RESUMO
Knowledge about the relation of histopathological characteristics and mediators of physiological processes in the placenta malaria (PM) is poor, and that PM caused by Plasmodium vivax is almost null. The objective was to compare histopathological characteristics, cytokines and mediators of physiological processes in PM depending on the parasitic species, through a cross-sectional study in three groups: negative-PM, vivax-PM, falciparum-PM from Northwestern Colombia. The diagnosis of PM was made with thick blood smear, qPCR, and histopathology. Immuno-histochemical was made with EnVision system (Dako) and Zeiss Axio Imager M2 with light microscope. Cells in apoptosis were studied with the TUNEL technique. To measure the expression level of cytokines and mediators qRT-PCR was used. We included 179 placentas without PM and 87 with PM (53% P. vivax and 47% P. falciparum). At delivery, anemia was 25% in negative-PM, 60% in vivax-PM, and 44% in falciparum-PM group. The neonatal weight had an intense difference between groups with 3292±394g in negative-PM, 2,841±239 in vivax-PM, and 2,957±352 in falciparum-PM. The histopathological characteristics and CD+ cells in placenta with statistical differences (Dunn´s test) between negative-PM vs vivax-PM (P. falciparum was similar to P. vivax) were infarction, fibrinoid deposits, calcification, cells in apoptosis, immune infiltrates in decidua and intervillous space, CD4+, CD8+, CD14+, CD56+, CD68+. The expression levels of mediators in the placenta with statistical differences (Dunn´s test) between negative-PM vs vivax-PM (P. falciparum was similar to P. vivax) were Fas, FasL, HIF1α, Cox1, Cox2, VEGF, IL4, IL10, IFNγ, TNF, TGFß, FOXP3, and CTLA4. PM with P. falciparum and P. vivax, damages this organ and causes significant alteration of various physiological processes, which cause maternal anemia and a reduction in neonatal weight in degrees that are statistically and clinically significant. It is necessary that the search for plasmodial infection in pregnant and placenta goes from passive to active surveillance with adequate diagnostic capacity.
Assuntos
Malária Falciparum/metabolismo , Malária Vivax/metabolismo , Placenta/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium vivax/metabolismo , Complicações Parasitárias na Gravidez/metabolismo , Adolescente , Adulto , Colômbia , Citocinas/metabolismo , Feminino , Humanos , Placenta/parasitologia , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Platelets drive endothelial cell activation in many diseases. However, if this occurs in Plasmodium vivax malaria is unclear. As platelets have been reported to be activated and to play a role in inflammatory response during malaria, we hypothesized that this would correlate with endothelial alterations during acute illness. We performed platelet flow cytometry of PAC-1 and P-selectin. We measured platelet markers (CXCL4, CD40L, P-selectin, Thrombopoietin, IL-11) and endothelial activation markers (ICAM-1, von Willebrand Factor and E-selectin) in plasma with a multiplex-based assay. The values of each mediator were used to generate heatmaps, K-means clustering and Principal Component analysis. In addition, we determined pair-wise Pearson's correlation coefficients to generate correlation networks. Platelet counts were reduced, and mean platelet volume increased in malaria patients. The activation of circulating platelets in flow cytometry did not differ between patients and controls. CD40L levels (Median [IQ]: 517 [406-651] vs. 1029 [732-1267] pg/mL, P = 0.0001) were significantly higher in patients, while P-selectin and CXCL4 showed a nonsignificant trend towards higher levels in patients. The network correlation approach demonstrated the correlation between markers of platelet and endothelial activation, and the heatmaps revealed a distinct pattern of activation in two subsets of P. vivax patients when compared to controls. Although absolute platelet activation was not strong in uncomplicated vivax malaria, markers of platelet activity and production were correlated with higher endothelial cell activation, especially in a specific subset of patients.
