Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.265
Filtrar
1.
Clin Transl Med ; 14(5): e1680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769668

RESUMO

BACKGROUND: A series of studies have demonstrated the emerging involvement of transfer RNA (tRNA) processing during the progression of tumours. Nevertheless, the roles and regulating mechanisms of tRNA processing genes in neuroblastoma (NB), the prevalent malignant tumour outside the brain in children, are yet unknown. METHODS: Analysis of multi-omics results was conducted to identify crucial regulators of downstream tRNA processing genes. Co-immunoprecipitation and mass spectrometry methods were utilised to measure interaction between proteins. The impact of transcriptional regulators on expression of downstream genes was measured by dual-luciferase reporter, chromatin immunoprecipitation, western blotting and real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) methods. Studies have been conducted to reveal impact and mechanisms of transcriptional regulators on biological processes of NB. Survival differences were analysed using the log-rank test. RESULTS: c-Myc was identified as a transcription factor driving tRNA processing gene expression and subsequent malate-aspartate shuttle (MAS) in NB cells. Mechanistically, c-Myc directly promoted the expression of glutamyl-prolyl-tRNA synthetase (EPRS) and leucyl-tRNA synthetase (LARS), resulting in translational up-regulation of glutamic-oxaloacetic transaminase 1 (GOT1) as well as malate dehydrogenase 1 (MDH1) via inhibiting general control nonrepressed 2 or activating mechanistic target of rapamycin signalling. Meanwhile, lamin A (LMNA) inhibited c-Myc transactivation via physical interaction, leading to suppression of MAS, aerobic glycolysis, tumourigenesis and aggressiveness. Pre-clinically, lobeline was discovered as a LMNA-binding compound to facilitate its interaction with c-Myc, which inhibited aminoacyl-tRNA synthetase expression, MAS and tumour progression of NB, as well as growth of organoid derived from c-Myc knock-in mice. Low levels of LMNA or elevated expression of c-Myc, EPRS, LARS, GOT1 or MDH1 were linked to a worse outcome and a shorter survival time of clinical NB patients. CONCLUSIONS: These results suggest that targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for MAS and tumour progression.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Ácido Aspártico/metabolismo , Malatos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/genética , Progressão da Doença , Ativação Transcricional/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças
2.
Biotechnol J ; 19(5): e2400014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719614

RESUMO

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Assuntos
Aspergillus niger , Fermentação , Malatos , Engenharia Metabólica , NADP , Aspergillus niger/metabolismo , Aspergillus niger/genética , Malatos/metabolismo , Engenharia Metabólica/métodos , NADP/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
3.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791318

RESUMO

Bryophyllum pinnatum (BP) is a medicinal plant used to treat many conditions when taken as a leaf juice, leaves in capsules, as an ethanolic extract, and as herbal tea. These preparations have been chemically analyzed except for decoctions derived from boiled green leaves. In preparation for a clinical trial to validate BP tea as a treatment for kidney stones, we used NMR and MS analyses to characterize the saturation kinetics of the release of metabolites. During boiling of the leaves, (a) the pH decreased to 4.8 within 14 min and then stabilized; (b) regarding organic acids, citric and malic acid were released with maximum release time (tmax) = 35 min; (c) for glycoflavonoids, quercetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (Q-3O-ArRh), myricetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (M-3O-ArRh), kappinatoside, myricitrin, and quercitrin were released with tmax = 5-10 min; and (d) the total phenolic content (TPC) and the total antioxidant capacity (TAC) reached a tmax at 55 min and 61 min, respectively. In summary, 24 g of leaves boiled in 250 mL of water for 61 min ensures a maximal release of key water-soluble metabolites, including organic acids and flavonoids. These metabolites are beneficial for treating kidney stones because they target oxidative stress and inflammation and inhibit stone formation.


