Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Appl Environ Microbiol ; 90(7): e0050224, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38864630

RESUMO

Mannheimia haemolytica is a major contributor to bovine respiratory disease (BRD), which causes substantial economic losses to the beef industry, and there is an urgent need for rapid and accurate diagnostic tests to provide evidence for treatment decisions and support antimicrobial stewardship. Diagnostic sequencing can provide information about antimicrobial resistance genes in M. haemolytica more rapidly than conventional diagnostics. Realizing the full potential of diagnostic sequencing requires a comprehensive understanding of the genetic markers of antimicrobial resistance. We identified genetic markers of resistance in M. haemolytica to macrolide class antibiotics commonly used for control of BRD. Genome sequences were determined for 99 M. haemolytica isolates with six different susceptibility phenotypes collected over 2 years from a feedlot in Saskatchewan, Canada. Known macrolide resistance genes estT, msr(E), and mph(E) were identified in most resistant isolates within predicted integrative and conjugative elements (ICEs). ICE sequences lacking antibiotic resistance genes were detected in 10 of 47 susceptible isolates. No resistance-associated polymorphisms were detected in ribosomal RNA genes, although previously unreported mutations in the L22 and L23 ribosomal proteins were identified in 12 and 27 resistant isolates, respectively. Pangenome analysis led to the identification of 79 genes associated with resistance to gamithromycin, of which 95% (75 of 79) had no functional annotation. Most of the observed phenotypic resistance was explained by previously identified antibiotic resistance genes, although resistance to the macrolides gamithromycin and tulathromycin was not explained in 39 of 47 isolates, demonstrating the need for continued surveillance for novel determinants of macrolide resistance.IMPORTANCEBovine respiratory disease is the costliest disease of beef cattle in North America and the most common reason for injectable antibiotic use in beef cattle. Metagenomic sequencing offers the potential to make economically significant reductions in turnaround time for diagnostic information for evidence-based selection of antibiotics for use in the feedlot. The success of diagnostic sequencing depends on a comprehensive catalog of antimicrobial resistance genes and other genome features associated with reduced susceptibility. We analyzed the genome sequences of isolates of Mannheimia haemolytica, a major bovine respiratory disease pathogen, and identified both previously known and novel genes associated with reduced susceptibility to macrolide class antimicrobials. These findings reinforce the need for ongoing surveillance for markers of antimicrobial resistance to support improved diagnostics and antimicrobial stewardship.


Assuntos
Antibacterianos , Macrolídeos , Mannheimia haemolytica , Macrolídeos/farmacologia , Saskatchewan , Antibacterianos/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/genética , Animais , Bovinos , Marcadores Genéticos , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/tratamento farmacológico
2.
ScientificWorldJournal ; 2024: 5605552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655561

RESUMO

Background: Pasteurella species are frequently encountered as serious diseases in small ruminants. It is the main cause of respiratory pasteurellosis in sheep and goats of all age groups. Methods: The cross-sectional study was conducted from December 2022 to April 2023 in Haramaya district, eastern Ethiopia, to isolate and identify Pasteurella multocida and Mannheimia haemolytica and estimate their prevalence, associated risk factors, and antimicrobial sensitivity of isolates in small ruminants using a purposive sampling method. A total of 384 samples (156 nasal swabs from clinic cases and 228 lung swabs from abattoir cases) were collected. STATA 14 software was used to analyze the data. In addition, multivariable logistic regression analysis was performed to assess an association of risk factors. Results: Out of the 384 samples examined, 164 were positive for pasteurellosis, resulting in a 42.70% prevalence. Similarly, 63 (38.4%) of the 164 positive results were from nasal swabs, while 101 (61.6%) came from lung samples. M. haemolytica accounted for 126 (76.82%) of the isolates, while P. multocida accounted for 38 (23.17%). Of the 63 nasal swab isolates, 33 (37%) were from goats and 30 (42.8%) were from sheep. And 17 (10.89%) and 46 (29.58%), respectively, were P. multocida and M. haemolytica. Of the 46 (40%) of the 101 (44.3%) isolates of the pneumonic lung, samples were from goats, while 55 (48.47%) were from sheep. In this study, the risk factors (species, age, and body condition score) were found to be significant (p < 0.05). Pasteurella isolates evaluated for antibiotic susceptibility were highly resistant to oxacillin (90.90%), followed by gentamycin (72.72%), and penicillin (63.63%). However, the isolates were highly sensitive to chloramphenicol (90.90%), followed by tetracycline (63.63%), and ampicillin (54.54%). Conclusion: This study showed that M. haemolytica and P. multocida are the common causes of mannheimiosis and pasteurellosis in small ruminants, respectively, and isolates were resistant to commonly used antibiotics in the study area. Thus, an integrated vaccination strategy, antimicrobial resistance monitoring, and avoidance of stress-inducing factors are recommended.


