Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Microbiol ; 203(5): 2511-2519, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677636

RESUMO

This study was aimed to investigate whether host plant species and lifestyles, and environmental conditions in the desert affect endophytic fungi composition. Endophytic fungal communities from parasitic plant Cynomorium songaricum and its host Nitraria tangutorum were investigated from three sites including Tonggu Naoer, Xilin Gaole, and Guazhou in Tengger and Badain Jaran Deserts in China using the next-generation sequencing of a ribosomal RNA gene region. Similarity and difference in endophytic fungal composition from different geographic locations were evaluated through multivariate statistical analysis. It showed that plant genetics was a deciding factor affecting endophytic fungal composition even when C. songaricum and N. tangutorum grow together tightly. Not only that, the fungal composition was also greatly affected by the local environment and rainfall. However, the distribution and richness of fungal species indicated that the geographical distance exerted little influence on characterizing the fungal composition. Overall, the findings suggested that plant species, parasitic or non-parasitic lifestyles of the plant, and local environment strongly affected the number and diversity of the endophytic fungal species, which may provide valuable insights into the microbe ecology, symbiosis specificity, and the tripartite relationship among parasitic plant, host, and endophytic fungi, especially under desert environment.


Assuntos
Cynomorium/microbiologia , Clima Desértico , Magnoliopsida/microbiologia , Micobioma , China , Cynomorium/classificação , Cynomorium/genética , Cynomorium/fisiologia , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Interações entre Hospedeiro e Microrganismos , Magnoliopsida/classificação , Magnoliopsida/genética , Magnoliopsida/parasitologia , Especificidade da Espécie
3.
Sci Rep ; 10(1): 16854, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033283

RESUMO

The monospecific family Mysteriomorphidae was recently described based on two fossil specimens from the Late Cretaceous Kachin amber of northern Myanmar. The family was placed in Elateriformia incertae sedis without a clear list of characters that define it either in Elateroidea or in Byrrhoidea. We report here four additional adult specimens of the same lineage, one of which was described using a successful reconstruction from a CT-scan analysis to better observe some characters. The new specimens enabled us to considerably improve the diagnosis of Mysteriomorphidae. The family is definitively placed in Elateroidea, and we hypothesize its close relationship with Elateridae. Similarly, there are other fossil families of beetles that are exclusively described from Cretaceous ambers. These lineages may have been evolutionarily replaced by the ecological revolution launched by angiosperms that introduced new co-associations with taxa. These data indicate a macroevolutionary pattern of replacement that could be extended to other insect groups.


Assuntos
Besouros/anatomia & histologia , Cycadopsida/parasitologia , Magnoliopsida/parasitologia , Paleontologia/métodos , Âmbar , Animais , Evolução Biológica , Besouros/classificação , Fósseis , Interações Hospedeiro-Parasita , Mianmar , Tomografia Computadorizada por Raios X
4.
Proc Natl Acad Sci U S A ; 117(23): 12763-12771, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461369

RESUMO

Aphids are sap-feeding insects that colonize a broad range of plant species and often cause feeding damage and transmit plant pathogens, including bacteria, viruses, and viroids. These insects feed from the plant vascular tissue, predominantly the phloem. However, it remains largely unknown how aphids, and other sap-feeding insects, establish intimate long-term interactions with plants. To identify aphid virulence factors, we took advantage of the ability of the green peach aphid Myzus persicae to colonize divergent plant species. We found that a M. persicae clone of near-identical females established stable colonies on nine plant species of five representative plant eudicot and monocot families that span the angiosperm phylogeny. Members of the novel aphid gene family Ya are differentially expressed in aphids on the nine plant species and are coregulated and organized as tandem repeats in aphid genomes. Aphids translocate Ya transcripts into plants, and some transcripts migrate to distal leaves within several plant species. RNAi-mediated knockdown of Ya genes reduces M. persicae fecundity, and M. persicae produces more progeny on transgenic plants that heterologously produce one of the systemically migrating Ya transcripts as a long noncoding (lnc) RNA. Taken together, our findings show that beyond a range of pathogens, M. persicae aphids translocate their own transcripts into plants, including a Ya lncRNA that migrates to distal locations within plants, promotes aphid fecundity, and is a member of a previously undescribed host-responsive aphid gene family that operate as virulence factors.