Assuntos
Kalanchoe , Cálculos Renais , Espectroscopia de Ressonância Magnética , Extratos Vegetais , Folhas de Planta , Kalanchoe/química , Espectroscopia de Ressonância Magnética/métodos , Cálculos Renais/tratamento farmacológico , Cálculos Renais/metabolismo , Cálculos Renais/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Cinética , Espectrometria de Massas/métodos , Humanos , Malatos/química , Malatos/metabolismo
4.
Bioresour Technol ; 403: 130843, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777233

RESUMO

The malic enzyme (ME) catalyzes the synthesis of L-malic acid (L-MA) from pyruvic acid and CO2 with NADH as the reverse reaction of L-MA decarboxylation. Carboxylation requires excess pyruvic acid, limiting its application. In this study, it was determined that CO2 was the carboxyl donor by parsing the effects of HCO3- and CO2, which provided a basis for improving the L-MA yield. Moreover, the concentration ratio of pyruvic acid to NADH was reduced from 70:1 to 5:1 using CO2 to inhibit decarboxylation and to introduce the ME mutant A464S with a 2-fold lower Km than that of the wild type. Finally, carboxylation was coupled with NADH regeneration, resulting in a maximum L-MA yield of 77 % based on the initial concentration of pyruvic acid. Strategic modifications, including optimal reactant ratios and efficient mutant ME, significantly enhanced L-MA synthesis from CO2, providing a promising approach to the biotransformation process.


Assuntos
Biocatálise , Dióxido de Carbono , Malato Desidrogenase , Malatos , Ácido Pirúvico , Malatos/metabolismo , Dióxido de Carbono/metabolismo , Malato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , NAD/metabolismo , Descarboxilação , Cinética , Mutação
5.
BMC Genom Data ; 25(1): 46, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783179

RESUMO

BACKGROUND: Primulina juliae has recently emerged as a novel functional vegetable, boasting a significant biomass and high calcium content. Various breeding strategies have been employed to the domestication of P. juliae. However, the absence of genome and transcriptome information has hindered the research of mechanisms governing the taste and nutrients in this plant. In this study, we conducted a comprehensive analysis, combining the full-length transcriptomics and metabolomics, to unveil the molecular mechanisms responsible for the development of nutrients and taste components in P. juliae. RESULTS: We obtain a high-quality reference transcriptome of P. juliae by combing the PacBio Iso-seq and Illumina sequencing technologies. A total of 58,536 cluster consensus sequences were obtained, including 28,168 complete protein coding transcripts and 8,021 Long Non-coding RNAs. Significant differences were observed in the composition and content of compounds related to nutrients and taste, particularly flavonoids, during the leaf development. Our results showed a decrease in the content of most flavonoids as leaves develop. Malate and succinate accumulated with leaf development, while some sugar metabolites were decreased. Furthermore, we identified the different accumulation of amino acids and fatty acids, which are associated with taste traits. Moreover, our transcriptomic analysis provided a molecular basis for understanding the metabolic variations during leaf development. We identified 4,689 differentially expressed genes in the two developmental stages, and through a comprehensive transcriptome and metabolome analysis, we discovered the key structure genes and transcription factors involved in the pathways. CONCLUSIONS: This study provides a high-quality reference transcriptome and reveals molecular mechanisms associated with the development of nutrients and taste components in P. juliae. These findings will enhance our understanding of the breeding and utilization of P. juliae as a vegetable.


Assuntos
Metabolômica , Folhas de Planta , Paladar , Transcriptoma , Paladar/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Nutrientes/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Aminoácidos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metaboloma/genética , Malatos/metabolismo
6.
Acta Physiol (Oxf) ; 240(6): e14143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577966

RESUMO

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.


