Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.016
Filtrar
1.
J Pharm Biomed Anal ; 248: 116338, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971092

RESUMO

Tetrahydroxy stilbene glucoside (TSG) is a water-soluble natural product that has shown potential in treating atherosclerosis (AS). However, its underlying mechanisms remain unclear. Here, we demonstrate that an 8-week TSG treatment (100 mg/kg/d) significantly reduces atherosclerotic lesions and alleviates dyslipidemia symptoms in ApoE-/- mice. 1H nuclear magnetic resonance metabolomic analysis reveals differences in both lipid components and water-soluble metabolites in the livers of AS mice compared to control groups, and TSG treatment shifts the metabolic profiles of AS mice towards a normal state. At the transcriptional level, TSG significantly restores the expression of fatty acid metabolism-related genes (Srepb-1c, Fasn, Scd1, Gpat1, Dgat1, Pparα and Cpt1α), and regulates the expression levels of disturbed cholesterol metabolism-related genes (Srebp2, Hmgcr, Ldlr, Acat1, Acat2 and Cyp7a1) associated with lipid metabolism. Furthermore, at the cellular level, TSG remarkably polarizes aortic macrophages to their M2 phenotype. Our data demonstrate that TSG alleviates arthrosclerosis by dual-targeting to hepatic lipid metabolism and aortic M2 macrophage polarization in ApoE-/- mice, with significant implications for translational medicine and the treatment of AS using natural products.


Assuntos
Aorta , Apolipoproteínas E , Aterosclerose , Glucosídeos , Metabolismo dos Lipídeos , Fígado , Macrófagos , Estilbenos , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Camundongos , Glucosídeos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Estilbenos/farmacologia , Apolipoproteínas E/genética , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos Knockout
2.
Nat Commun ; 15(1): 5670, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971872

RESUMO

Targeted immunomodulation for reactivating innate cells, especially macrophages, holds great promise to complement current adaptive immunotherapy. Nevertheless, there is still a lack of high-performance therapeutics for blocking macrophage phagocytosis checkpoint inhibitors in solid tumors. Herein, a peptide-antibody combo-supramolecular in situ assembled CD47 and CD24 bi-target inhibitor (PAC-SABI) is described, which undergoes biomimetic surface propagation on cancer cell membranes through ligand-receptor binding and enzyme-triggered reactions. By simultaneously blocking CD47 and CD24 signaling, PAC-SABI enhances the phagocytic ability of macrophages in vitro and in vivo, promoting anti-tumor responses in breast and pancreatic cancer mouse models. Moreover, building on the foundation of PAC-SABI-induced macrophage repolarization and increased CD8+ T cell tumor infiltration, sequential anti-PD-1 therapy further suppresses 4T1 tumor progression, prolonging survival rate. The in vivo construction of PAC-SABI-based nano-architectonics provides an efficient platform for bridging innate and adaptive immunity to maximize therapeutic potency.


Assuntos
Antígeno CD24 , Antígeno CD47 , Macrófagos , Peptídeos , Fagocitose , Transdução de Sinais , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Animais , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos , Fagocitose/efeitos dos fármacos , Antígeno CD24/metabolismo , Antígeno CD24/imunologia , Feminino , Humanos , Linhagem Celular Tumoral , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Anticorpos/imunologia , Anticorpos/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores
3.
ACS Appl Mater Interfaces ; 16(28): 35985-36001, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958411