Assuntos
Antibacterianos , Cabras , Mannheimia haemolytica , Testes de Sensibilidade Microbiana , Pasteurella multocida , Doenças dos Ovinos , Animais , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/isolamento & purificação , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/isolamento & purificação , Etiópia/epidemiologia , Ovinos/microbiologia , Cabras/microbiologia , Antibacterianos/farmacologia , Estudos Transversais , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/epidemiologia , Doenças das Cabras/microbiologia , Doenças das Cabras/epidemiologia , Prevalência , Fatores de Risco , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/epidemiologia
3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673750

RESUMO

Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in cattle raised in North America. At the feedlot, cattle are subject to metaphylactic treatment with macrolides to prevent BRD, a practice that may promote antimicrobial resistance and has resulted in an urgent need for novel strategies. Mannheimia haemolytica is one of the major bacterial agents of BRD. The inhibitory effects of two amphipathic, α-helical (PRW4, WRL3) and one ß-sheet (WK2) antimicrobial peptides were evaluated against multidrug-resistant (MDR) M. haemolytica isolated from Alberta feedlots. WK2 was not cytotoxic against bovine turbinate (BT) cells by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. All three peptides inhibited M. haemolytica, with WK2 being the most efficacious against multiple isolates. At 8-16 µg/mL, WK2 was bactericidal against Mh 330 in broth, and at 32 µg/mL in the presence of BT cells, it reduced the population by 3 logs CFU/mL without causing cytotoxic effects. The membrane integrity of Mh 330 was examined using NPN (1-N-phenylnaphthylamine) and ONPG (o-Nitrophenyl ß-D-galactopyranoside), with both the inner and outer membranes being compromised. Thus, WK2 may be a viable alternative to the use of macrolides as part of BRD prevention and treatment strategies.


Assuntos
Peptídeos Antimicrobianos , Mannheimia haemolytica , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Complexo Respiratório Bovino/tratamento farmacológico , Complexo Respiratório Bovino/microbiologia , Mannheimia haemolytica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
4.
PLoS One ; 17(2): e0247213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143504

RESUMO

A cross-sectional prospective cohort study including 1026 heifers administered tulathromycin due to high risk of clinical signs of bovine respiratory disease (BRD), measured poor association between BRD clinical outcomes and results of bacterial culture and tulathromycin susceptibility from BRD isolates of deep nasopharyngeal swabs (DNS) and adequate association with viral polymerase chain reaction (PCR) results from nasal swabs. Isolation rates from DNS collected on day-0 and at 1st BRD-treatment respectively were: Mannheimia haemolytica (10.9% & 34.1%); Pasteurella multocida (10.4% & 7.4%); Mycoplasma bovis (1.0% & 36.6%); and Histophilus somni (0.7% & 6.3%). Prevalence of BRD viral nucleic acid on nasal swabs collected exclusively at 1st BRD-treatment were: bovine parainfluenza virus type-3 (bPIV-3) 34.1%; bovine viral diarrhea virus (BVDV) 26.3%; bovine herpes virus type-1 (BHV-1) 10.8%; and bovine respiratory syncytial virus (BRSV) 54.1%. Increased relative risk, at 95% confidence intervals, of 1st BRD-treatment failure was associated with positive viral PCR results: BVDV 1.39 (1.17-1.66), bPIV-3 1.26 (1.06-1.51), BHV-1 1.52 (1.25-1.83), and BRSV 1.35 (1.11-1.63) from nasal swabs collected at 1st BRD-treatment and culture of M. haemolytica 1.23 (1.00-1.51) from DNS collected at day-0. However, in this population of high-risk feeder heifers, the predictive values of susceptible and resistant isolates had inadequate association with BRD clinical outcome. These results indicate, that using tulathromycin susceptibility testing of isolates of M. haemolytica or P. multocida from DNS collected on arrival or at 1st BRD-treatment to evaluate tulathromycin clinical efficacy, is unreliable.