Assuntos
2,4-Dinitrofenol , Ácidos Graxos , Animais , 2,4-Dinitrofenol/farmacologia , Camundongos , Ácidos Graxos/metabolismo , Humanos , Malatos/metabolismo , Mitocôndrias/metabolismo , Transporte de Íons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Prótons , Ácidos Cetoglutáricos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas de Membrana Transportadoras
7.
J Biosci Bioeng ; 138(1): 13-20, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614832

RESUMO

6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a derivative of glucosinolate with a six-carbon chain, is a compound found in wasabi and has diverse health-promoting properties. The biosynthesis of glucosinolates from methionine depends on a crucial step catalyzed methylthioalkylmalate synthases (MAMs), which are responsible for the generation of glucosinolates with varying chain lengths. In this study, our primary focus was the characterization of two methylthioalkyl malate synthases, MAM1-1 and MAM1-2, derived from Eutrema japonicum, commonly referred to as Japanese wasabi. Eutremajaponicum MAMs (EjMAMs) were expressed in an Escherichiacoli expression system, subsequently purified, and in vitro enzymatic activity was assayed. We explored the kinetic properties, optimal pH conditions, and cofactor preferences of EjMAMs and compared them with those of previously documented MAMs. Surprisingly, EjMAM1-2, categorized as a metallolyase family enzyme, displayed 20% of its maximum activity even in the absence of divalent metal cofactors or under high concentrations of EDTA. Additionally, we utilized AlphaFold2 to generate structural homology models of EjMAMs, and used in silico analysis and mutagenesis studies to investigate the key residues participating in catalytic activity. Moreover, we examined in vivo biosynthesis in E. coli containing Arabidopsis thaliana branched-chain amino acid transferase 3 (AtBCAT3) along with AtMAMs or EjMAMs and demonstrated that EjMAM1-2 exhibited the highest conversion rate among those MAMs, converting l-methionine to 2-(2-methylthio) ethyl malate (2-(2-MT)EM). EjMAM1-2 shows a unique property in vitro and highest activity on converting l-methionine to 2-(2-MT)EM in vivo which displays high potential for isothiocyanate biosynthesis in E. coli platform.


Assuntos
Ácido Edético , Ácido Edético/química , Cinética , Escherichia coli/genética , Escherichia coli/metabolismo , Brassicaceae/metabolismo , Brassicaceae/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Isotiocianatos/metabolismo , Isotiocianatos/química , Metionina/metabolismo , Metionina/análogos & derivados , Metionina/química , Glucosinolatos/metabolismo , Glucosinolatos/biossíntese , Glucosinolatos/química , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/química , Malatos/metabolismo , Malatos/química , Sequência de Aminoácidos , Modelos Moleculares
8.
Plant Physiol Biochem ; 208: 108535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503187

RESUMO

Aluminum (Al) toxicity is the major constraint on plant growth and productivity in acidic soils. An adaptive mechanism to enhance Al tolerance in plants is mediated malate exudation from roots through the involvement of ALMT (Al-activated malate transporter) channels. The underlying Al tolerance mechanisms of stylo (Stylosanthes guianensis), an important tropical legume that exhibits superior Al tolerance, remain largely unknown, and knowledge of the potential contribution of ALMT genes to Al detoxification in stylo is limited. In this study, stylo root growth was inhibited by Al toxicity, accompanied by increases in malate and citrate exudation from roots. A total of 11 ALMT genes were subsequently identified in the stylo genome and named SgALMT1 to SgALMT11. Diverse responses to metal stresses were observed for these SgALMT genes in stylo roots. Among them, the expressions of 6 out of the 11 SgALMTs were upregulated by Al toxicity. SgALMT2, a root-specific and Al-activated gene, was selected for functional characterization. Subcellular localization analysis revealed that the SgALMT2 protein is localized to the plasma membrane. The function of SgALMT2 in mediating malate release was confirmed by analysis of the malate exudation rate from transgenic composite stylo plants overexpressing SgALMT2. Furthermore, overexpression of SgALMT2 led to increased root growth in transgenic stylo plants treated with Al through decreased Al accumulation in roots. Taken together, the results of this study suggest that malate secretion mediated by SgALMT2 contributes to the ability of stylo to cope with Al toxicity.