RESUMO

Upconversion nanoparticles (UCNPs) are materials that provide unique advantages for biomedical applications. There are constantly emerging customized UCNPs with varying compositions, coatings, and upconversion mechanisms. Cellular uptake is a key parameter for the biological application of UCNPs. Uptake experiments have yielded highly varying results, and correlating trends between cellular uptake with different types of UCNP coatings remains challenging. In this report, the impact of surface polymer coatings on the formation of protein coronas and subsequent cellular uptake of UCNPs by macrophages and cancer cells was investigated. Luminescence confocal microscopy and elemental analysis techniques were used to evaluate the different coatings for internalization within cells. Pathway inhibitors were used to unravel the specific internalization mechanisms of polymer-coated UCNPs. Coatings were chosen as the most promising for colloidal stability, conjugation chemistry, and biomedical applications. PIMA-PEG (poly(isobutylene-alt-maleic) anhydride with polyethylene glycol)-coated UCNPs were found to have low cytotoxicity, low uptake by macrophages (when compared with PEI, poly(ethylenimine)), and sufficient uptake by tumor cells for surface-loaded drug delivery applications. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) studies revealed that PIMA-coated NPs were preferentially internalized by the clathrin- and caveolar-independent pathways, with a preference for clathrin-mediated uptake at longer time points. PMAO-PEG (poly(maleic anhydride-alt-1-octadecene) with polyethylene glycol)-coated UCNPs were internalized by energy-dependent pathways, while PAA- (poly(acrylic acid)) and PEI-coated NPs were internalized by multifactorial mechanisms of internalization. The results indicate that copolymers of PIMA-PEG coatings on UCNPs were well suited for the next-generation of biomedical applications.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Humanos , Nanopartículas/química , Camundongos , Animais , Células RAW 264.7 , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Polietilenoglicóis/química , Polímeros/química , Propriedades de Superfície , Anidridos Maleicos/química , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia
4.
ACS Appl Mater Interfaces ; 16(28): 36131-36141, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38979627

RESUMO

Cancer immunotherapy is developing as the mainstream strategy for treatment of cancer. However, the interaction between the programmed cell death protein-1 (PD-1) and the programmed death ligand 1 (PD-L1) restricts T cell proliferation, resulting in the immune escape of tumor cells. Recently, immune checkpoint inhibitor therapy has achieved clinical success in tumor treatment through blocking the PD-1/PD-L1 checkpoint pathway. However, the presence of M2 tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) will inhibit antitumor immune responses and facilitate tumor growth, which can weaken the effectiveness of immune checkpoint inhibitor therapy. The repolarization of M2 TAMs into M1 TAMs can induce the immune response to secrete proinflammatory factors and active T cells to attack tumor cells. Herein, hollow iron oxide (Fe3O4) nanoparticles (NPs) were prepared for reprogramming M2 TAMs into M1 TAMs. BMS-202, a small-molecule PD-1/PD-L1 inhibitor that has a lower price, higher stability, lower immunogenicity, and higher tumor penetration ability compared with antibodies, was loaded together with pH-sensitive NaHCO3 inside hollow Fe3O4 NPs, followed by wrapping with macrophage membranes. The formed biomimetic FBN@M could produce gaseous carbon dioxide (CO2) from NaHCO3 in response to the acidic TME, breaking up the macrophage membranes to release BMS-202. A series of in vitro and in vivo assessments revealed that FBN@M could reprogram M2 TAMs into M1 TAMs and block the PD-1/PD-L1 pathway, which eventually induced T cell activation and the secretion of TNF-α and IFN-γ to kill the tumor cells. FBN@M has shown a significant immunotherapeutic efficacy for tumor treatment.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Animais , Camundongos , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Nanopartículas Magnéticas de Óxido de Ferro/química , Feminino , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo
5.
Sci Rep ; 14(1): 16274, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009614