Assuntos
Antibacterianos/farmacologia , Complexo Respiratório Bovino/patologia , Doenças dos Bovinos/patologia , Dissacarídeos/farmacologia , Compostos Heterocíclicos/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Pasteurella multocida/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Complexo Respiratório Bovino/tratamento farmacológico , Complexo Respiratório Bovino/microbiologia , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Estudos Transversais , DNA Viral/genética , DNA Viral/metabolismo , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/isolamento & purificação , Dissacarídeos/uso terapêutico , Herpesvirus Bovino 1/efeitos dos fármacos , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/isolamento & purificação , Compostos Heterocíclicos/uso terapêutico , Mannheimia haemolytica/isolamento & purificação , Testes de Sensibilidade Microbiana , Nasofaringe/microbiologia , Nasofaringe/virologia , Pasteurella multocida/isolamento & purificação , Reação em Cadeia da Polimerase , Estudos Prospectivos , RNA Viral/genética , RNA Viral/metabolismo , Vírus Sincicial Respiratório Bovino/efeitos dos fármacos , Vírus Sincicial Respiratório Bovino/genética , Vírus Sincicial Respiratório Bovino/isolamento & purificação , Fatores de Risco , Falha de Tratamento
5.
Nutrients ; 13(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34684515

RESUMO

Emerging antimicrobial-resistant pathogens highlight the importance of developing novel interventions. Here, we investigated the anti-inflammatory properties of Fructo-oligosaccharides (FOS) in calf lung infections and in airway epithelial cells stimulated with pathogens, and/or bacterial components. During a natural exposure, 100 male calves were fed milk replacer with or without FOS for 8 weeks. Then, immune parameters and cytokine/chemokine levels in the bronchoalveolar lavage fluid (BALF) and blood were measured, and clinical scores were investigated. Calf primary bronchial epithelial cells (PBECs) and human airway epithelial cells (A549) were treated with Mannheimia haemolytica, lipopolysaccharides (LPS), and/or flagellin, with or without FOS pretreatment. Thereafter, the cytokine/chemokine levels and epithelial barrier function were examined. Relative to the control (naturally occurring lung infections), FOS-fed calves had greater macrophage numbers in BALF and lower interleukin (IL)-8, IL-6, and IL-1ß concentrations in the BALF and blood. However, FOS did not affect the clinical scores. At slaughter, FOS-fed calves had a lower severity of lung lesions compared to the control. Ex vivo, FOS prevented M. haemolytica-induced epithelial barrier dysfunction. Moreover, FOS reduced M. haemolytica- and flagellin-induced (but not LPS-induced) IL-8, TNF-α, and IL-6 release in PBECs and A549 cells. Overall, FOS had anti-inflammatory properties during the natural incidence of lung infections but had no effects on clinical symptoms.


