Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PeerJ ; 12: e17386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832032

RESUMO

Cassava (Manihot esculenta) is among the most important staple crops globally, with an imperative role in supporting the Sustainable Development Goal of 'Zero hunger'. In sub-Saharan Africa, it is cultivated mainly by millions of subsistence farmers who depend directly on it for their socio-economic welfare. However, its yield in some regions has been threatened by several diseases, especially the cassava brown streak disease (CBSD). Changes in climatic conditions enhance the risk of the disease spreading to other planting regions. Here, we characterise the current and future distribution of cassava, CBSD and whitefly Bemisia tabaci species complex in Africa, using an ensemble of four species distribution models (SDMs): boosted regression trees, maximum entropy, generalised additive model, and multivariate adaptive regression splines, together with 28 environmental covariates. We collected 1,422 and 1,169 occurrence records for cassava and Bemisia tabaci species complex from the Global Biodiversity Information Facility and 750 CBSD occurrence records from published literature and systematic surveys in East Africa. Our results identified isothermality as having the highest contribution to the current distribution of cassava, while elevation was the top predictor of the current distribution of Bemisia tabaci species complex. Cassava harvested area and precipitation of the driest month contributed the most to explain the current distribution of CBSD outbreaks. The geographic distributions of these target species are also expected to shift under climate projection scenarios for two mid-century periods (2041-2060 and 2061-2080). Our results indicate that major cassava producers, like Cameron, Ivory Coast, Ghana, and Nigeria, are at greater risk of invasion of CBSD. These results highlight the need for firmer agricultural management and climate-change mitigation actions in Africa to combat new outbreaks and to contain the spread of CBSD.


Assuntos
Hemípteros , Manihot , Doenças das Plantas , Manihot/parasitologia , Animais , Hemípteros/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/estatística & dados numéricos , África/epidemiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia
2.
Sci Rep ; 11(1): 7923, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846476

RESUMO

The Bemisia cassava whitefly complex includes species that cause severe crop damage through vectoring cassava viruses in eastern Africa. Currently, this whitefly complex is divided into species and subgroups (SG) based on very limited molecular markers that do not allow clear definition of species and population structure. Based on 14,358 genome-wide SNPs from 62 Bemisia cassava whitefly individuals belonging to sub-Saharan African species (SSA1, SSA2 and SSA4), and using a well-curated mtCOI gene database, we show clear incongruities in previous taxonomic approaches underpinned by effects from pseudogenes. We show that the SSA4 species is nested within SSA2, and that populations of the SSA1 species comprise well-defined south-eastern (Madagascar, Tanzania) and north-western (Nigeria, Democratic Republic of Congo, Burundi) putative sub-species. Signatures of allopatric incipient speciation, and the presence of a 'hybrid zone' separating the two putative sub-species were also detected. These findings provide insights into the evolution and molecular ecology of a highly cryptic hemipteran insect complex in African, and allow the systematic use of genomic data to be incorporated in the development of management strategies for this cassava pest.


Assuntos
Hemípteros/genética , Hibridização Genética , Manihot/parasitologia , África , Animais , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fluxo Gênico , Geografia , Mitocôndrias/genética , Filogenia , Dinâmica Populacional , Análise de Componente Principal , Especificidade da Espécie
3.
Sci Rep ; 10(1): 22049, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328547

RESUMO

Projected climate changes are thought to promote emerging infectious diseases, though to date, evidence linking climate changes and such diseases in plants has not been available. Cassava is perhaps the most important crop in Africa for smallholder farmers. Since the late 1990's there have been reports from East and Central Africa of pandemics of begomoviruses in cassava linked to high abundances of whitefly species within the Bemisia tabaci complex. We used CLIMEX, a process-oriented climatic niche model, to explore if this pandemic was linked to recent historical climatic changes. The climatic niche model was corroborated with independent observed field abundance of B. tabaci in Uganda over a 13-year time-series, and with the probability of occurrence of B. tabaci over 2 years across the African study area. Throughout a 39-year climate time-series spanning the period during which the pandemics emerged, the modelled climatic conditions for B. tabaci improved significantly in the areas where the pandemics had been reported and were constant or decreased elsewhere. This is the first reported case where observed historical climate changes have been attributed to the increase in abundance of an insect pest, contributing to a crop disease pandemic.