RESUMO

The α-helical antimicrobial peptide Kn2-7 enhances the activation of mouse macrophage-like RAW264.7 induced by DNA containing unmethylated cytosine-guanine motifs (CpG DNA). This enhancement is related to increased cellular uptake of DNA by Kn2-7, but the relevant properties of Kn2-7 are unknown. Physicochemical property analysis revealed that Kn2-7 has high amphipathicity. In contrast, the α-helical antimicrobial peptide L5, which increases the cellular uptake of CpG DNA but does not enhance CpG DNA-induced activation, has low amphipathicity. Kn2-7 derivatives with decreased amphipathicity but the same amino acid composition as Kn2-7 did not enhance CpG DNA-induced activation. On the other hand, L5 derivatives with high amphipathicity but the same amino acid composition as L5 enhanced CpG DNA-induced activation. Cellular uptake of DNA was not increased by the L5 derivatives, indicating that high amphipathicity does not affect DNA uptake. Furthermore, α-helical peptides with reversed sequences relative to the Kn2-7 and L5 derivatives with high amphipathicity were synthesized. The reversed-sequence peptides, which had the same amphipathicity but different amino acid sequences from their counterparts, enhanced CpG DNA-induced activation. Taken together, these observations indicate that the high amphipathicity of α-helical peptides enhances the CpG DNA-induced activation of RAW264.7.


Assuntos
Ilhas de CpG , Macrófagos , Animais , Camundongos , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , DNA/química , DNA/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Metilação de DNA/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química
6.
Sci Rep ; 14(1): 16329, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009713

RESUMO

Microplastics (MPs) are defined as plastic particles smaller than 5 mm in size, and nanoplastics (NPs) are those MPs with a particle size of less than 1000 nm or 100 nm. The prevalence of MPs in the environment and human tissues has raised concerns about their potential negative effects on human health. Macrophages are the major defence against foreign substances in the intestine, and can be polarized into two types: the M1 phenotype and the M2 phenotype. However, the effect of NPs on the polarization of macrophages remains unclear. Herein, we selected polystyrene, one of the most plastics in the environment and controlled the particle sizes at 50 nm and 500 nm respectively to study the effects on the polarization of macrophages. We used mouse RAW264.7 cell line models in this macrophage-associated study. Experiments on cell absorption showed that macrophages could quickly ingest polystyrene nanoplastics of both diameters with time-dependent uptake. Compared to the untreated group and 10 µg/mL treatment group, macrophages exposed to 50 µg/mL groups (50 nm and 500 nm) had considerably higher levels of CD86, iNOS, and TNF-α, but decreased levels of aCD206, IL-10, and Arg-1. According to these findings, macrophage M1 and M2 polarization can both be induced and inhibited by 50 µg/mL 50 nm and 500 nm polystyrene nanoplastics. This work provided the first evidence of a possible MPs mode of action with appropriate concentration and size through the production of polarized M1, providing dietary and environmental recommendations for people, particularly those with autoimmune and autoinflammatory illnesses.


Assuntos
Macrófagos , Microplásticos , Nanopartículas , Tamanho da Partícula , Poliestirenos , Poliestirenos/química , Camundongos , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Células RAW 264.7 , Nanopartículas/química , Inflamação/metabolismo
7.
Clin Sci (Lond) ; 138(14): 921-940, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949840

RESUMO

Salt-sensitive hypertension (SSHTN) is associated with M1 macrophage polarization and inflammatory responses, leading to inflammation-associated lymphangiogenesis and functional impairment across multiple organs, including kidneys and gonads. However, it remains unclear whether promoting M2 macrophage polarization can alleviate the hypertension, inflammation, and end organ damage in mice with salt sensitive hypertension (SSHTN). Male and female mice were made hypertensive by administering nitro-L-arginine methyl ester hydrochloride (L-NAME; 0.5 mg/ml) for 2 weeks in the drinking water, followed by a 2-week interval without any treatments, and a subsequent high salt diet for 3 weeks (SSHTN). AVE0991 (AVE) was intraperitoneally administered concurrently with the high salt diet. Control mice were provided standard diet and tap water. AVE treatment significantly attenuated BP and inflammation in mice with SSHTN. Notably, AVE promoted M2 macrophage polarization, decreased pro-inflammatory immune cell populations, and improved function in renal and gonadal tissues of mice with SSHTN. Additionally, AVE decreased lymphangiogenesis in the kidneys and testes of male SSHTN mice and the ovaries of female SSHTN mice. These findings highlight the effectiveness of AVE in mitigating SSHTN-induced elevated BP, inflammation, and end organ damage by promoting M2 macrophage polarization and suppressing pro-inflammatory immune responses. Targeting macrophage polarization emerges as a promising therapeutic approach for alleviating inflammation and organ damage in SSHTN. Further studies are warranted to elucidate the precise mechanisms underlying AVE-mediated effects and to assess its clinical potential in managing SSHTN.