Assuntos
Anti-Inflamatórios/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Oligossacarídeos/farmacologia , Pasteurella multocida/efeitos dos fármacos , Pneumonia Enzoótica dos Bezerros/tratamento farmacológico , Animais , Bovinos , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Pulmão/microbiologia , Pneumonia Enzoótica dos Bezerros/microbiologia
6.
Int J Mol Sci ; 22(13)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203496

RESUMO

The antimicrobial activity of surfactant-associated anionic peptides (SAAPs), which are isolated from the ovine pulmonary surfactant and are selective against the ovine pathogen Mannheimia haemolytica, is strongly enhanced in the presence of Zn(II) ions. Both calorimetry and ITC measurements show that the unique Asp-only peptide SAAP3 (DDDDDDD) and its analogs SAAP2 (GDDDDDD) and SAAP6 (GADDDDD) have a similar micromolar affinity for Zn(II), which binds to the N-terminal amine and Asp carboxylates in a net entropically-driven process. All three peptides also bind Cu(II) with a net entropically-driven process but with higher affinity than they bind Zn(II) and coordination that involves the N-terminal amine and deprotonated amides as the pH increases. The parent SAAP3 binds Cu(II) with the highest affinity; however, as shown with potentiometry and absorption, CD and EPR spectroscopy, Asp residues in the first and/or second positions distinguish Cu(II) binding to SAAP3 and SAAP2 from their binding to SAAP6, decreasing the Cu(II) Lewis acidity and suppressing its square planar amide coordination by two pH units. We also show that these metal ions do not stabilize a membrane disrupting ability nor do they induce the antimicrobial activity of these peptides against a panel of human pathogens.


Assuntos
Cobre/metabolismo , Peptídeos/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Zinco/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/patogenicidade , Peptídeos/metabolismo , Termodinâmica
7.
Vet Res ; 52(1): 83, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112244

RESUMO

Mannheimia haemolytica-induced bovine respiratory disease causes loss of millions of dollars to Canadian cattle industry. Current antimicrobials are proving to be ineffective and leave residues in meat. Antimicrobial peptides (AMPs) may be effective against M. haemolytica while minimizing the risk of drug residues. Cationic AMPs can kill bacteria through interactions with the anionic bacterial membrane. Human ß-Defensin 3 (HBD3) and microcin J25 (MccJ25) are AMPs with potent activity against many Gram-negative bacteria. We tested the microbicidal activity of wild-type HBD3, three HBD3 peptide analogues (28 amino acid, 20AA, and 10AA) derived from the sequence of natural HBD3, and MccJ25 in vitro against M. haemolytica. Three C-terminal analogues of HBD3 with all cysteines replaced with valines were manually synthesized using solid phase peptide synthesis. Since AMPs can act as chemoattractant we tested the chemotactic effect of HBD3, 28AA, 20AA, and 10AA peptides on bovine neutrophils in Boyden chamber. Minimum bactericidal concentration (MBC) assay showed that M. haemolytica was intermediately sensitive to HBD3, 28AA and 20AA analogues with an MBC of 50 µg/mL. The 10AA analogue had MBC 6.3 µg/mL which is likely a result of lower final inoculum size. MccJ25 didn't have significant bactericidal effect below an MBC < 100 µg/mL. Bovine neutrophils showed chemotaxis towards HBD3 and 20AA peptides (P < 0.05) but not towards 28AA analogue. Co-incubation of neutrophils with any of the peptides did not affect their chemotaxis towards N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP). The data show that these peptides are effective against M. haemolytica and are chemotactic for neutrophils in vitro.


Assuntos
Bacteriocinas/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , beta-Defensinas/genética , beta-Defensinas/farmacologia , Animais , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bovinos , Mannheimia haemolytica/fisiologia , Neutrófilos/fisiologia , Engenharia de Proteínas , beta-Defensinas/metabolismo
8.
J Antibiot (Tokyo) ; 74(6): 363-369, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33654250

RESUMO

An anti-mannheimiosis agent, aldsulfin, was isolated from a culture broth of the fungus Lasiodiplodia pseudotheobromae FKI-4499, together with a known compound, lasiodipline C, using bioassay-guided fractionation. Spectroscopic analysis of aldsulfin, using NMR, mass spectrometry, and CD analyses revealed it to be an epithiodiketopiperazine with an unstable and unusual hemithioaminal moiety. Aldsulfin showed antibacterial activity against Mannheimia haemolytica and Pasteurella multocida.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ascomicetos/metabolismo , Mannheimia haemolytica/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Meios de Cultura/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fermentação , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pasteurella multocida/efeitos dos fármacos
9.
Anim Health Res Rev ; 21(2): 196-199, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33261715