Assuntos
Aclimatação , Begomovirus , Mudança Climática , Hemípteros/fisiologia , Manihot , Doenças das Plantas , Animais , Manihot/parasitologia , Manihot/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Uganda
4.
Sci Rep ; 10(1): 19496, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177527

RESUMO

The morphological identification of mites entails great challenges. Characteristics such as dorsal setae and aedeagus are widely used, but they show variations between populations, and the technique is time consuming and demands specialized taxonomic expertise that is difficult to access. A successful alternative has been to exploit a region of the mitochondrial cytochrome oxidase I (COI) gene to classify specimens to the species level. We analyzed the COI sequences of four mite species associated with cassava and classified them definitively by detailed morphological examinations. We then developed an identification kit based on the restriction fragment length polymorphism-polymerase chain reaction of subunit I of the COI gene focused on the three restriction enzymes AseI, MboII, and ApoI. This set of enzymes permitted the simple, accurate identification of Mononychellus caribbeanae, M. tanajoa, M. mcgregori, and Tetranychus urticae, rapidly and with few resources. This kit could be a vital tool for the surveillance and monitoring of mite pests in cassava crop protection programs in Africa, Asia, and Latin America.


Assuntos
Manihot/parasitologia , Reação em Cadeia da Polimerase/métodos , Tetranychidae/genética , Animais , Proteção de Cultivos/métodos , Enzimas de Restrição do DNA/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Polimorfismo de Fragmento de Restrição , Alinhamento de Sequência , Especificidade da Espécie , Tetranychidae/anatomia & histologia , Tetranychidae/enzimologia , Fatores de Tempo
5.
PLoS One ; 15(4): e0231008, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240258

RESUMO

Cassava green mite [CGM, Mononychellus tanajoa (Bondar)] is the most destructive dry-season pest in most cassava production areas. The pest is responsible for cassava fresh root yield losses of over 80%. Deployment of CGM resistant cultivars is the most cost-effective and sustainable approach of alleviating such production losses. The purposes of this study were to validate the stability of CGM resistance genes found in previously published results, to identify new genes for CGM resistance in bi-parental mapping population and estimate the heritability of the trait. A total of 109 F1 progeny derived from a cross between CGM resistant parent, TMEB778 and a very susceptible parent, TMEB419 were evaluated under CGM hotspot areas in Nigeria for two cropping seasons. A total of 42,204 SNP markers with MAF ≥ 0.05 were used for single-marker analysis. The most significant QTL (S12_7962234) was identified on the left arm on chromosome 12 which explained high phenotypic variance and harboured significant single nucleotide polymorphism (SNP) markers conferring resistance to CGM and leaf pubescence (LP). Colocalization of the most significant SNP associated with resistance to CGM and LP on chromosome 12 is possibly an indication of a beneficial pleiotropic effect or are physically linked. These significant SNPs markers were intersected with the gene annotations and 33 unique genes were identified within SNPs at 4 - 8MB on chromosome 12. Among these genes, nine novel candidate genes namely; Manes.12077600, Manes.12G086200, Manes.12G061200, Manes.12G083100, Manes.12G082000, Manes.12G094100, Manes.12G075600, Manes.12G091400 and Manes.12G069300 highly expressed direct link to cassava green mite resistance. Pyramiding the new QTL/genes identified on chromosome 12 in this study with previously discovered loci, such on chromosome 8, will facilitate breeding varieties that are highly resistant CGM.