Assuntos
Alumínio , Fabaceae , Alumínio/toxicidade , Alumínio/metabolismo , Malatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fabaceae/metabolismo
9.
Appl Environ Microbiol ; 90(4): e0000824, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38506527

RESUMO

Currently, the L-malic acid titer achieved through Aspergillus niger fermentation reaches 201 g/L, meeting industrial demands satisfactorily. However, the co-presence of structurally similar fumaric acid and succinic acid in fermentation products suggests a theoretical potential for further improvement in L-malic acid production. In the tricarboxylic acid cycle, fumarate reductase mediates the conversion of succinic acid to fumaric acid. Subsequently, fumarase catalyzes the conversion of fumaric acid to L-malic acid. Notably, both enzymatic reactions are reversible. Our investigation revealed that A. niger contains only one mitochondria-located fumarase FumA. Employing CRISPR-Cas9 technology, we performed a replacement of the fumA promoter with a doxycycline-induced promoter Tet. Under non-inducing condition, the conditional strain exhibited increased levels of fumaric acid and succinic acid. It strongly suggests that FumA mainly promotes the flow of fumaric acid to L-malic acid. Furthermore, a promoter PmfsA that is exclusively activated in a fermentation medium by calcium carbonate was identified through RNA-sequencing screening. Utilizing PmfsA to regulate fumA expression led to a 9.0% increase in L-malic acid titer, an 8.75% increase in yield (glucose to L-malic acid), and an 8.86% enhancement in productivity. This research serves as a significant step toward expediting the industrialization of L-malic acid synthesis via biological fermentation. Additionally, it offers valuable insights for the biosynthesis of other organic acids.IMPORTANCEThis study focuses on enhancing L-malic acid synthesis by modifying the tricarboxylic acid cycle within the mitochondria of Aspergillus niger. We emphasize the significant role of fumarase in converting fumaric acid into L-malic acid, enhancing our understanding of metabolic pathways in A. niger. The precise regulation of fumA is highlighted as a key factor in enhancing L-malic acid production. Furthermore, this research introduces a stringent conditional promoter (PmfsA), exclusively activated by CaCO3. The utilization of PmfsA for fumA expression resulted in heightened L-malic acid titers. The progress in metabolic engineering and bioprocess optimization holds promise for expediting industrial L-malic acid synthesis via biological fermentation. Moreover, it carries implications for the biosynthesis of various other organic acids.


Assuntos
Aspergillus niger , Fumarato Hidratase , Fumaratos , Aspergillus niger/genética , Aspergillus niger/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Malatos/metabolismo , Ácido Succínico
10.
Adv Sci (Weinh) ; 11(22): e2310159, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38514904

RESUMO

Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1ß is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1ß does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1ß/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1ß level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1ß or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.


Assuntos
Processamento Alternativo , Malatos , Malus , Malatos/metabolismo , Processamento Alternativo/genética , Malus/genética , Malus/metabolismo , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vacúolos/metabolismo , Vacúolos/genética , Regulação da Expressão Gênica de Plantas/genética
11.
New Phytol ; 242(5): 2148-2162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501546

RESUMO

Although saline-alkali stress can improve tomato quality, the detailed molecular processes that balance stress tolerance and quality are not well-understood. Our research links nitric oxide (NO) and γ-aminobutyric acid (GABA) with the control of root malate exudation and fruit malate storage, mediated by aluminium-activated malate transporter 9/14 (SlALMT9/14). By modifying a specific S-nitrosylated site on pyruvate-dependent GABA transaminase 1 (SlGABA-TP1), we have found a way to enhance both plant's saline-alkali tolerance and fruit quality. Under saline-alkali stress, NO levels vary in tomato roots and fruits. High NO in roots leads to S-nitrosylation of SlGABA-TP1/2/3 at Cys316/258/316, reducing their activity and increasing GABA. This GABA then reduces malate exudation from roots and affects saline-alkali tolerance by interacting with SlALMT14. In fruits, a moderate NO level boosts SlGABA-TP1 expression and GABA breakdown, easing GABA's block on SlALMT9 and increasing malate storage. Mutants of SlGABA-TP1C316S that do not undergo S-nitrosylation maintain high activity, supporting malate movement in both roots and fruits under stress. This study suggests targeting SlGABA-TP1Cys316 in tomato breeding could significantly improve plant's saline-alkali tolerance and fruit quality, offering a promising strategy for agricultural development.