RESUMO

Bovine respiratory disease (BRD) is the most common cause of morbidity and mortality in North American beef cattle. In recent years, isolation of strains of Mannheimia haemolytica that are resistant to multiple different classes of antimicrobials has become commonplace. New research would suggest that the routine use of antimicrobials by some cattle operations might be driving emerging resistance patterns, with the majority of the spread observed due to propagation of strains of M. haemolytica that have acquired integrative conjugative elements. To date, there is little information evaluating the impact of antimicrobial resistance on clinical outcome in cattle with BRD.


Assuntos
Antibacterianos/farmacologia , Complexo Respiratório Bovino/microbiologia , Farmacorresistência Bacteriana , Mannheimia haemolytica/efeitos dos fármacos , Animais , Complexo Respiratório Bovino/tratamento farmacológico , Bovinos , Prevalência
10.
J Dairy Sci ; 103(10): 9464-9472, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32747101

RESUMO

The objective of this study was to describe the prevalence and trends in antimicrobial resistance for bacterial pathogens associated with bovine respiratory disease (BRD) isolated from samples submitted to the Wisconsin Veterinary Diagnostic Laboratory (WVDL). Data were retrospectively collected from bovine respiratory isolates including Pasteurella multocida, Mannheimia haemolytica, Histophilus somni, and Bibersteinia trehalosi identified at the WVDL between January 2008 and December 2017. Antimicrobial susceptibility testing data were queried from antimicrobial resistance databases at the WVDL. A total of 4,261 isolates were identified. Pasteurella multocida was most frequently identified, accounting for 2,094 isolates (49% of total) over the study period. Mannheimia haemolytica was the second most frequently isolated bacterial respiratory pathogen (n = 1,267, 30%) followed by H. somni (n = 749, 18%) and B. trehalosi (n = 151, 4%). Over the 10-yr period, B. trehalosi had the highest median percentage of isolates that were resistant to at least one antibiotic at 33% (interquartile range: 24, 47) followed by M. haemolytica (13%; 8, 23). For P. multocida, 10% (4, 26) of isolates were classified as resistant to at least one antibiotic, whereas H. somni had the fewest resistant isolates (9%; 3, 15). When comparing 2013-2017 to 2008-2012, the overall percentage of resistant isolates for P. multocida and B. trehalosi decreased, whereas the percentage of resistant isolates for M. haemolytica and H. somni increased. Increased resistance against florfenicol, fluoroquinolones, gentamicin, tilmicosin, and tulathromycin was observed for M. haemolytica. These data show that antimicrobial susceptibility for BRD bacterial pathogens has changed in the population served by the WVDL over this 10-yr period. For P. multocida, resistance is relatively low and has either improved or at least remained constant for the majority of drugs labeled for treatment of respiratory disease in dairy cattle. Veterinarians and producers should be aware of the bacterial pathogens most commonly associated with BRD and work toward early disease detection, proper antibiotic administration, and monitoring lung lesions to ensure that their treatment protocols improve lung health.


Assuntos
Complexo Respiratório Bovino/epidemiologia , Farmacorresistência Bacteriana , Infecções por Pasteurellaceae/veterinária , Pasteurellaceae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Complexo Respiratório Bovino/microbiologia , Bovinos , Mannheimia haemolytica/efeitos dos fármacos , Pasteurella multocida/efeitos dos fármacos , Infecções por Pasteurellaceae/epidemiologia , Infecções por Pasteurellaceae/microbiologia , Prevalência , Estudos Retrospectivos , Wisconsin/epidemiologia
11.
Vet Clin North Am Food Anim Pract ; 36(2): 253-268, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32327253