Assuntos
Afídeos/patogenicidade , Magnoliopsida/parasitologia , Transporte de RNA , RNA Longo não Codificante/metabolismo , Fatores de Virulência/metabolismo , Animais , Afídeos/genética , Proteínas de Insetos/genética , RNA Longo não Codificante/genética , Fatores de Virulência/genética
5.
Syst Biol ; 69(6): 1149-1162, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191324

RESUMO

Intimate ecological interactions, such as those between parasites and their hosts, may persist over long time spans, coupling the evolutionary histories of the lineages involved. Most methods that reconstruct the coevolutionary history of such interactions make the simplifying assumption that parasites have a single host. Many methods also focus on congruence between host and parasite phylogenies, using cospeciation as the null model. However, there is an increasing body of evidence suggesting that the host ranges of parasites are more complex: that host ranges often include more than one host and evolve via gains and losses of hosts rather than through cospeciation alone. Here, we develop a Bayesian approach for inferring coevolutionary history based on a model accommodating these complexities. Specifically, a parasite is assumed to have a host repertoire, which includes both potential hosts and one or more actual hosts. Over time, potential hosts can be added or lost, and potential hosts can develop into actual hosts or vice versa. Thus, host colonization is modeled as a two-step process that may potentially be influenced by host relatedness. We first explore the statistical behavior of our model by simulating evolution of host-parasite interactions under a range of parameter values. We then use our approach, implemented in the program RevBayes, to infer the coevolutionary history between 34 Nymphalini butterfly species and 25 angiosperm families. Our analysis suggests that host relatedness among angiosperm families influences how easily Nymphalini lineages gain new hosts. [Ancestral hosts; coevolution; herbivorous insects; probabilistic modeling.].


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Modelos Biológicos , Filogenia , Animais , Teorema de Bayes , Coevolução Biológica , Borboletas/fisiologia , Especificidade de Hospedeiro/fisiologia , Magnoliopsida/parasitologia
6.
Microb Ecol ; 79(3): 617-630, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31598761

RESUMO

Parasitic plants have major impacts on host fitness. In the case of species of the holoparasitic Cuscuta genus, these impacts were shown to be particularly strong in some invasive alien plants, which has raised interest in the underlying mechanism. We hypothesized that Cuscuta parasitization may exert strong influence in shaping the diversity patterns in the host rhizosphere microbiome and that this may vary between native (coevolved) and alien (non-coevolved) plants. Here, we report on a field study exploring the effect of parasitization by Cuscuta australis on the rhizosphere microbiota (16S and ITS rDNA) of four plant species sharing and three plant species not sharing the parasite's native range. Despite a predominant role of the host species in shaping the rhizosphere microbiota, the role of host origin and of parasitization still appeared important in structuring microbial communities and their associated functions. Bacterial communities were more strongly influenced than fungi by the native range of the host plant, while fungi were slightly more affected than bacteria by parasitization. About 7% of bacterial phylotypes and 11% of fungal phylotypes were sensitive to Cuscuta parasitization. Parasitization also reduced the abundance of arbuscular mycorrhizal fungi by ca. 18% and of several genes related to plant growth promoting functions (e.g., nitrogen metabolism and quorum sensing). Both fungi and bacteria differentially responded to host parasitization depending on host origin, and the extent of these shifts suggests that they may have more dramatic consequences for alien than for native plants.


Assuntos
Cuscuta/fisiologia , Magnoliopsida/microbiologia , Microbiota , Rizosfera , Bactérias/genética , DNA Bacteriano/análise , Espécies Introduzidas , Magnoliopsida/parasitologia , Simbiose
7.
Curr Biol ; 29(20): R1064-R1065, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31639345
8.
BMC Plant Biol ; 19(1): 334, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370799