Assuntos
Resistência à Doença/genética , Manihot/genética , Ácaros/patogenicidade , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Animais , Cruzamento/métodos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Ligação Genética/genética , Marcadores Genéticos/genética , Masculino , Manihot/parasitologia , Nigéria , Fenótipo , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único/genética
6.
BMC Genomics ; 21(1): 93, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996126

RESUMO

BACKGROUND: Whiteflies are a threat to cassava (Manihot esculenta), an important staple food in many tropical/subtropical regions. Understanding the molecular mechanisms regulating cassava's responses against this pest is crucial for developing control strategies. Pathogenesis-related (PR) protein families are an integral part of plant immunity. With the availability of whole genome sequences, the annotation and expression programs of the full complement of PR genes in an organism can now be achieved. An understanding of the responses of the entire complement of PR genes during biotic stress and to the defense hormones, salicylic acid (SA) and jasmonic acid (JA), is lacking. Here, we analyze the responses of cassava PR genes to whiteflies, SA, JA, and other biotic aggressors. RESULTS: The cassava genome possesses 14 of the 17 plant PR families, with a total of 447 PR genes. A cassava PR gene nomenclature is proposed. Phylogenetic relatedness of cassava PR proteins to each other and to homologs in poplar, rice and Arabidopsis identified cassava-specific PR gene family expansions. The temporal programs of PR gene expression in response to the whitefly (Aleurotrachelus socialis) in four whitefly-susceptible cassava genotypes showed that 167 of the 447 PR genes were regulated after whitefly infestation. While the timing of PR gene expression varied, over 37% of whitefly-regulated PR genes were downregulated in all four genotypes. Notably, whitefly-responsive PR genes were largely coordinately regulated by SA and JA. The analysis of cassava PR gene expression in response to five other biotic stresses revealed a strong positive correlation between whitefly and Xanthomonas axonopodis and Cassava Brown Streak Virus responses and negative correlations between whitefly and Cassava Mosaic Virus responses. Finally, certain associations between PR genes in cassava expansions and response to biotic stresses were observed among PR families. CONCLUSIONS: This study represents the first genome-wide characterization of PR genes in cassava. PR gene responses to six biotic stresses and to SA and JA are demonstrably different to other angiosperms. We propose that our approach could be applied in other species to fully understand PR gene regulation by pathogens, pests and the canonical defense hormones SA and JA.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Parasita/genética , Manihot/genética , Manihot/parasitologia , Família Multigênica , Transcriptoma , Resistência à Doença/genética , Genótipo , Manihot/efeitos dos fármacos , Manihot/metabolismo , Oryza/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Populus/genética , Populus/metabolismo , Reprodutibilidade dos Testes , Ácido Salicílico/metabolismo , Fatores de Tempo
7.
BMC Plant Biol ; 19(1): 518, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775619

RESUMO

BACKGROUND: Cassava whitefly outbreaks were initially reported in East and Central Africa cassava (Manihot esculenta Crantz) growing regions in the 1990's and have now spread to other geographical locations, becoming a global pest severely affecting farmers and smallholder income. Whiteflies impact plant yield via feeding and vectoring cassava mosaic and brown streak viruses, making roots unsuitable for food or trading. Deployment of virus resistant varieties has had little impact on whitefly populations and therefore development of whitefly resistant varieties is also necessary as part of integrated pest management strategies. Suitable sources of whitefly resistance exist in germplasm collections that require further characterization to facilitate and assist breeding programs. RESULTS: In the present work, a hierarchical metabolomics approach has been employed to investigate the underlying biochemical mechanisms associated with whitefly resistance by comparing two naturally occurring accessions of cassava, one susceptible and one resistant to whitefly. Quantitative differences between genotypes detected at pre-infestation stages were consistently observed at each time point throughout the course of the whitefly infestation. This prevalent differential feature suggests that inherent genotypic differences override the response induced by the presence of whitefly and that they are directly linked with the phenotype observed. The most significant quantitative changes relating to whitefly susceptibility were linked to the phenylpropanoid super-pathway and its linked sub-pathways: monolignol, flavonoid and lignan biosynthesis. These findings suggest that the lignification process in the susceptible variety is less active, as the susceptible accession deposits less lignin and accumulates monolignol intermediates and derivatives thereof, differences that are maintained during the time-course of the infestation. CONCLUSIONS: Resistance mechanism associated to the cassava whitefly-resistant accession ECU72 is an antixenosis strategy based on reinforcement of cell walls. Both resistant and susceptible accessions respond differently to whitefly attack at biochemical level, but the inherent metabolic differences are directly linked to the resistance phenotype rather than an induced response in the plant.