RESUMO

The bacteria Mannheimia haemolytica and Pasteurella multocida contribute to bovine respiratory disease (BRD), which is often managed with antimicrobials. Antimicrobial resistance in these bacteria has been rare, but extensively drug-resistant strains have recently become common. Routine antimicrobial use may be driving this resistance. Resistance spread is caused in part by propagation of strains harboring integrative conjugative elements. The impact of antimicrobial resistance on treatment outcomes is not clear, but clinical observations suggest that response to first treatment has decreased over time, possibly because of resistance. Clinicians should consider antimicrobial resistance when designing BRD treatment and control programs.


Assuntos
Complexo Respiratório Bovino/microbiologia , Mannheimia haemolytica/patogenicidade , Pasteurella multocida/patogenicidade , Animais , Antibacterianos/uso terapêutico , Complexo Respiratório Bovino/tratamento farmacológico , Bovinos , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/genética , Testes de Sensibilidade Microbiana , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/genética
12.
Vet Res ; 51(1): 36, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138772

RESUMO

Mannheimia haemolytica serotype A2 is the principal cause of pneumonic mannheimiosis in ovine and caprine livestock; this disease is a consequence of immune suppression caused by stress and associated viruses and is responsible for significant economic losses in farm production worldwide. Gram-negative bacteria such as M. haemolytica produce outer membrane (OM)-derived spherical structures named outer membrane vesicles (OMVs) that contain leukotoxin and other biologically active virulence factors. In the present study, the relationship between M. haemolytica A2 and bovine lactoferrin (BLf) was studied. BLf is an 80 kDa glycoprotein that possesses bacteriostatic and bactericidal properties and is part of the mammalian innate immune system. Apo-BLf (iron-free) showed a bactericidal effect against M. haemolytica A2, with an observed minimal inhibitory concentration (MIC) of 16 µM. Sublethal doses (2-8 µM) of apo-BLf increased the release of OMVs, which were quantified by flow cytometry. Apo-BLf modified the normal structure of the OM and OMVs, as observed through transmission electron microscopy. Apo-BLf also induced lipopolysaccharide (LPS) release from bacteria, disrupting OM permeability and functionality, as measured by silver staining and SDS and polymyxin B cell permeability assays. Western blot results showed that apo-BLf increased the secretion of leukotoxin in M. haemolytica A2 culture supernatants, possibly through its iron-chelating activity. In contrast, holo-BLf (with iron) did not have this effect, possibly due to differences in the tertiary structure between these proteins. In summary, apo-BLf affected the levels of several M. haemolytica virulence factors and could be evaluated for use in animals as an adjuvant in the treatment of ovine mannheimiosis.


Assuntos
Antibacterianos/farmacologia , Exotoxinas , Lactoferrina/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Pasteurelose Pneumônica/tratamento farmacológico , Doenças dos Ovinos/tratamento farmacológico , Animais , Mannheimia haemolytica/fisiologia , Ovinos
13.
PLoS One ; 14(12): e0219104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31835273

RESUMO

Although 90% of BRD relapses are reported to receive retreatment with a different class of antimicrobial, studies examining the impact of antimicrobial selection (i.e. bactericidal or bacteriostatic) on retreatment outcomes and the emergence of antimicrobial resistance (AMR) are deficient in the published literature. This survey was conducted to determine the association between antimicrobial class selection for treatment and retreatment of BRD relapses on antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Pathogens were isolated from samples submitted to the Iowa State University Veterinary Diagnostic Laboratory from January 2013 to December 2015. A total of 781 isolates with corresponding animal case histories, including treatment protocols, were included in the analysis. Original susceptibility testing of these isolates for ceftiofur, danofloxacin, enrofloxacin, florfenicol, oxytetracycline, spectinomycin, tilmicosin, and tulathromycin was performed using Clinical and Laboratory Standards Institute guidelines. Data were analyzed using a Bayesian approach to evaluate whether retreatment with antimicrobials of different mechanistic classes (bactericidal or bacteriostatic) increased the probability of resistant BRD pathogen isolation in calves. The posterior distribution we calculated suggests that an increased number of treatments is associated with a greater probability of isolates resistant to at least one antimicrobial. Furthermore, the frequency of resistant BRD bacterial isolates was greater with retreatment using antimicrobials of different mechanistic classes than retreatment with the same class. Specifically, treatment protocols using a bacteriostatic drug first followed by retreatment with a bactericidal drug were associated with a higher frequency of resistant BRD pathogen isolation. In particular, first treatment with tulathromycin (bacteriostatic) followed by ceftiofur (bactericidal) was associated with the highest probability of resistant M. haemolytica among all antimicrobial combinations. These observations suggest that consideration should be given to antimicrobial pharmacodynamics when selecting drugs for retreatment of BRD. However, prospective studies are needed to determine the clinical relevance to antimicrobial stewardship programs in livestock production systems.


