vascular endothelial cells. For many years, humans were considered the only natural hosts for B. quintana; however, it was recently discovered that wild Japanese macaques (Macaca fuscata) also serve as hosts for B. quintana. To elucidate the genetic characteristics of the B. quintana strain MF1-1 isolated from a Japanese macaque, we determined the complete genome sequence of the strain and compared it with those of strain Toulouse from a human and strain RM-11 from a rhesus macaque. General genomic features and orthologous gene cluster profiles are similar among the three strains, and strain MF1-1 is genetically closer to strain RM-11 than strain Toulouse based on the average nucleotide identity values; however, a significant inversion of approximately 0.68 Mb was detected in the chromosome of strain MF1-1. Moreover, the Japanese macaque strains lacked the bepA gene, which is responsible for anti-apoptotic function, and the trwL2, trwL4, and trwL6 genes, which may be involved in adhesion to erythrocytes of rhesus macaque and human. These features likely represent the genomic traits acquired by Japanese macaque strains in their host-associated evolution.


Assuntos
Bartonella quintana , Genoma Bacteriano , Macaca fuscata , Macaca mulatta , Animais , Humanos , Macaca fuscata/genética , Bartonella quintana/genética , Bartonella quintana/isolamento & purificação , Filogenia , Genômica/métodos , Febre das Trincheiras/microbiologia
2.
Mol Phylogenet Evol ; 194: 108042, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401812

RESUMO

Climate changes at larger scales have influenced dispersal and range shifts of many taxa in East Asia. The fascicularis species group of macaques is composed of four species and is widely distributed in Southeast and East Asia. However, its phylogeography and demographic histories are currently poorly understood. Herein, we assembled autosomal, mitogenome, and Y-chromosome data for 106 individuals, and combined them with 174 mtDNA dloop haplotypes of this species group, with particular focus on the demographic histories and dispersal routes of Macaca fuscata, M. cyclopis, and M. mulatta. The results showed: (1) three monophyletic clades for M. fuscata, M. cyclopis, and M. mulatta based on the multiple genomics analyses; (2) the disparate demographic trajectories of the three species after their split ∼1.0 Ma revealed that M. cyclopis and M. fuscata were derived from an ancestral M. mulatta population; (3) the speciation time of M. cyclopis was later than that of M. fuscata, and their divergence time occurred at the beginning of "Ryukyu Coral Sea Stage" (1.0-0.2 Ma) when the East China Sea land bridge was completely submerged by the sea level rose; and (4) the three parallel rivers (Nujiang, Lancangjiang, and Jinshajiang) of Southwestern China divided M. mulatta into Indian and Chinese genetic populations ∼200 kya. These results shed light on understanding not only the evolutionary history of the fascicularis species group but also the formation mechanism of faunal diversity in East Asia during the Pleistocene.


Assuntos
Macaca fuscata , Macaca , Animais , Filogeografia , Filogenia , Macaca fuscata/genética , Macaca/genética , Ásia Oriental , DNA Mitocondrial/genética , Genômica , Demografia
3.
Rev Bras Parasitol Vet ; 32(4): e011923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055438

RESUMO

In vitro excystation of cysts of microscopically identified Chilomastix mesnili and Retortamonas sp. isolated from Japanese macaques and Retortamonas sp. isolated from small Indian mongooses could be induced using an established protocol for Giardia intestinalis and subsequently by culturing with H2S-rich Robinson's medium supplemented with Desulfovibrio desulfuricans. Excystation usually began 2 h after incubation in Robinson's medium. DNA was isolated from excysted flagellates after 4 h of incubation or from cultured excysted flagellates. Phylogenetic analysis based on their 18S rRNA genes revealed that two isolates of C. mesnili from Japanese macaques belonged to the same cluster as a C. mesnili isolate from humans, whereas a mammalian Retortamonas sp. isolate from a small Indian mongoose belonged to the same cluster as that of an amphibian Retortamonas spp. isolate from a 'poison arrow frog' [sequence identity to AF439347 (94.9%)]. These results suggest that the sequence homology of the 18S rRNA gene of the two C. mesnili isolates from Japanese macaques was similar to that of humans, in addition to the morphological similarity, and Retortamonas sp. infection of the amphibian type in the small Indian mongoose highlighted the possibility of the effect of host feeding habitats.