Assuntos
Hemípteros , Manihot/genética , Doenças das Plantas/parasitologia , Animais , Resistência à Doença/genética , Variação Genética , Manihot/parasitologia , Metabolômica , Fenilpropionatos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Propanóis/metabolismo
8.
Sci Rep ; 9(1): 14796, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615997

RESUMO

High populations of African cassava whitefly (Bemisia tabaci) have been associated with epidemics of two viral diseases in Eastern Africa. We investigated population dynamics and genetic patterns by comparing whiteflies collected on cassava in 1997, during the first whitefly upsurges in Uganda, with collections made in 2017 from the same locations. Nuclear markers and mtCOI barcoding sequences were used on 662 samples. The composition of the SSA1 population changed significantly over the 20-year period with the SSA1-SG2 percentage increasing from 0.9 to 48.6%. SSA1-SG1 and SSA1-SG2 clearly interbreed, confirming that they are a single biological species called SSA1. The whitefly species composition changed: in 1997, SSA1, SSA2 and B. afer were present; in 2017, no SSA2 was found. These data and those of other publications do not support the 'invader' hypothesis. Our evidence shows that no new species or new population were found in 20 years, instead, the distribution of already present genetic clusters composing SSA1 species have changed over time and that this may be in response to several factors including the introduction of new cassava varieties or climate changes. The practical implications are that cassava genotypes possessing both whitefly and disease resistances are needed urgently.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Resistência à Doença/genética , Hemípteros/genética , Insetos Vetores/genética , Manihot/parasitologia , Doenças das Plantas/estatística & dados numéricos , Distribuição Animal , Animais , Proteção de Cultivos , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Marcadores Genéticos , Variação Genética , Genótipo , Hemípteros/classificação , Hemípteros/patogenicidade , Hemípteros/virologia , Proteínas de Insetos/genética , Insetos Vetores/classificação , Insetos Vetores/virologia , Masculino , Manihot/genética , Manihot/virologia , Filogenia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Dinâmica Populacional , Uganda
9.
Genes (Basel) ; 10(9)2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438604

RESUMO

In this case study we successfully teamed the PDQeX DNA purification technology developed by MicroGEM, New Zealand, with the MinION and MinIT mobile sequencing devices developed by Oxford Nanopore Technologies to produce an effective point-of-need field diagnostic system. The PDQeX extracts DNA using a cocktail of thermophilic proteinases and cell wall-degrading enzymes, thermo-responsive extractor cartridges and a temperature control unit. This closed system delivers purified DNA with no cross-contamination. The MinIT is a newly released data processing unit that converts MinION raw signal output into nucleotide base called data locally in real-time, removing the need for high-specification computers and large file transfers from the field. All three devices are battery powered with an exceptionally small footprint that facilitates transport and setup. To evaluate and validate capability of the system for unbiased pathogen identification by real-time sequencing in a farmer's field setting, we analysed samples collected from cassava plants grown by subsistence farmers in three sub-Sahara African countries (Tanzania, Uganda and Kenya). A range of viral pathogens, all with similar symptoms, greatly reduce yield or destroy cassava crops. Eight hundred (800) million people worldwide depend on cassava for food and yearly income, and viral diseases are a significant constraint to its production. Early pathogen detection at a molecular level has great potential to rescue crops within a single growing season by providing results that inform decisions on disease management, use of appropriate virus-resistant or replacement planting. This case study presented conditions of working in-field with limited or no access to mains power, laboratory infrastructure, Internet connectivity and highly variable ambient temperature. An additional challenge is that, generally, plant material contains inhibitors of downstream molecular processes making effective DNA purification critical. We successfully undertook real-time on-farm genome sequencing of samples collected from cassava plants on three farms, one in each country. Cassava mosaic begomoviruses were detected by sequencing leaf, stem, tuber and insect samples. The entire process, from arrival on farm to diagnosis, including sample collection, processing and provisional sequencing results was complete in under 3 h. The need for accurate, rapid and on-site diagnosis grows as globalized human activity accelerates. This technical breakthrough has applications that are relevant to human and animal health, environmental management and conservation.