RESUMO

BACKGROUND: Parasitic plants engage in a complex molecular dialog with potential host plants to identify a host and overcome host defenses to initiate development of the parasitic feeding organ, the haustorium, invade host tissues, and withdraw water and nutrients. While one of two critical signaling events in the parasitic plant life cycle (germination via stimulant chemicals) has been relatively well-studied, the signaling event that triggers haustorium formation remains elusive. Elucidation of this poorly understood molecular dialogue will shed light on plant-plant communication, parasitic plant physiology, and the evolution of parasitism in plants. RESULTS: Here we present an experimental framework that develops easily quantifiable contrasts for the facultative generalist parasitic plant, Triphysaria, as it feeds across a broad range of diverse flowering plants. The contrasts, including variable parasite growth form and mortality when grown with different hosts, suggest a dynamic and host-dependent molecular dialogue between the parasite and host. Finally, by comparing transcriptome datasets from attached versus unattached parasites we gain insight into some of the physiological processes that are altered during parasitic behavior including shifts in photosynthesis-related and stress response genes. CONCLUSIONS: This work sheds light on Triphysaria's parasitic life habit and is an important step towards understanding the mechanisms of haustorium initiation factor perception, a unique form of plant-plant communication.


Assuntos
Interações Hospedeiro-Parasita , Magnoliopsida/parasitologia , Orobanchaceae/fisiologia , Arabidopsis/parasitologia , Magnoliopsida/fisiologia , Medicago/parasitologia , Oryza/parasitologia , Solanum/parasitologia , Zea mays/parasitologia
9.
Int J Mol Sci ; 20(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311085

RESUMO

The sycamore lace bug, Corythucha ciliata (Say) is a highly invasive pest insect that feeds on sycamore trees (Platanus spp.) worldwide. The interaction between Platanus species and this insect pest has not yet been studied at the molecular level. Therefore, a recent study was conducted to compare the gene expression and metabolite profiles of Platanus acerifolia leaves in response to C. ciliata feeding damage after 24 and 48 h. We employed high throughput RNA sequencing (RNA- seq) to identify a total of 2,828 significantly differentially expressed genes (DEGs) after C. ciliata feeding. In addition, 303 unigenes were found to be up-regulated at both time points. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that monoterpenoid biosynthesis, the linoleic acid metabolism pathway, and alpha- linolenic acid metabolism were the most prominent pathways among the DEGs. Further analysis of the metabolite profiles showed that nine metabolites were significantly different before and after C. ciliata damage. In addition, we analyzed DEGs detected in the P. acerifolia and C. ciliata interaction using Mapman. The terpene synthase gene family was also identified. We suggest that the results obtained from DEGs and metabolite analysis can provide important information for the identification of genes involved in the P. acerifolia-C. ciliata interaction, which might be necessary for controlling C. ciliata efficiently.


Assuntos
Hemípteros/patogenicidade , Magnoliopsida/genética , Metaboloma , Transcriptoma , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Regulação da Expressão Gênica de Plantas , Ácidos Linoleicos/metabolismo , Magnoliopsida/metabolismo , Magnoliopsida/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Terpenos/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(48): 12253-12258, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30420513

RESUMO

Ant-plant interactions are diverse and abundant and include classic models in the study of mutualism and other biotic interactions. By estimating a time-scaled phylogeny of more than 1,700 ant species and a time-scaled phylogeny of more than 10,000 plant genera, we infer when and how interactions between ants and plants evolved and assess their macroevolutionary consequences. We estimate that ant-plant interactions originated in the Mesozoic, when predatory, ground-inhabiting ants first began foraging arboreally. This served as an evolutionary precursor to the use of plant-derived food sources, a dietary transition that likely preceded the evolution of extrafloral nectaries and elaiosomes. Transitions to a strict, plant-derived diet occurred in the Cenozoic, and optimal models of shifts between strict predation and herbivory include omnivory as an intermediate step. Arboreal nesting largely evolved from arboreally foraging lineages relying on a partially or entirely plant-based diet, and was initiated in the Mesozoic, preceding the evolution of domatia. Previous work has suggested enhanced diversification in plants with specialized ant-associated traits, but it appears that for ants, living and feeding on plants does not affect ant diversification. Together, the evidence suggests that ants and plants increasingly relied on one another and incrementally evolved more intricate associations with different macroevolutionary consequences as angiosperms increased their ecological dominance.


Assuntos
Formigas/fisiologia , Magnoliopsida/fisiologia , Magnoliopsida/parasitologia , Animais , Formigas/classificação , Evolução Biológica , Ecossistema , Comportamento Alimentar , Herbivoria/fisiologia , Comportamento Predatório
11.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347694

RESUMO

Our understanding of microRNA (miRNA) regulation of gene expression and protein translation, as a critical area of cellular regulation, has blossomed in the last two decades. Recently, it has become apparent that in plant-insect interactions, both plants and insects use miRNAs to regulate their biological processes, as well as co-opting each others' miRNA systems. In this review article, we discuss the current paradigms of miRNA-mediated cellular regulation and provide examples of plant-insect interactions that utilize this regulation. Lastly, we discuss the potential biotechnological applications of utilizing miRNAs in agriculture.