Assuntos
Álcalis , Frutas , Malatos , Óxido Nítrico , Raízes de Plantas , Solanum lycopersicum , Ácido gama-Aminobutírico , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Malatos/metabolismo , Óxido Nítrico/metabolismo , Álcalis/farmacologia , Ácido gama-Aminobutírico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Frutas/genética , Frutas/efeitos dos fármacos , 4-Aminobutirato Transaminase/metabolismo , 4-Aminobutirato Transaminase/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
12.
J Agric Food Chem ; 72(9): 4869-4879, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407053

RESUMO

The efficient production of l-malic acid using Aspergillus niger requires overcoming challenges in synthesis efficiency and excessive byproduct buildup. This study addresses these hurdles, improving the activity of NADH-dependent malate dehydrogenase (Mdh) in the early stages of the fermentation process. By employing a constitutive promoter to express the Escherichia coli sthA responsible for the transfer of reducing equivalents between NAD(H) and NADP(H) in A. niger, the l-malic acid production was significantly elevated. However, this resulted in conidiation defects of A. niger, limiting industrial viability. To mitigate this, we discovered and utilized the PmfsA promoter, enabling the specific expression of sthA during the fermentation stage. This conditional expression strain showed similar phenotypes to its parent strain while exhibiting exceptional performance in a 5 L fermenter. Notably, it achieved a 65.5% increase in productivity, reduced fermentation cycle by 1.5 days, and lowered succinic acid by 76.2%. This work marks a promising advancement in industrial l-malic acid synthesis via biological fermentation, showcasing the potential of synthetic biology in A. niger for broader applications.


Assuntos
Aspergillus niger , Aspergillus , Malatos , Aspergillus niger/genética , Aspergillus niger/metabolismo , Malatos/metabolismo , Fermentação , Escherichia coli/genética , Escherichia coli/metabolismo , NAD/metabolismo , Expressão Gênica
13.
Microb Biotechnol ; 17(2): e14410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38298109

RESUMO

Although a high titre of malic acid is achieved by filamentous fungi, by-product succinic acid accumulation leads to a low yield of malic acid and is unfavourable for downstream processing. Herein, we conducted a series of metabolic rewiring strategies in a previously constructed Myceliophthora thermophila to successfully improve malate production and abolish succinic acid accumulation. First, a pyruvate carboxylase CgPYC variant with increased activity was obtained using a high-throughput system and introduced to improve malic acid synthesis. Subsequently, shifting metabolic flux to malate synthesis from mitochondrial metabolism by deleing mitochondrial carriers of pyruvate and malate, led to a 53.7% reduction in succinic acid accumulation. The acceleration of importing cytosolic succinic acid into the mitochondria for consumption further decreased succinic acid formation by 53.3%, to 2.12 g/L. Finally, the importer of succinic acid was discovered and used to eliminate by-product accumulation. In total, malic acid production was increased by 26.5%, relative to the start strain JG424, to 85.23 g/L and 89.02 g/L on glucose and Avicel, respectively, in the flasks. In a 5-L fermenter, the titre of malic acid reached 182.7 g/L using glucose and 115.8 g/L using raw corncob, without any by-product accumulation. This study would accelerate the industrial production of biobased malic acid from renewable plant biomass.