Assuntos
Hipertensão , Inflamação , Rim , Macrófagos , Cloreto de Sódio na Dieta , Animais , Masculino , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Feminino , Hipertensão/imunologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/imunologia , Linfangiogênese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Pressão Sanguínea/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologia , Modelos Animais de Doenças
8.
Theranostics ; 14(9): 3739-3759, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948054

RESUMO

Background: The repair of osteoporotic bone defects remains challenging due to excessive reactive oxygen species (ROS), persistent inflammation, and an imbalance between osteogenesis and osteoclastogenesis. Methods: Here, an injectable H2-releasing hydrogel (magnesium@polyethylene glycol-poly(lactic-co-glycolic acid), Mg@PEG-PLGA) was developed to remodel the challenging bone environment and accelerate the repair of osteoporotic bone defects. Results: This Mg@PEG-PLGA gel shows excellent injectability, shape adaptability, and phase-transition ability, can fill irregular bone defect areas via minimally invasive injection, and can transform into a porous scaffold in situ to provide mechanical support. With the appropriate release of H2 and magnesium ions, the 2Mg@PEG-PLGA gel (loaded with 2 mg of Mg) displayed significant immunomodulatory effects through reducing intracellular ROS, guiding macrophage polarization toward the M2 phenotype, and inhibiting the IκB/NF-κB signaling pathway. Moreover, in vitro experiments showed that the 2Mg@PEG-PLGA gel inhibited osteoclastogenesis while promoting osteogenesis. Most notably, in animal experiments, the 2Mg@PEG-PLGA gel significantly promoted the repair of osteoporotic bone defects in vivo by scavenging ROS and inhibiting inflammation and osteoclastogenesis. Conclusions: Overall, our study provides critical insight into the design and development of H2-releasing magnesium-based hydrogels as potential implants for repairing osteoporotic bone defects.


Assuntos
Regeneração Óssea , Hidrogéis , Hidrogênio , Magnésio , Osteogênese , Osteoporose , Polietilenoglicóis , Espécies Reativas de Oxigênio , Animais , Magnésio/química , Magnésio/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Polietilenoglicóis/química , Hidrogéis/química , Osteoporose/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Hidrogênio/farmacologia , Hidrogênio/administração & dosagem , Hidrogênio/química , Células RAW 264.7 , Regeneração Óssea/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Alicerces Teciduais/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Poliésteres
9.
J Nanobiotechnology ; 22(1): 383, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951875

RESUMO

The characteristic features of the rheumatoid arthritis (RA) microenvironment are synovial inflammation and hyperplasia. Therefore, there is a growing interest in developing a suitable therapeutic strategy for RA that targets the synovial macrophages and fibroblast-like synoviocytes (FLSs). In this study, we used graphene oxide quantum dots (GOQDs) for loading anti-arthritic sinomenine hydrochloride (SIN). By combining with hyaluronic acid (HA)-inserted hybrid membrane (RFM), we successfully constructed a new nanodrug system named HA@RFM@GP@SIN NPs for target therapy of inflammatory articular lesions. Mechanistic studies showed that this nanomedicine system was effective against RA by facilitating the transition of M1 to M2 macrophages and inhibiting the abnormal proliferation of FLSs in vitro. In vivo therapeutic potential investigation demonstrated its effects on macrophage polarization and synovial hyperplasia, ultimately preventing cartilage destruction and bone erosion in the preclinical models of adjuvant-induced arthritis and collagen-induced arthritis in rats. Metabolomics indicated that the anti-arthritic effects of HA@RFM@GP@SIN NPs were mainly associated with the regulation of steroid hormone biosynthesis, ovarian steroidogenesis, tryptophan metabolism, and tyrosine metabolism. More notably, transcriptomic analyses revealed that HA@RFM@GP@SIN NPs suppressed the cell cycle pathway while inducing the cell apoptosis pathway. Furthermore, protein validation revealed that HA@RFM@GP@SIN NPs disrupted the excessive growth of RAFLS by interfering with the PI3K/Akt/SGK/FoxO signaling cascade, resulting in a decline in cyclin B1 expression and the arrest of the G2 phase. Additionally, considering the favorable biocompatibility and biosafety, these multifunctional nanoparticles offer a promising therapeutic approach for patients with RA.