Assuntos
Interações Hospedeiro-Parasita/genética , Insetos/patogenicidade , Magnoliopsida/parasitologia , MicroRNAs/genética , Animais , Insetos/genética , Magnoliopsida/genética
12.
Semin Cell Dev Biol ; 79: 3-15, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28941876

RESUMO

Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation.


Assuntos
Adaptação Fisiológica/fisiologia , Flores/fisiologia , Magnoliopsida/fisiologia , Pigmentação/fisiologia , Adaptação Fisiológica/genética , Animais , Cor , Evolução Molecular , Flores/anatomia & histologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Insetos/fisiologia , Magnoliopsida/genética , Magnoliopsida/parasitologia , Pigmentação/genética , Polinização/genética , Polinização/fisiologia
13.
Nat Commun ; 8(1): 2031, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29229901

RESUMO

Plant-pollinator interactions are complex because they are affected by both interactors' phenotypes and external variables. Herbivory is one external variable that can have divergent effects on the individual and the population levels depending on specific phenotypic plastic responses of a plant to herbivory. In the wild tomato, Solanum peruvianum, herbivory limits pollinator visits, which reduces individual plant fitness due to herbivore-induced chemical defenses and signaling on pollinators (herbivore-induced pollinator limitation). We showed these herbivory-induced decreases in pollination to individual plants best match a Type II functional-response curve. We then developed a general model that shows these individual fitness reductions from herbivore-induced changes in plant metabolism can indirectly benefit overall populations and community resilience. These results introduce mechanisms of persistence in antagonized mutualistic communities that were previously found prone to extinction in theoretical models. Results also imply that emergent ecological dynamics of individual fitness reductions may be more complex than previously thought.


Assuntos
Flores/parasitologia , Herbivoria/fisiologia , Magnoliopsida/parasitologia , Polinização/fisiologia , Animais , Ecossistema , Insetos/fisiologia , Modelos Biológicos , Simbiose
14.
Sci Rep ; 7(1): 10125, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860453

RESUMO

Two broadleaf evergreen canopy species (Schima superba and Engelhardia roxburghiana) with different phenologies in a subtropical region of southern China were used to determine the influence of leaf phenology on the impact of an insect pest attack. S. superba regenerates its leaves in February, while E. roxburghiana regenerates its leaves in May. The moth Thalassodes quadraria attacked the two broadleaf evergreen species in March to April, and the newly produced leaves were removed for S. superba but not for E. roxburghiana. The young trees were artificially defoliated to imitate an insect pest attack during March 2014. Nonstructural carbohydrate (NSC) and growth measurements and a retrospective analysis based on the radial growth of mature trees were conducted in January 2015. The results showed that NSC concentrations decreased in S. superba during canopy rebuilding, and the subsequent defoliation severely inhibited leaf and shoot growth, prevented NSC restoration in roots and stem xylem, and caused high mortality. The insect outbreaks reduced the radial growth of S. superba. In contrast, E. roxburghiana experienced less growth retardation, lower mortality, and normal radial growth. Thus, taking phenology-dependent variation in NSCs into consideration, defoliation and insect pest outbreaks more negatively impacted S. superba than E. roxburghiana.


Assuntos
Clima , Resistência à Doença , Magnoliopsida/parasitologia , Animais , Metabolismo dos Carboidratos , Magnoliopsida/metabolismo , Mariposas/patogenicidade
15.
BMC Evol Biol ; 17(1): 72, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28274200