Assuntos
Begomovirus/genética , Genômica/métodos , Hemípteros/genética , Manihot/virologia , Doenças das Plantas/virologia , Análise de Sequência de DNA/métodos , África Oriental , Animais , Begomovirus/patogenicidade , Genômica/instrumentação , Hemípteros/patogenicidade , Manihot/parasitologia , Doenças das Plantas/parasitologia , Kit de Reagentes para Diagnóstico/normas , Análise de Sequência de DNA/instrumentação
10.
Genome ; 62(9): 571-584, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31283888

RESUMO

Silverleaf whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is one of the most notorious invasive insect pests, infesting more than 900 species of plants and spreading more than 200 viral diseases. This polyphagous agricultural pest harbours diverse bacterial communities in its gut, which perform multiple functions in whiteflies, including nutrient provisioning, amino acid biosynthesis, and virus transmission. The present exploratory study compares the bacterial communities associated with silverleaf whitefly infesting cassava, also known as cassava whitefly, collected from two different zones (zone P: plains; zone H: high ranges), from Kerala, India, using next-generation sequencing of 16S rDNA. The data sets for these two regions consisted of 1 321 906 and 690 661 high-quality paired-end sequences with mean length of 150 bp. Highly diverse bacterial communities were present in the sample, containing approximately 3513 operational taxonomic units (OTUs). Sequence analysis showed a marked difference in the relative abundance of bacteria in the populations. A total of 16 bacterial phyla, 27 classes, 56 orders, 91 families, 236 genera, and 409 species were identified from the P population, against 16, 31, 60, 88, 225, and 355, respectively, in the H population. Arsenophonus sp. (Enterobacteriaceae), which is important for virus transmission by whiteflies, was relatively abundant in the P population, whereas in the H population Bacillus sp. was the most dominant group. The association of whitefly biotypes and secondary symbionts suggests a possible contribution of these bacteria to host characteristics such as virus transmission, host range, insecticide resistance, and speciation.


Assuntos
Bactérias/classificação , Hemípteros/microbiologia , Manihot/parasitologia , Simbiose , Animais , Bactérias/isolamento & purificação , DNA Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Índia , Tipagem Molecular
11.
Genome ; 62(8): 563-569, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31158327

RESUMO

Heat shock transcription factors (Hsfs) are important regulators of biotic and abiotic stress responses in plants. Currently, the Hsf gene family is not well understood in cassava, an important tropical crop. In the present study, 32 MeHsf genes were identified from the cassava genome database, which were divided into three types based on functional domain and motif distribution analyses. Analysis of the differential expression of the genes belonging to the Hsf family in cassava was carried out based on published cassava transcriptome data from tissues/organs (leaf blade, leaf midvein, lateral buds, organized embryogenic structures, friable embryogenic callus, fibrous roots, storage roots, stem, petiole, shoot apical meristem, and root apical meristem) under abiotic stress (cold, drought) or biotic stress (mealybugs. cassava brown streak disease, cassava bacterial blight). The results show the expression diversity of cassava Hsfs genes in various tissues/organs. The transcript levels of MeHsfB3a, MeHsfA6a, MeHsfA2a, and MeHsfA9b were upregulated by abiotic and biotic stresses, such as cold, drought, cassava bacterial blight, cassava brown streak disease, and mealybugs, indicating their potential roles in mediating the response of cassava plants to environment stresses. Further interaction network and co-expression analyses suggests that Hsf genes may interact with Hsp70 family members to resist environmental stresses in cassava. These results provide valuable information for future studies of the functional characterization of the MeHsf gene family.