Assuntos
Artrite Reumatoide , Proliferação de Células , Grafite , Macrófagos , Morfinanos , Pontos Quânticos , Sinoviócitos , Morfinanos/farmacologia , Morfinanos/química , Animais , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Grafite/química , Grafite/farmacologia , Proliferação de Células/efeitos dos fármacos , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Ratos Sprague-Dawley , Camundongos , Humanos , Células RAW 264.7 , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia
10.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953409

RESUMO

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Assuntos
Anti-Inflamatórios , Epigênese Genética , Flavanonas , Proteína 2 de Ligação a Metil-CpG , Regiões Promotoras Genéticas , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Flavanonas/farmacologia , Epigênese Genética/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Metilação de DNA/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Transcrição RelA/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , DNA Metiltransferase 3A/metabolismo , Masculino , Proteína p300 Associada a E1A/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética
11.
Egypt J Immunol ; 31(3): 28-40, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985532

RESUMO

The study aimed to assess the immunomodulatory effects of Phoenix dactylifera (dates) fruit, a traditional remedy used by Moroccans to enhance immunity against pathogens. This research sought to evaluate the impacts of this fruit on immune cells and their functions. To achieve this, we conducted tests using date extracts on splenocytes, thymocytes, and macrophages, focusing on their functions: antibody production, phagocytosis, and T-lymphocyte toxicity. The results obtained demonstrated that the aqueous extract of P. dactylifera fruit exhibited significant immunostimulatory effects on humoral immunity. It achieved this by enhancing complement activity and increasing splenocyte (including B-lymphocytes) proliferation by 142.5% compared to control cells. Similarly, in the same conditions, there was notable stimulation of cellular immunity through thymocyte activity, resulting in a remarkable increase in cell proliferation (225%) and a boost in thymocyte function (245.9%), which plays a role in safeguarding against cancer. Moreover, the date extract demonstrated anti-inflammatory properties. This was evident in the increased phagocytosis activity mediated by macrophages under the ethyl acetate extract, effectively eliminating pathogens. Assessing the cosmetic potential of date extracts showed that the ethyl acetate extract possesses both anti-inflammatory and strong antioxidant effects, exhibited high photo absorption of ultraviolet-B rays. Based on these findings, we propose to study the utilization of this extract for sun protection as a sunscreen. Furthermore, the Fourier-transform infrared spectroscopy analysis indicated that the most active compounds present were flavonoids. These outcomes substantiate the traditional usage of this fruit for reinforcing immunity.


Assuntos
Imunidade Celular , Imunidade Humoral , Phoeniceae , Extratos Vegetais , Animais , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/imunologia , Camundongos , Phoeniceae/química , Adjuvantes Imunológicos/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Baço/imunologia , Baço/efeitos dos fármacos , Baço/citologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Frutas/química , Frutas/imunologia , Masculino , Proliferação de Células/efeitos dos fármacos
15.
Biomed Environ Sci ; 37(6): 594-606, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38988110