RESUMO

BACKGROUND: The evolution of reproductive isolation between herbivorous insect populations is often initiated by shifts to novel host-plants, a process that underlies some of the best examples of ecological speciation. However, it is not well understood why host-shifts occur. Arguably the most common hypothesis is that host-shifts occur in response to competition, while a less frequently invoked hypothesis is that herbivores adapt locally to geographic differences in potential host-plant communities. Here we investigate whether geographic variation in host-plant availability is likely to have driven host-shifts in restio leafhoppers. We studied local adaptation of a camouflaged restio leafhopper species, Cephalelus uncinatus, to host-plants in the Restionaceae (restios); a family of plants with exceptional diversity in the anomalously species-rich Cape Floristic Region (CFR). To determine whether C. uncinatus experiences heterogeneous host communities across its range, we first quantified the degree of geographic overlap between C. uncinatus and each of its associated host-plant species. Then we quantified trait divergence (host preference, body size and colour) for three pairs of C. uncinatus populations found on different host-plant species differing in their degree of spatial overlap. Spectral reflectance was modelled in bird visual space to investigate whether body colour divergence in C. uncinatus corresponds to leaf sheath colour differences between restio species as perceived by potential predators. RESULTS: We demonstrate that C. uncinatus is forced to use different restio species in different regions because of turnover in available host species across its range. Comparisons between geographically separated populations were consistent with local adaptation: restio leafhoppers had preferences for local host-plants over alternative host-plants and matched local plants better in terms of size and colour. CONCLUSIONS: Spatial turnover in host-plant availability has likely facilitated host-shifts in C. uncinatus. Spatial turnover in host-plant availability may be an important driver of insect diversification in the CFR and globally.


Assuntos
Evolução Biológica , Hemípteros/fisiologia , Animais , Especiação Genética , Herbivoria , Especificidade de Hospedeiro , Magnoliopsida/parasitologia , Filogeografia
16.
J Eukaryot Microbiol ; 64(4): 504-513, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28004878

RESUMO

As a result of anthropogenic influences and global climate change, emerging infectious marine diseases are thought to be increasingly more common and more severe than in the past. The aim of our investigation was to confirm the presence of Labyrinthula, the aetiological agent of the seagrass wasting disease, in Southeastern Australia and provide the first isolation and characterisation of this protist, in Australia. Colonies and individual cells were positively identified as Labyrinthula using published descriptions, diagrams, and photographs. Their identity was then confirmed using DNA barcoding of a region of the 18S rRNA gene. Species level identification of isolates was not possible as the taxonomy of the Labyrinthula is still poorly resolved. Still, a diversity of Labyrinthula was isolated from small sections of the southeast coast of Australia. The isolates were grouped into three haplotypes that are biogeographically restricted. These haplotypes are closely related to previously identified saprotrophic clades. The study highlights the need for further investigation into the global distribution of Labyrinthula, including phylogenetic pathogenicity and analysis of host-parasite interactions in response to stressors. Given the results of our analyses, it is prudent to continue research into disease and epidemic agents to better prepare researchers for potential future outbreaks.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Magnoliopsida/parasitologia , Estramenópilas/classificação , Estramenópilas/isolamento & purificação , Austrália , Mudança Climática , DNA de Algas/genética , DNA Ribossômico/genética , Haplótipos , Interações Hospedeiro-Parasita , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Estramenópilas/genética
17.
J Eukaryot Microbiol ; 64(3): 336-348, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27613086

RESUMO

Trap fluid of aquatic carnivorous plants of the genus Utricularia hosts specific microbiomes consisting of commensal pro- and eukaryotes of largely unknown ecology. We examined the characteristics and dynamics of bacteria and the three dominant eukaryotes, i.e. the algae-bearing ciliate Tetrahymena utriculariae (Ciliophora), a green flagellate Euglena agilis (Euglenophyta), and the alga Scenedesmus alternans (Chlorophyta), associated with the traps of Utricularia reflexa. Our study focused on ecological traits and life strategies of the highly abundant ciliate whose biomass by far exceeds that of other eukaryotes and bacteria independent of the trap age. The ciliate was the only bacterivore in the traps, driving rapid turnover of bacterial standing stock. However, given the large size of the ciliate and the cell-specific uptake rates of bacteria we estimated that bacterivory alone would likely be insufficient to support its apparent rapid growth in traps. We suggest that mixotrophy based on algal symbionts contributes significantly to the diet and survival strategy of the ciliate in the extreme (anaerobic, low pH) trap-fluid environment. We propose a revised concept of major microbial interactions in the trap fluid where ciliate bacterivory plays a central role in regeneration of nutrients bound in rapidly growing bacterial biomass.