Assuntos
Plaquetas/citologia , Malária Vivax/sangue , Adulto , Plaquetas/metabolismo , Ligante de CD40/genética , Ligante de CD40/metabolismo , Selectina E/genética , Selectina E/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Malária Vivax/genética , Malária Vivax/metabolismo , Masculino , Selectina-P/genética , Selectina-P/metabolismo , Ativação Plaquetária , Contagem de Plaquetas , Adulto JovemRESUMO
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Assuntos
Interações Hospedeiro-Parasita/imunologia , Imunidade , Malária Vivax/imunologia , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia , Imunidade Adaptativa , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Parasita/genética , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Vacinas Antimaláricas/imunologia , Malária Vivax/genética , Malária Vivax/metabolismo , Plasmodium vivax/crescimento & desenvolvimento , Receptores Toll-Like/metabolismoRESUMO
The malarial parasite's invasion is complex, active and coordinated, involving many low and high affinity interactions with receptors on target cell membrane. Proteomics analysis has described around 40 proteins in P. vivax which could be involved in reticulocyte invasion; few have been studied with the aim of elucidating how many of them establish specific interactions with their respective host cells. Given the importance of knowing which of the parasite's protein regions are functionally important for invasion, minimum regions mediating specific interaction between Plasmodium vivax apical membrane antigen 1 (PvAMA-1) and its host cell were here elucidated. The region covering PvAMA-1 domains I and II (PvAMA-DI-II) specifically bound to the CD71+ red blood cell subpopulation. A 20 residue-long region (81EVENAKYRIPAGRCPVFGKG100) located in domain I was capable of inhibiting PvAMA-DI-II recombinant protein binding to young reticulocytes (CD71+CD45-) and rosette formation. This conserved peptide specifically interacted with high affinity with reticulocytes (CD71+) through a neuraminidase- and chymotrypsin-treatment sensitive receptor. Such results showed that, despite AMA-1 having universal functions during late Plasmodium invasion stages, PvAMA-1 had reticulocyte-preferring binding regions, suggesting that P. vivax target cell selection is not just restricted to initial interactions but maintained throughout the erythrocyte invasion cycle, having important implications for designing a specific anti-P. vivax vaccine.
Assuntos
Antígenos CD/metabolismo , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Eritrócitos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Plasmodium vivax/fisiologia , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Receptores da Transferrina/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/química , Linhagem Celular , Sequência Conservada , Humanos , Interações Hidrofóbicas e Hidrofílicas , Malária Vivax/metabolismo , Malária Vivax/parasitologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Receptores da Transferrina/química , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Plasmodium vivax causes the majority of malaria episodes outside Africa, but remains a relatively understudied pathogen. The pathology of P. vivax infection depends critically on the parasite's ability to recognize and invade human erythrocytes. This invasion process involves an interaction between P. vivax Duffy Binding Protein (PvDBP) in merozoites and the Duffy antigen receptor for chemokines (DARC) on the erythrocyte surface. Whole-genome sequencing of clinical isolates recently established that some P. vivax genomes contain two copies of the PvDBP gene. The frequency of this duplication is particularly high in Madagascar, where there is also evidence for P. vivax infection in DARC-negative individuals. The functional significance and global prevalence of this duplication, and whether there are other copy number variations at the PvDBP locus, is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using whole-genome sequencing and PCR to study the PvDBP locus in P. vivax clinical isolates, we found that PvDBP duplication is widespread in Cambodia. The boundaries of the Cambodian PvDBP duplication differ from those previously identified in Madagascar, meaning that current molecular assays were unable to detect it. The Cambodian PvDBP duplication did not associate with parasite density or DARC genotype, and ranged in prevalence from 20% to 38% over four annual transmission seasons in Cambodia. This duplication was also present in P. vivax isolates from Brazil and Ethiopia, but not India. CONCLUSIONS/SIGNIFICANCE: PvDBP duplications are much more widespread and complex than previously thought, and at least two distinct duplications are circulating globally. The same duplication boundaries were identified in parasites from three continents, and were found at high prevalence in human populations where DARC-negativity is essentially absent. It is therefore unlikely that PvDBP duplication is associated with infection of DARC-negative individuals, but functional tests will be required to confirm this hypothesis.