RESUMO

Objective: The effect of the functionally unknown gene C6orf120 on autoimmune hepatitis was investigated on C6orf120 knockout rats ( C6orf120 -/- ) and THP-1 cells. Method: Six-eight-week-old C6orf120 -/- and wild-type (WT) SD rats were injected with Con A (16 mg/kg), and euthanized after 24 h. The sera, livers, and spleens were collected. THP-1 cells and the recombinant protein (rC6ORF120) were used to explore the mechanism in vitro. The frequency of M1 and M2 macrophages was analyzed using flow cytometry. Western blotting and PCR were used to detect macrophage polarization-associated factors. Results: C6orf120 knockout attenuated Con A-induced autoimmune hepatitis. Flow cytometry indicated that the proportion of CD68 +CD86 +M1 macrophages from the liver and spleen in the C6orf120 -/- rats decreased. C6orf120 knockout induced downregulation of CD86 protein and the mRNA levels of related inflammatory factors TNF-α, IL-1ß, and IL-6 in the liver. C6orf120 knockout did not affect the polarization of THP-1 cells. However, rC6ORF120 promoted the THP-1 cells toward CD68 +CD80 +M1 macrophages and inhibited the CD68 +CD206 +M2 phenotype. Conclusion: C6orf120 knockout alleviates Con A-induced autoimmune hepatitis by inhibiting macrophage polarization toward M1 macrophages and reducing the expression of related inflammatory factors in C6orf120 -/- rats.


Assuntos
Concanavalina A , Hepatite Autoimune , Macrófagos , Ratos Sprague-Dawley , Animais , Macrófagos/efeitos dos fármacos , Hepatite Autoimune/imunologia , Hepatite Autoimune/genética , Ratos , Concanavalina A/toxicidade , Humanos , Masculino , Técnicas de Inativação de Genes , Células THP-1
16.
Curr Microbiol ; 81(9): 263, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997545

RESUMO

This study was to investigate the therapeutic effect of Bacillus amyloliquefaciens (Ba) on atherosclerosis (AS). THP-1 monocyte was differentiated to THP-1 macrophage (THP-M) through phorbol 12-myristate 13-acetate. After pre-treatment by 108 cfu/ml Ba lasting 6 h, THP-M was induced with 100 mg/l ox-LDL lasting 48 h to form macrophage foam cell (THP-F). RT-qPCR and flow cytometry were employed to determine the polarization of THP-M and THP-F. ApoE-/- mice with high-fat and high-cholesterol diet were used for constructing an AS model to evaluate the effect of Ba on AS. Our in vitro results showed that Ba vegetative cells pre-treatment distinctly inhibited the levels of iNOS and CD16/CD32 (M1 macrophage markers), and increased the levels of FIZZ1, Ym1, Arg1, CD163, and CD206 (M2 macrophage markers), indicating that Ba pre-treatment promoted anti-inflammatory M2-like polarization both in THP-M and THP-F. Meanwhile, it also suppressed cholesterol uptake, esterification, and hydrolysis, and efflux by THP-M and THP-F. Additionally, our animal experiments demonstrated that Ba vegetative cells treatment suppressed high cholesterol, hyperglycemia, hyperlipidemia, and the release of inflammatory factors (TNF-α, IL-6 and IL-1ß) in ApoE-/- AS mice. In a word, our results indicated that Ba may protect against AS through alleviating foam cell formation and macrophage polarization through targeting certain stages of AS.


Assuntos
Aterosclerose , Bacillus amyloliquefaciens , Células Espumosas , Macrófagos , Animais , Células Espumosas/metabolismo , Aterosclerose/prevenção & controle , Camundongos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células THP-1 , Citocinas/metabolismo , Modelos Animais de Doenças
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1024-1032, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977331