Assuntos
Herpestidae , Parasitos , Retortamonadídeos , Humanos , Animais , Filogenia , Retortamonadídeos/genética , Herpestidae/genética , Macaca fuscata/genética , RNA Ribossômico 18S/genética
4.
Primates ; 64(2): 239-246, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36806706

RESUMO

Populations of Japanese macaques were significantly reduced in most areas from the 1900s to the 1960s and then recovered mainly in the northeastern part of Honshu. A drastic reduction in population size reduces genetic variability through a bottleneck effect. Demographic expansion after the reduction that accumulates new mutations can reduce the bottleneck effects or drive the recovery of genetic variability. We examined the genetic status of a small island population (Kinkazan Island) and a larger mainland population (southern Tohoku) of Japanese macaques that experienced recent demographic bottlenecks and recovery using eight microsatellite loci. The two populations were significantly genetically different from each other. The Kinkazan population exhibited lower genetic variability, remarkable evidence of bottleneck (i.e., significant heterozygosity excess and lower frequency of rare alleles), and a considerably smaller effective population size based on genetic data than based on the current census size. These results indicate that the genetic status has not completely recovered from the demographic bottleneck despite a full recovery in census size on Kinkazan Island. New mutations might rarely have accumulated because of the small carrying capacity of the island. Therefore, the genetic variability of the population would have been restrained by the severe bottleneck size, small carrying capacity, and long-term isolation. On the other hand, the bottleneck effect seems to be limited in the southern Tohoku population considering higher genetic variability, non-significant heterozygosity excess in many mutation conditions, and the highest frequency of rare alleles.


Assuntos
Variação Genética , Macaca fuscata , Animais , Macaca fuscata/genética , Genética Populacional , Densidade Demográfica , Repetições de Microssatélites
5.
Differentiation ; 128: 33-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36265360

RESUMO

Non-human primates are important models for investigations of neural development and evolution, and the use of Japanese macaque monkeys has especially contributed to the advancement of neuroscience studies. However, these studies are restricted by the number of animals able to be evaluated and the invasiveness of the methodologies. Induced pluripotent stem cells (iPSCs) can provide an alternative strategy for investigating neural development in vitro. We have established direct neurosphere (dNS) formation cultures of primate iPSCs as an in vitro model of early neurodevelopment in primate species. Here, we used dNS formation and neuronal differentiation cultures established from Japanese macaque iPSCs (jm-iPSCs) to investigate the usefulness of these cells as an in vitro model of early neural development. Time-course analyses of developmental potency and gene expression kinetics were performed during dNS formation culture of jm-iPSCs. During a 1-week culture, jm-iPSC-derived dNSs became neurogenic by day 3 and underwent stepwise expression changes of key developmental regulators along early neural development in a similar manner to chimpanzee dNS formation previously reported. Meanwhile, a subset of genes, including CYP26A1 and NPTX1, showed differential expression propensity in Japanese macaque, chimpanzee, and human iPSC-derived dNSs. Spontaneous upregulation of NOTCH signaling-associated genes HES5 and DLL1 was also observed in neuronal differentiation cultures of Japanese macaque but not chimpanzee dNSs, possibly reflecting the earlier neurogenic competence in Japanese macaques. The use of jm-iPSCs provides an alternative approach to neurological studies of primate development. Furthermore, jm-iPSCs can be used to investigate species differences in early neural development that are key to primate evolution.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Macaca fuscata/genética , Macaca , Haplorrinos , Neurogênese/genética , Diferenciação Celular/genética
6.
Genome Biol Evol ; 13(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33045051

RESUMO

The role of sex-specific demography in hybridization and admixture of genetically diverged species and populations is essential to understand the origins of the genomic diversity of sexually reproducing organisms. In order to infer how sex-linked loci have been differentiated undergoing frequent hybridization and admixture, we examined 17 whole-genome sequences of seven species representing the genus Macaca, which shows frequent inter-specific hybridization and predominantly female philopatry. We found that hybridization and admixture were prevalent within these species. For three cases of suggested hybrid origin of species/subspecies, Macaca arctoides, Macaca fascicularis ssp. aurea, and Chinese Macaca mulatta, we examined the level of admixture of X chromosomes, which is less affected by male-biased migration than that of autosomes. In one case, we found that Macaca cyclopis and Macaca fuscata was genetically closer to Chinese M. mulatta than to the Indian M. mulatta, and the admixture level of Chinese M. mulatta and M. fuscata/cyclopis was more pronounced on the X chromosome than on autosomes. Since the mitochondrial genomes of Chinese M. mulatta, M. cyclopis, and M. fuscata were found to cluster together, and the mitochondrial genome of Indian M. mulatta is more distantly related, the observed pattern of genetic differentiation on X-chromosomal loci is consistent with the nuclear swamping hypothesis, in which strong, continuous male-biased introgression from the ancestral Chinese M. mulatta population to a population related to M. fuscata and M. cyclopis generated incongruencies between the genealogies of the mitochondrial and nuclear genomes.