Assuntos
Malatos , Sordariales , Ácido Succínico , Ácido Succínico/metabolismo , Malatos/metabolismo , Malato Desidrogenase/metabolismo , Succinatos , Ácido Pirúvico/metabolismo , Glucose/metabolismo
14.
EMBO Rep ; 25(2): 524-543, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253688

RESUMO

Metabolites derived from the intestinal microbiota play an important role in maintaining skeletal muscle growth, function, and metabolism. Here, we found that D-malate (DMA) is produced by mouse intestinal microorganisms and its levels increase during aging. Moreover, we observed that dietary supplementation of 2% DMA inhibits metabolism in mice, resulting in reduced muscle mass, strength, and the number of blood vessels, as well as the skeletal muscle fiber type I/IIb ratio. In vitro assays demonstrate that DMA decreases the proliferation of vascular endothelial cells and suppresses the formation of blood vessels. In vivo, we further demonstrated that boosting angiogenesis by muscular VEGFB injection rescues the inhibitory effects of D-malate on muscle mass and fiber area. By transcriptomics analysis, we identified that the mechanism underlying the effects of DMA depends on the elevated intracellular acetyl-CoA content and increased Cyclin A acetylation rather than redox balance. This study reveals a novel mechanism by which gut microbes impair muscle angiogenesis and may provide a therapeutic target for skeletal muscle dysfunction in cancer or aging.


Assuntos
Células Endoteliais , Microbiota , Camundongos , Animais , Células Endoteliais/metabolismo , Acetilação , Ciclina A/metabolismo , Angiogênese , Malatos/metabolismo , Músculo Esquelético/metabolismo , Envelhecimento
15.
Microb Cell Fact ; 23(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172830

RESUMO

BACKGROUND: One carbon (C1) molecules such as methanol have the potential to become sustainable feedstocks for biotechnological processes, as they can be derived from CO2 and green hydrogen, without the need for arable land. Therefore, we investigated the suitability of the methylotrophic yeast Ogataea polymorpha as a potential production organism for platform chemicals derived from methanol. We selected acetone, malate, and isoprene as industrially relevant products to demonstrate the production of compounds with 3, 4, or 5 carbon atoms, respectively. RESULTS: We successfully engineered O. polymorpha for the production of all three molecules and demonstrated their production using methanol as carbon source. We showed that the metabolism of O. polymorpha is well suited to produce malate as a product and demonstrated that the introduction of an efficient malate transporter is essential for malate production from methanol. Through optimization of the cultivation conditions in shake flasks, which included pH regulation and constant substrate feeding, we were able to achieve a maximum titer of 13 g/L malate with a production rate of 3.3 g/L/d using methanol as carbon source. We further demonstrated the production of acetone and isoprene as additional heterologous products in O. polymorpha, with maximum titers of 13.6 mg/L and 4.4 mg/L, respectively. CONCLUSION: These findings highlight how O. polymorpha has the potential to be applied as a versatile cell factory and contribute to the limited knowledge on how methylotrophic yeasts can be used for the production of low molecular weight biochemicals from methanol. Thus, this study can serve as a point of reference for future metabolic engineering in O. polymorpha and process optimization efforts to boost the production of platform chemicals from renewable C1 carbon sources.


Assuntos
Metanol , Pichia , Pichia/genética , Pichia/metabolismo , Metanol/metabolismo , Malatos/metabolismo , Acetona/metabolismo , Carbono/metabolismo
16.
Nat Commun ; 15(1): 422, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212310