RESUMO

OBJECTIVE: To investigate the mechanism of 2, 6-dimethoxy-1, 4-benzoquinone (DMQ), an active ingredients in fermented wheat germ extract, for inhibiting NLRP3 inflammasome activation and alleviating septic shock in mice. METHODS: Cultured murine bone marrow-derived macrophages (BMDM) stimulated with lipopolysaccharide (LPS) were treated with DMQ, followed by treatment with Nigericin, ATP, and MSU for activating the canonical NLRP3 inflammasome; the noncanonical NLRP3 inflammasome was activated by intracellular transfection of LPS, and AIM2 inflammasome was activated using Poly A: T.In human monocytic THP-1 cells, the effect of Nigericin on inflammasome activation products was examined using Western blotting and ELISA.Co-immunoprecipitation was performed to explore the mechanism of DMQ-induced blocking of NLRP3 inflammasome activation.In a male C57BL/6J mouse model of LPS-induced septic shock treated with 20 and 40 mg/kg DMQ, the levels of IL-1ß and TNF-α in the serum and peritoneal lavage fluid were determined using ELISA, and the survival time of the mice within 36 h was observed. RESULTS: Treatment with DMQ effectively inhibited LPS-induced activation of canonical NLRP3 inflammasome in mouse BMDM and human THP-1 cells and also inhibited non-canonical NLRP3 inflammasome activation in mouse BMDM, but produced no significant effect on AIM2 inflammasome activation.DMQ significantly blocked the binding between ASC and NLRP3.In the mouse models of septic shock, DMQ treatment significantly reduced the levels of IL-1ß in the serum and peritoneal fluid and obviously prolonged survival time of the mice. CONCLUSION: DMQ can effectively block ASC-NLRP3 interaction to inhibit NLRP3 inflammasome activation and alleviate LPSinduced septic shock in mice.


Assuntos
Benzoquinonas , Inflamassomos , Interleucina-1beta , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Choque Séptico , Animais , Choque Séptico/tratamento farmacológico , Choque Séptico/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Inflamassomos/metabolismo , Masculino , Humanos , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Células THP-1 , Modelos Animais de Doenças
18.
Theranostics ; 14(10): 3810-3826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994034

RESUMO

Rationale: Surgical resection is a primary treatment for solid tumors, but high rates of tumor recurrence and metastasis post-surgery present significant challenges. Manganese (Mn2+), known to enhance dendritic cell-mediated cancer immunotherapy by activating the cGAS-STING pathway, has potential in post-operative cancer management. However, achieving prolonged and localized delivery of Mn2+ to stimulate immune responses without systemic toxicity remains a challenge. Methods: We developed a post-operative microenvironment-responsive dendrobium polysaccharide hydrogel embedded with Mn2+-pectin microspheres (MnP@DOP-Gel). This hydrogel system releases Mn2+-pectin microspheres (MnP) in response to ROS, and MnP shows a dual effect in vitro: promoting immunogenic cell death and activating immune cells (dendritic cells and macrophages). The efficacy of MnP@DOP-Gel as a post-surgical treatment and its potential for immune activation were assessed in both subcutaneous and metastatic melanoma models in mice, exploring its synergistic effect with anti-PD1 antibody. Result: MnP@DOP-Gel exhibited ROS-responsive release of MnP, which could exert dual effects by inducing immunogenic cell death of tumor cells and activating dendritic cells and macrophages to initiate a cascade of anti-tumor immune responses. In vivo experiments showed that the implanted MnP@DOP-Gel significantly inhibited residual tumor growth and metastasis. Moreover, the combination of MnP@DOP-Gel and anti-PD1 antibody displayed superior therapeutic potency in preventing either metastasis or abscopal brain tumor growth. Conclusions: MnP@DOP-Gel represents a promising drug-free strategy for cancer post-operative management. Utilizing this Mn2+-embedding and ROS-responsive delivery system, it regulates surgery-induced immune responses and promotes sustained anti-tumor responses, potentially increasing the effectiveness of surgical cancer treatments.