Assuntos
Cilióforos/fisiologia , Ecologia , Magnoliopsida/parasitologia , Tetrahymena/fisiologia , Anaerobiose , Bactérias , Biomassa , Clorófitas , Concentração de Íons de Hidrogênio , Estágios do Ciclo de Vida , Magnoliopsida/química , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/microbiologia , Consórcios Microbianos , Simbiose/fisiologia , Tetrahymena/crescimento & desenvolvimento
18.
Mol Phylogenet Evol ; 107: 179-190, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789325

RESUMO

Host plant shifts of insects can lead to a burst of diversification driven by their arrival in a new adaptive zone. In this context, our study aims to explore timing and patterns in the evolution of the weevil tribe Apionini (Brentidae, Curculionoidea, Coleoptera), particularly in relation to affiliations with their host plants. The classification of Apionini is difficult because of their relatively uniform appearance. Most taxa live mono- or oligophagously on members of Asteraceae or Fabaceae, but many are associated with other plant families, like Lamiaceae, Malvaceae and Polygonaceae. However, a comprehensive hypothesis of the phylogenetic relationships within the tribe Apionini is still missing. In the present study, we reconstructed trees and estimated divergence times among tribes. These results were further used to reconstruct the ancestral host plant use in Apionini weevils and to infer if the divergence timing of putative subtribes corresponds with the occurrence and radiation of their specific host plant groups. Phylogenetic analyses confirm the monophyly of most subtribes, with the exceptions of Oxystomatina, Kalcapiina and Aspidapiina. The subribe Aplemonina is inferred to be sister to all remaining Apionini. Divergence time estimates indicate the first occurrence of Apionini in the Upper Cretaceous and a simultaneous occurrence of several families of flowering plants and the occupation by Apionini weevil herbivores. These conspicuous coincidences support either an ancient co-diversification scenario or an escalating diversification in weevils induced by the radiation of flowering plants.


Assuntos
Biodiversidade , Evolução Biológica , Flores/fisiologia , Interações Hospedeiro-Parasita , Magnoliopsida/parasitologia , Gorgulhos/classificação , Animais , Teorema de Bayes , Funções Verossimilhança , Filogenia , Fatores de Tempo
19.
Zootaxa ; 4184(3): zootaxa.4184.3.4, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27988775

RESUMO

A new bee species of the genus Dasypoda Latreille (Hymenoptera, Apoidea, Melittidae), D. morawitzi Radchenko sp. nov., is described. This species is closely related to, and easily confusable with, D. hirtipes (Fabricius), and its specimens have been previously attributed to the latter species. A comparative morphological analysis of D. morawitzi with other species of the D. hirtipes group is provided. The distribution and trophic links of this new species are discussed.


Assuntos
Abelhas/classificação , Distribuição Animal , Animais , Abelhas/anatomia & histologia , Europa Oriental , Feminino , Flores/parasitologia , Geografia , Cazaquistão , Magnoliopsida/parasitologia , Masculino , Fenótipo , Turquia
20.
Mol Phylogenet Evol ; 105: 235-240, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27637989

RESUMO

Herbivorous arthropods can diversify as a consequence of evolutionary changes in response to their plant hosts. Current patterns of host association of herbivores are likely to reflect a long evolutionary history of herbivore-plant co-evolution. Here, we used molecular phylogenetics to track the evolutionary history of host shifts and diversification of 66 eriophyoid mites (Acari, Eriophyoidea), and linked past patterns of evolutionary diversification to more recent patterns of divergence by tracking population genetic variation in 13 of the eriophyoid mite species feeding on different gymnosperm hosts. This allowed us to explore the relationship between a past history of diversification and the current potential of mites to undergo host range shifts. We found that population-level diversity across gymnosperm hosts as measured by 28S rRNA markers was greater in species from the mite clade that had radiated across evolutionary time to utilize a variety of hosts including angiosperms, compared to species from the clade that has remained restricted to ancestral gymnosperm hosts. Species from the radiated clade exhibited higher variation in host use. Lineages of mites that have in the past been able to radiate and adapt to diverse plants may therefore be predisposed to continue their expansion on new hosts, although additional clades need to be tested.


Assuntos
Evolução Biológica , Especificidade de Hospedeiro , Ácaros/classificação , Animais , Biodiversidade , Variação Genética , Magnoliopsida/parasitologia , Ácaros/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...