RESUMO

To mobilize sparingly available phosphorus (P) in the rhizosphere, many plant species secrete malate to release P sorbed onto (hydr)oxides of aluminum and iron (Fe). In the presence of Fe, malate can provoke Fe over-accumulation in the root apoplast, triggering a series of events that inhibit root growth. Here, we identified HYPERSENSITIVE TO LOW P1 (HYP1), a CYBDOM protein constituted of a DOMON and a cytochrome b561 domain, as critical to maintain cell elongation and meristem integrity under low P. We demonstrate that HYP1 mediates ascorbate-dependent trans-plasma membrane electron transport and can reduce ferric and cupric substrates in Xenopus laevis oocytes and in planta. HYP1 expression is up-regulated in response to P deficiency in the proximal zone of the root apical meristem. Disruption of HYP1 leads to increased Fe and callose accumulation in the root meristem and causes significant transcriptional changes in roots. We further demonstrate that HYP1 activity overcomes malate-induced Fe accumulation, thereby preventing Fe-dependent root growth arrest in response to low P. Collectively, our results uncover an ascorbate-dependent metalloreductase that is critical to protect root meristems of P-deficient plants from increased Fe availability and provide insights into the physiological function of the yet poorly characterized but ubiquitous CYBDOM proteins.


Assuntos
Meristema , Fósforo , Meristema/metabolismo , Fósforo/metabolismo , Malatos/metabolismo , Ferro/metabolismo , Plantas/metabolismo , Ácido Ascórbico/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Nat Commun ; 15(1): 846, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287013

RESUMO

A prevalent side-reaction of succinate dehydrogenase oxidizes malate to enol-oxaloacetate (OAA), a metabolically inactive form of OAA that is a strong inhibitor of succinate dehydrogenase. We purified from cow heart mitochondria an enzyme (OAT1) with OAA tautomerase (OAT) activity that converts enol-OAA to the physiological keto-OAA form, and determined that it belongs to the highly conserved and previously uncharacterized Fumarylacetoacetate_hydrolase_domain-containing protein family. From all three domains of life, heterologously expressed proteins were shown to have strong OAT activity, and ablating the OAT1 homolog caused significant growth defects. In Escherichia coli, expression of succinate dehydrogenase was necessary for OAT1-associated growth defects to occur, and ablating OAT1 caused a significant increase in acetate and other metabolites associated with anaerobic respiration. OAT1 increased the succinate dehydrogenase reaction rate by 35% in in vitro assays with physiological concentrations of both succinate and malate. Our results suggest that OAT1 is a universal metabolite repair enzyme that is required to maximize aerobic respiration efficiency by preventing succinate dehydrogenase inhibition.


Assuntos
Malatos , Succinato Desidrogenase , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Malatos/metabolismo , Ciclo do Ácido Cítrico , Mitocôndrias Cardíacas/metabolismo , Oxaloacetatos/metabolismo , Ácido Oxaloacético/metabolismo , Malato Desidrogenase/metabolismo
18.
Microbes Infect ; 26(1-2): 105215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37689346

RESUMO

Mycobacterium tuberculosis H37Ra (Mtb-Ra) ORF MRA_2875, annotated as malate:quinone oxidoreductase (mqo), is thought to have a role in TCA cycle in converting malate to oxaloacetate. To study its physiological relevance, we developed mqo knockout (KO) in Mtb-Ra. A KO complemented (KOC) strain was also developed by complementing the KO with mqo over-expressing construct. Under normal in vitro conditions, KO does not show any growth defect but showed reduced CFU burden in macrophages and in mice lungs. In vitro studies with KO showed reduced fitness under oxidative and low pH stress, and also increased susceptibility to levofloxacin and D-cycloserine. Transcript analysis of mqo showed increased expression levels under oxidative and low pH stress. This is the first study to show physiological relevance of mqo encoded by MRA_2875 in Mtb-Ra under oxidative and low pH stress. In summary, the present study shows that MRA_2875 encoded malate:quinone oxidoreductase is a functional enzyme which contributes to oxidative stress and low pH tolerance, and survival in macrophages and in mice.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Mycobacterium tuberculosis/genética , Malatos/metabolismo , Oxirredutases , Quinonas
19.
Ecotoxicol Environ Saf ; 269: 115791, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070417