Assuntos
Resposta ao Choque Frio , Proteínas de Choque Térmico/genética , Manihot/genética , Proteínas de Plantas/genética , Transcriptoma , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Manihot/microbiologia , Manihot/parasitologia , Proteínas de Plantas/metabolismo
12.
J Biol Dyn ; 13(sup1): 325-353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149889

RESUMO

Vector-transmitted diseases of plants have had devastating effects on agricultural production worldwide, resulting in drastic reductions in yield for crops such as cotton, soybean, tomato, and cassava. Plant-vector-virus models with continuous replanting are investigated in terms of the effects of selection of cuttings, roguing, and insecticide use on disease prevalence in plants. Previous models are extended to include two replanting strategies: frequencyreplanting and abundance-replanting. In frequency-replanting, replanting of infected cuttings depends on the selection frequency parameter ε, whereas in abundance-replanting, replanting depends on plant abundance via a selection rate parameter also denoted as ε. The two models are analysed and new thresholds for disease elimination are defined for each model. Parameter values for cassava, whiteflies, and African cassava mosaic virus serve as a case study. A numerical sensitivity analysis illustrates how the equilibrium densities of healthy and infected plants vary with parameter values. Optimal control theory is used to investigate the effects of roguing and insecticide use with a goal of maximizing the healthy plants that are harvested. Differences in the control strategies in the two models are seen for large values of ε. Also, the combined strategy of roguing and insecticide use performs better than a single control.


Assuntos
Agricultura/métodos , Produtos Agrícolas/virologia , Vetores de Doenças , Modelos Biológicos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Animais , Begomovirus/fisiologia , Hemípteros/fisiologia , Inseticidas/toxicidade , Manihot/parasitologia , Manihot/virologia , Análise Numérica Assistida por Computador
13.
PLoS One ; 13(10): e0204862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30300388

RESUMO

Cassava is a staple food for people across sub-Saharan Africa. Over the last 20 years, there has been an increased frequency of outbreaks and crop damage in this region caused by the cassava-adapted Bemisia tabaci putative species. Little is known about when and why B. tabaci adults move and colonize new cassava crops, especially in farming systems that contain a mixture of cultivar types and plant ages. Here, we assessed experimentally whether the age and variety of cassava affected the density of B. tabaci. We also tested whether the age and variety of the source cassava field affected the variety preference of B. tabaci when they colonized new cassava plants. We placed uninfested potted "sentinel" plants of three cassava varieties (Nam 130, Nase 14, and Njule Red) in source fields containing one of two varieties (Nam 130 or Nase 14) and one of three age classes (young, medium, or old). After two weeks, the numbers of nymphs on the sentinel plants were used as a measure of colonization. Molecular identification revealed that the B. tabaci species was sub-Saharan Africa 1 (SSA1). We found a positive correlation between the density of nymphs on sentinel plants and the density of adults in the source field. The density of nymphs on the sentinels was not significantly related to the age of the source field. Bemisia tabaci adults did not preferentially colonize the sentinel plant of the same variety as the source field. There was a significant interactive effect, however, between the source and sentinel variety that may indicate variability in colonization. We conclude that managing cassava source fields to reduce B. tabaci abundance will be more effective than manipulating nearby varieties. We also suggest that planting a "whitefly sink" variety is unlikely to reduce B. tabaci SSA1 populations unless fields are managed to reduce B. tabaci densities using other integrative approaches.


Assuntos
Hemípteros/classificação , Manihot/crescimento & desenvolvimento , Análise de Sequência de DNA/métodos , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Hemípteros/genética , Hemípteros/crescimento & desenvolvimento , Controle de Insetos , Manihot/parasitologia , Filogenia , Doenças das Plantas
14.
PLoS One ; 13(8): e0202541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30133510