Assuntos
Genômica , Macaca/genética , Sequenciamento Completo do Genoma , Cromossomo X , Animais , Mapeamento Cromossômico , Evolução Molecular , Feminino , Variação Genética , Genoma Mitocondrial , Hibridização Genética , Macaca/classificação , Macaca fascicularis/genética , Macaca fuscata/genética , Macaca mulatta/genética , Masculino , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
7.
Primates ; 62(1): 113-121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32803510

RESUMO

Non-human primates are our closest relatives and therefore offer valuable comparative models for human evolutionary studies and biomedical research. As such, Japanese macaques (Macaca fuscata) have contributed to the advancement of primatology in both field and laboratory settings. Specifically, Japanese macaques serve as an excellent model for investigating postnatal development and seasonal breeding in primates because of their relatively prolonged juvenile period and distinct seasonal breeding activity in adulthood. Pioneering histological studies have examined the developmental associations between their reproductive states and spermatogenesis by morphological observation. However, a molecular histological atlas of Japanese macaque spermatogenesis is only in its infancy, limiting our understanding of spermatogenesis ontogeny related to their reproductive changes. Here, we performed immunofluorescence analyses of spermatogenesis in Japanese macaque testes to determine the expression of a subset of marker proteins. The present molecular histological analyses readily specified major spermatogonial subtypes as SALL4+ A spermatogonia and Ki67+/C-KIT+ B spermatogonia. The expression of DAZL, SCP1, γH2AX, VASA, and calmegin further showed sequential changes regarding the protein expression profile and chromosomal structures during spermatogenesis in a differentiation stage-specific manner. Accordingly, comparative analyses between subadults and adults identified spermatogenic deficits in differentiation and synchronization in subadult testes. Our findings provide a new diagnostic platform for dissecting spermatogenic status and reproduction in the Japanese macaques.


Assuntos
Macaca fuscata/metabolismo , Espermatogênese/fisiologia , Espermatogônias/citologia , Animais , Cromossomos de Mamíferos/fisiologia , Imuno-Histoquímica , Macaca fuscata/genética , Macaca fuscata/crescimento & desenvolvimento , Masculino , Espermatogônias/metabolismo , Testículo/citologia , Testículo/metabolismo
8.
Primates ; 62(1): 103-112, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32617910

RESUMO

We investigated individual variation in diet in relation to age-sex class and kin relationship in 28 of 40 members of a small group of wild Japanese macaques (Macaca fuscata). We used stable isotope ratios from hair as an index of individual dietary profiles, genetic relatedness as an index of kin relationship, and mitochondrial DNA (mtDNA) haplotype as a marker of being an immigrant or native member of the group. The range of carbon and nitrogen stable isotope ratios from hair of individual macaques (δ13C: -24.1‰ to -22.6‰, δ15N:3.8-5.5‰), which reflected their diet over a period of ~ 6 months, implied small individual variation in diet. The results of PERMANOVA implied that there were no significant effects of age class, sex, or mtDNA haplotype on hair stable isotope ratios between individuals, or on the variation in individual diet. However, the isotope values of males with mtDNA haplotypes that differed from those of the native females appeared to differ from those of other group members, which implies that immigrant males might have had a different diet profile from that of native group members. Furthermore, there was a weak correlation trend between genetic relatedness and differences in stable isotope ratios between pairs of individuals. Differences in stable isotope values were more marked in pairs with a more distant genetic relationship. This implies that within the group, closely related kin tended to forage together to avoid competing for food. However, this effect might have been weak because the size of the group was small relative to the size of the food patches, thereby reducing competition.


Assuntos
Dieta , Comportamento Alimentar , Macaca fuscata/fisiologia , Animais , Isótopos de Carbono/análise , DNA Mitocondrial , Feminino , Cabelo/química , Haplótipos , Japão , Macaca fuscata/genética , Masculino , Isótopos de Nitrogênio/análise , Comportamento Social
9.
J Chem Neuroanat ; 103: 101726, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740418

RESUMO

Monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) are enzymes that degrade several monoamines of the central nervous system and have long been implicated in the modulation of social behavior. Macaque monkeys are a suitable model for investigating the role of functional monoamine oxidase polymorphisms in behavior modulation given the high amount of social diversity among the nearly two dozen species. The present study reports allele frequencies for two polymorphisms, MAOA-LPR and MBin2, in samples of rhesus (Macaca mulatta) and Japanese (M. fuscata) macaques. Our results suggest that the two species may differ in high- and low-activity MAOA-LPR allele frequencies. Specifically, 89% of the Japanese macaque alleles in our sample were the low-activity variant, whereas only 41% of the rhesus macaque alleles were of this sort. In our samples, the two species possessed similar allelic variation at the MBin2 locus, with each possessing some species-specific alleles. We also tested for associations between MAOA-LPR genotype and plasma serotonin (5-HT) and dopamine (DA) concentrations in a subset of rhesus macaques, which revealed no association with genotype. Our findings point toward potential differences in the monoaminergic system of two closely related macaque species. Discussion of our results are centered on implications for future investigations that aim to better understand the functionality of monoamine oxidase polymorphisms in the context of primate social behavior.


Assuntos
Macaca fuscata/genética , Macaca mulatta/genética , Monoaminoxidase/genética , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Dopamina/sangue , Feminino , Frequência do Gene , Genótipo , Masculino , Serotonina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...