RESUMO

Aluminum (Al), a non-essential metal for plant growth, exerts significant phytotoxic effects, particularly on root growth. Anthropogenic activities would intensify Al's toxic effects by releasing Al3+ into the soil solution, especially in acidic soils with a pH lower than 5.5 and rich mineral content. The severity of Al-induced phytotoxicity varies based on factors such as Al concentration, ionic form, plant species, and growth stages. Al toxicity leads to inhibited root and shoot growth, reduced plant biomass, disrupted water uptake causing nutritional imbalance, and adverse alterations in physiological, biochemical, and molecular processes. These effects collectively lead to diminished plant yield and quality, along with reduced soil fertility. Plants employ various mechanisms to counter Al toxicity under stress conditions, including sequestering Al in vacuoles, exuding organic acids (OAs) like citrate, oxalate, and malate from root tip cells to form Al-complexes, activating antioxidative enzymes, and overexpressing Al-stress regulatory genes. Recent advancements focus on enhancing the exudation of OAs to prevent Al from entering the plant, and developing Al-tolerant varieties. Gene transporter families, such as ATP-Binding Cassette (ABC), Aluminum-activated Malate Transporter (ALMT), Natural resistance-associated macrophage protein (Nramp), Multidrug and Toxic compounds Extrusion (MATE), and aquaporin, play a crucial role in regulating Al toxicity. This comprehensive review examined recent progress in understanding the cytotoxic impact of Al on plants at the cellular and molecular levels. Diverse strategies developed by both plants and scientists to mitigate Al-induced phytotoxicity were discussed. Furthermore, the review explored recent genomic developments, identifying candidate genes responsible for OAs exudation, and delved into genome-mediated breeding initiatives, isolating transgenic and advanced breeding lines to cultivate Al-tolerant plants.


Assuntos
Alcaloides , Alumínio , Alumínio/toxicidade , Alumínio/metabolismo , Malatos/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Alcaloides/farmacologia , Compostos Orgânicos/metabolismo , Solo/química , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Plant J ; 117(3): 786-804, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955989

RESUMO

In natural and agricultural situations, ammonium ( NH 4 + ) is a preferred nitrogen (N) source for plants, but excessive amounts can be hazardous to them, known as NH 4 + toxicity. Nitrate ( NO 3 - ) has long been recognized to reduce NH 4 + toxicity. However, little is known about Brassica napus, a major oil crop that is sensitive to high NH 4 + . Here, we found that NO 3 - can mitigate NH 4 + toxicity by balancing rhizosphere and intracellular pH and accelerating ammonium assimilation in B. napus. NO 3 - increased the uptake of NO 3 - and NH 4 + under high NH 4 + circumstances by triggering the expression of NO 3 - and NH 4 + transporters, while NO 3 - and H+ efflux from the cytoplasm to the apoplast was enhanced by promoting the expression of NO 3 - efflux transporters and genes encoding plasma membrane H+ -ATPase. In addition, NO 3 - increased pH in the cytosol, vacuole, and rhizosphere, and down-regulated genes induced by acid stress. Root glutamine synthetase (GS) activity was elevated by NO 3 - under high NH 4 + conditions to enhance the assimilation of NH 4 + into amino acids, thereby reducing NH 4 + accumulation and translocation to shoot in rapeseed. In addition, root GS activity was highly dependent on the environmental pH. NO 3 - might induce metabolites involved in amino acid biosynthesis and malate metabolism in the tricarboxylic acid cycle, and inhibit phenylpropanoid metabolism to mitigate NH 4 + toxicity. Collectively, our results indicate that NO 3 - balances both rhizosphere and intracellular pH via effective NO 3 - transmembrane cycling, accelerates NH 4 + assimilation, and up-regulates malate metabolism to mitigate NH 4 + toxicity in oilseed rape.


Assuntos
Compostos de Amônio , Brassica napus , Compostos de Amônio/metabolismo , Nitratos/metabolismo , Brassica napus/genética , Rizosfera , Malatos/metabolismo , Nitrogênio/metabolismo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...