RESUMO

The mealybug, Phenacoccus manihoti, is a leading pest of cassava (Manihot esculenta Crantz), damaging this crop globally. Although the biological control of this mealybug using natural predators has been established, resistance breeding remains an important means of control. Understanding plant responses to insect herbivory, by determining and identifying differentially expressed genes (DEGs), is a vital step towards the understanding of molecular mechanisms of defence responses in plants and the development of resistant cultivars by gene editing. Morphological and molecular analysis confirmed the mealybug identity as Phenacoccus manihoti (Matile-Ferrero). The transcriptome response of the green mite resistant cassava genotype AR23.1 was compared to P40/1 with no known resistance at 24 and 72 hours of mealybug infestation compared to non-infested mock. A total of 301 and 206 genes were differentially expressed at 24 and 72 of mealybug infestation for AR23.1 and P40/1 genotypes respectively, using a log2 fold change and P-value ≤ 0.05. Gene ontology functional classification revealed an enrichment of genes in the secondary metabolic process category in AR23.1 in comparison with P40/1, while genes in the regulation of molecular function, cellular component biogenesis and electron carrier categories were more significantly enriched in P40/1 than in AR23.1. Biological pathway analysis, based on KEGG, revealed a significant enrichment of plant-pathogen interaction and plant hormonal signal transduction pathways for a cohort of up-regulated and down-regulated DEGs in both genotypes. Defence-related genes such as 2-oxogluterate, gibberellin oxidase and terpene synthase proteins were only induced in genotype AR23.1 and not in P40/1, and subsequently validated by RT-qPCR. The study revealed a difference in response to mealybug infestation in the two genotypes studied, with AR23.1 showing a higher number of differentially expressed transcripts post mealybug infestation at 24 and 72 hours. Candidate defence-related genes that were overexpressed in the AR23.1 genotype post mealybug infestation will be useful in future functional studies towards the control of mealybugs.


Assuntos
Resistência à Doença/genética , Manihot/genética , Controle Biológico de Vetores , Transcriptoma/genética , Animais , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Hemípteros/patogenicidade , Manihot/crescimento & desenvolvimento , Manihot/parasitologia , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Transdução de Sinais/genética
15.
Genome Biol Evol ; 9(11): 2958-2973, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096025

RESUMO

Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa.


Assuntos
Hemípteros/classificação , Hemípteros/genética , Insetos Vetores/classificação , Insetos Vetores/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Fluxo Gênico , Genes de Insetos/genética , Genética Populacional , Genoma de Inseto/genética , Mapeamento Geográfico , Hemípteros/enzimologia , Hemípteros/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Insetos Vetores/enzimologia , Insetos Vetores/virologia , Manihot/parasitologia , Modelos Genéticos , Doenças das Plantas/virologia
17.
Exp Appl Acarol ; 71(3): 195-209, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28405840

RESUMO

In order to study the function of peroxidase (POD) and polyphenol oxidase (PPO) in cassava resistance to spider mites, we tested the changes of transcription levels and activities of these two protective enzymes in both cassava and Tetranychus urticae (=T. cinnabarinus) during the interaction. The results showed that after damage of the mite-susceptible cassava cultivar BRA900 by T. urticae for 1 and 8 days, the transcription levels of MePOD and MePPO and the activities of POD and PPO showed no significant difference compared with those in undamaged leaves. However, the corresponding transcription levels and activities in 1- and 8-day-damaged leaves of mite-resistant cassava cultivar C1115 increased to a significant level of approximately twofold. When T. urticae fed on BRA900 for 1 and 8 days, the transcription levels of TcPPO and TcPOD and the activities of PPO and POD showed no significant difference compared with those before feeding. However, the corresponding transcription levels and activities of these two protective enzymes in T. urticae feeding on C1115 significantly decreased by about half. This study preliminarily validates the function of POD and PPO in cassava resistance to T. urticae, and provides candidate gene resource for molecular breeding of spider mite-resistant cassava.


Assuntos
Catecol Oxidase/metabolismo , Manihot/parasitologia , Peroxidase/metabolismo , Tetranychidae/crescimento & desenvolvimento , Animais , Comportamento Alimentar , Infestações por Ácaros/parasitologia , Doenças das Plantas/parasitologia
18.
Sci Rep ; 7: 40179, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28054665