Assuntos
Dendrobium , Hidrogéis , Manganês , Camundongos Endogâmicos C57BL , Microesferas , Polissacarídeos , Animais , Camundongos , Hidrogéis/química , Manganês/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Dendrobium/química , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Melanoma/imunologia , Melanoma/tratamento farmacológico , Melanoma/terapia , Imunoterapia/métodos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Espécies Reativas de Oxigênio/metabolismo , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/tratamento farmacológico
19.
Nutrients ; 16(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999828

RESUMO

This study aimed to investigate a synergistic anti-inflammatory effect of a citrus flavonoid nobiletin and docosahexaenoic acid (DHA), one of n-3 long-chain polyunsaturated fatty acids, in combination. Simultaneous treatment with nobiletin and DHA synergistically inhibited nitric oxide production (combination index < 0.9) by mouse macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) without cytotoxicity. On the other hand, the inhibitory effect of nobiletin and DHA in combination on proinflammatory cytokine production was not synergistic. Neither nobiletin nor DHA affected the phagocytotic activity of RAW 264.7 cells stimulated with LPS. Immunoblot analysis revealed that the inhibition potency of DHA on the phosphorylation of ERK and p38 and nuclear translocation of NF-κB is markedly enhanced by simultaneously treating with nobiletin, which may lead to the synergistic anti-inflammatory effect. Overall, our findings show the potential of the synergistic anti-inflammatory effect of nobiletin and DHA in combination.


Assuntos
Anti-Inflamatórios , Ácidos Docosa-Hexaenoicos , Sinergismo Farmacológico , Flavonas , Lipopolissacarídeos , Macrófagos , Óxido Nítrico , Animais , Camundongos , Flavonas/farmacologia , Lipopolissacarídeos/farmacologia , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Citocinas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Nutrients ; 16(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999834

RESUMO

In obesity, circulating saturated fatty acids (SFAs) and inflammatory cytokines interfere with skeletal muscle insulin signaling, leading to whole body insulin resistance. Further, obese skeletal muscle is characterized by macrophage infiltration and polarization to the inflammatory M1 phenotype, which is central to the development of local inflammation and insulin resistance. While skeletal muscle-infiltrated macrophage-myocyte crosstalk is exacerbated by SFA, the effects of other fatty acids, such as n-3 and n-6 polyunsaturated fatty acids (PUFAs), are less studied. Thus, the objective of this study was to determine the effects of long-chain n-3 and n-6 PUFAs on macrophage M1 polarization and subsequent effects on myocyte inflammation and metabolic function compared to SFA. Using an in vitro model recapitulating obese skeletal muscle cells, differentiated L6 myocytes were cultured for 24 h with RAW 264.7 macrophage-conditioned media (MCM), followed by insulin stimulation (100 nM, 20 min). MCM was generated by pre-treating macrophages for 24 h with 100 µM palmitic acid (16:0, PA-control), arachidonic acid (20:4n-6, AA), or docosahexaenoic acid (22:6n-3, DHA). Next, macrophage cultures were stimulated with a physiological dose (10 ng/mL) of lipopolysaccharide for an additional 12 h to mimic in vivo obese endotoxin levels. Compared to PA, both AA and DHA reduced mRNA expression and/or secreted protein levels of markers for M1 (TNFα, IL-6, iNOS; p < 0.05) and increased those for M2 (IL-10, TGF-ß; p < 0.05) macrophage polarization. In turn, AA- and DHA-derived MCM reduced L6 myocyte-secreted cytokines (TNFα, IL-6; p < 0.05) and chemokines (MCP-1, MIP-1ß; p < 0.05). Only AA-derived MCM increased L6-myocyte phosphorylation of Akt (p < 0.05), yet this was inconsistent with improved insulin signaling, as only DHA-derived MCM improved L6 myocyte glucose uptake (p < 0.05). In conclusion, dietary n-3 and n-6 PUFAs may be a useful strategy to modulate macrophage-myocyte inflammatory crosstalk and improve myocyte insulin sensitivity in obesity.


Assuntos
Ácidos Graxos Ômega-3 , Inflamação , Resistência à Insulina , Macrófagos , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Ácidos Graxos Ômega-3/farmacologia , Inflamação/metabolismo , Células RAW 264.7 , Ácidos Graxos Ômega-6/farmacologia , Insulina/metabolismo , Citocinas/metabolismo , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...