Assuntos
Antígenos de Protozoários/genética , Duplicação Gênica , Malária Vivax/parasitologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Adolescente , Antígenos de Protozoários/metabolismo , Brasil , Camboja , Proteínas de Transporte , Criança , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Etiópia , Feminino , Humanos , Índia , Madagáscar , Malária Vivax/metabolismo , Masculino , Filogenia , Plasmodium vivax/classificação , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismoRESUMO
Recent reports showed that, in mice, symptomatic Plasmodium infection triggers NLRP3/NLRP12-dependent inflammasome formation and caspase-1 activation in monocytes. In humans, few works demonstrated that inflammasome is activated in malaria. As Plasmodiumvivax is a potent inducer of inflammatory response we hypothesised that inflammasome genetics might affect P. vivax malaria clinical presentation. For this purpose, selected SNPs in inflammasome genes were analysed among patients with symptomatic P. vivax malaria. 157 Brazilian Amazon patients with P. vivax malaria were genotyped for 10 single nucleotide polymorphisms (SNPs) in inflammasome genes NLRP1, NLRP3, AIM2, CARD8, IL1B, IL18 and MEFV. Effect of SNPs on hematologic and clinical parameters was analysed by multivariate analysis. Our data suggested an important role of NLRP1 inflammasome receptor in shaping the clinical presentation of P. vivax malaria, in term of presence of fever, anaemia and thrombocytopenia. Moreover IL1B rs1143634 resulted significantly associated to patients' parasitaemia, while IL18 rs5744256 plays a protective role against the development of anaemia. Polymorphisms in inflammasome genes could affect one or other aspects of malaria pathogenesis. Moreover, these data reveal novel aspects of P.vivax/host interaction that involved NLRP1-inflammasome.
Assuntos
Predisposição Genética para Doença , Inflamassomos/genética , Malária Vivax/genética , Malária Vivax/parasitologia , Plasmodium vivax , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Proteínas Reguladoras de Apoptose/genética , Feminino , Frequência do Gene , Genótipo , Humanos , Inflamassomos/metabolismo , Interleucina-18/genética , Interleucina-1beta/genética , Desequilíbrio de Ligação , Malária Vivax/diagnóstico , Malária Vivax/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas NLR , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção GenéticaRESUMO
BACKGROUND: Continued exposure to malaria-causing parasites in endemic regions of malaria induces significant levels of acquired immunity in adult individuals. A better understanding of the transcriptional basis for this acquired immunological response may provide insight into how the immune system can be boosted during vaccination, and into why infected individuals differ in symptomology. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood gene expression profiles of 9 semi-immune volunteers from a Plasmodium vivax malaria prevalent region (Buenaventura, Colombia) were compared to those of 7 naïve individuals from a region with no reported transmission of malaria (Cali, Colombia) after a controlled infection mosquito bite challenge with P. vivax. A Fluidigm nanoscale quantitative RT-PCR array was used to survey altered expression of 96 blood informative transcripts at 7 timepoints after controlled infection, and RNASeq was used to contrast pre-infection and early parasitemia timepoints. There was no evidence for transcriptional changes prior to the appearance of blood stage parasites at day 12 or 13, at which time there was a strong interferon response and, unexpectedly, down-regulation of transcripts related to inflammation and innate immunity. This differential expression was confirmed with RNASeq, which also suggested perturbations of aspects of T cell function and erythropoiesis. Despite differences in clinical symptoms between the semi-immune and malaria naïve individuals, only subtle differences in their transcriptomes were observed, although 175 genes showed significantly greater induction or repression in the naïve volunteers from Cali. CONCLUSION/SIGNIFICANCE: Gene expression profiling of whole blood reveals the type and duration of the immune response to P. vivax infection, and highlights a subset of genes that may mediate adaptive immunity.
Assuntos
Regulação da Expressão Gênica/imunologia , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Transcriptoma , Imunidade Adaptativa/fisiologia , Benin/epidemiologia , Colômbia/epidemiologia , Humanos , Malária Vivax/epidemiologia , Malária Vivax/metabolismo , Parasitemia , Transcrição GênicaRESUMO
Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+)CD16- (classical), CD14(+)CD16(+) (inflammatory), and CD14loCD16(+) (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+) cells, in particular the CD14(+)CD16(+) monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+) were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+)CD16(+) monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+)CD16(+) cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.