RESUMO

To explore the role of protective enzymes in cassava (Manihot esculenta Crantz) resistance to mites, transgenic cassava lines overproducing copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) were used to evaluate and molecularly confirm cassava resistance to Tetranychus cinnabarinus. Laboratory evaluation demonstrated that, compared with the control cultivar TMS60444 (wild type, WT), the survival, reproduction, development and activities of SOD and CAT in T. cinnabarinus feeding on transgenic cassava lines SC2, SC4, and SC11 significantly inhibited. Furthermore, the activities of SOD and CAT in transgenic cassava lines SC2, SC4, and SC11 damaged by T. cinnabarinus significantly increased. These findings were similar to the results in the mite-resistant cassava cultivars. Besides, field evaluation indicated that the transgenic cassava lines SC2, SC4, and SC11 were slightly damaged as the highly mite-resistant control C1115, while the highly mite-susceptible WT was severely damaged by T. cinnabarinus. Laboratory and field evaluation demonstrated that transgenic cassava lines were resistant to T. cinnabarinus, which directly confirmed that the increase in SOD and CAT activities was positively related to cassava resistance to T. cinnabarinus. These results will help in understanding the antioxidant defense responses in the cassava-mite interaction and molecular breeding of mite-resistant cassava for effective pest control.


Assuntos
Catalase/metabolismo , Resistência à Doença , Manihot/enzimologia , Manihot/parasitologia , Doenças das Plantas/parasitologia , Superóxido Dismutase/metabolismo , Tetranychidae/crescimento & desenvolvimento , Animais , Antioxidantes/metabolismo , Sequestradores de Radicais Livres/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/parasitologia
19.
Pest Manag Sci ; 72(6): 1071-89, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26853194

RESUMO

Cassava is a major staple, bio-energy and industrial crop in many parts of the developing world. In Southeast Asia, cassava is grown on >4 million ha by nearly 8 million (small-scale) farming households, under (climatic, biophysical) conditions that often prove unsuitable for many other crops. While SE Asian cassava has been virtually free of phytosanitary constraints for most of its history, a complex of invasive arthropod pests and plant diseases has recently come to affect local crops. We describe results from a region-wide monitoring effort in the 2014 dry season, covering 429 fields across five countries. We present geographic distribution and field-level incidence of the most prominent pest and disease invaders, introduce readily-available management options and research needs. Monitoring work reveals that several exotic mealybug and (red) mite species have effectively colonised SE Asia's main cassava-growing areas, occurring in respectively 70% and 54% of fields, at average field-level incidence of 27 ± 2% and 16 ± 2%. Cassava witches broom (CWB), a systemic phytoplasma disease, was reported from 64% of plots, at incidence levels of 32 ± 2%. Although all main pests and diseases are non-natives, we hypothesise that accelerating intensification of cropping systems, increased climate change and variability, and deficient crop husbandry are aggravating both organism activity and crop susceptibility. Future efforts need to consolidate local capacity to tackle current (and future) pest invaders, boost detection capacity, devise locally-appropriate integrated pest management (IPM) tactics, and transfer key concepts and technologies to SE Asia's cassava growers. Urgent action is needed to mobilise regional as well as international scientific support, to effectively tackle this phytosanitary emergency and thus safeguard the sustainability and profitability of one of Asia's key agricultural commodities. © 2016 Society of Chemical Industry.


Assuntos
Manihot , Controle de Pragas , Doenças das Plantas/prevenção & controle , Sudeste Asiático , Controle de Insetos , Manihot/microbiologia , Manihot/parasitologia , Doenças das Plantas/estatística & dados numéricos , Pesquisa
20.
Braz J Microbiol ; 46(4): 1077-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691465

RESUMO

The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, Lecanicillium lecanii and Isaria fumosorosea were tested for their efficacy in managing the exotic spiraling whitefly Aleurodicus dispersus (Hemiptera, Aleyrodidae) on cassava (Manihot esculenta) during 2 seasons (2011-2012 and 2012-2013). The fungi I. fumosorosea and L. lecanii exhibited promising levels of control (> 70% mortality of the A. dispersus population). The percent mortality increased over time in both seasons. Application of I. fumosorosea was highly pathogenic to A. dispersus in both seasons compared to the other entomopathogenic fungi. Analysis of the percent mortality in both seasons revealed differences in efficacy between 3 and 15 days after treatment. The season also influenced the effects of the fungi on the A. dispersus population. Thus, entomopathogenic fungi have the potential to manage A. dispersus infestation of cassava.


Assuntos
Hemípteros/microbiologia , Hypocreales/fisiologia , Manihot/parasitologia , Doenças das Plantas/prevenção & controle , Animais , Hemípteros/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...