Assuntos
Complexo Respiratório Bovino/tratamento farmacológico , Complexo Respiratório Bovino/microbiologia , Resistência Microbiana a Medicamentos/fisiologia , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bovinos , Cefalosporinas , Dissacarídeos , Fluoroquinolonas , Compostos Heterocíclicos , Mannheimia haemolytica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pasteurella multocida/efeitos dos fármacos , Pasteurellaceae/efeitos dos fármacos , Estudos Prospectivos , Recidiva , Doenças Respiratórias/tratamento farmacológico , Sorogrupo , Tilosina/análogos & derivados
14.
PLoS One ; 14(11): e0225533, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770402

RESUMO

Bacterial pneumonia causes significant economic loss to the beef industry and occurs at times of stress and viral infection. Administering antibiotics to at-risk calves is often used to prevent the disease, but alternatives to mass treatment with antibiotics are needed. Tracheal antimicrobial peptide (TAP), a ß-defensin naturally produced by bovine airways, has bactericidal activity against the pathogens that cause pneumonia in cattle. However, TAP expression is suppressed by glucocorticoid (stress) and viral infection. We hypothesized that delivering TAP to the respiratory tract would prevent development of pneumonia in calves infected with Mannheimia haemolytica. Clean-catch calves (i.e. obtained prior to contact with the dam) were challenged by aerosol with M. haemolytica, and TAP or water was delivered to the respiratory tract at 0.3, 2 and 6 hours post-infection. TAP treatment did not protect against development of disease. Calves treated with TAP had similar bacterial loads in the nasal cavity and lung compared to calves treated with water. Similarly, TAP treatment did not affect the development of clinical signs, elevated rectal temperatures, or increased levels of blood neutrophils, haptoglobin and fibrinogen that occurred after bacterial challenge. Postmortem gross and histologic lung lesions were also similar in the two groups. To determine why there was a lack of protective effect, we tested the effect of substances in respiratory lining fluid on the bactericidal activity of TAP. Physiologic concentrations of sodium chloride inhibited TAP bactericidal activity in vitro, as did serum at concentrations of 0.62 to 2.5%, but concentrated bronchoalveolar lavage fluid had no consistent effect. These findings suggest that TAP does not have in vivo bactericidal activity against M. haemolytica because of interference by physiological sodium chloride levels and by serum. Thus, administration of TAP may not be effective for prevention of M. haemolytica pneumonia.


Assuntos
Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Mannheimia haemolytica/patogenicidade , Infecções por Pasteurellaceae/tratamento farmacológico , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Líquido da Lavagem Broncoalveolar/microbiologia , Bovinos , Fibrinogênio/análise , Haptoglobinas/análise , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/isolamento & purificação , Oxirredução , Infecções por Pasteurellaceae/veterinária , Cloreto de Sódio/farmacologia
15.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31444198

RESUMO

Bovine respiratory disease (BRD) is a major cause of morbidity and mortality in beef cattle. Recent evidence suggests that commensal bacteria of the bovine nasopharynx have an important role in maintaining respiratory health by providing colonization resistance against pathogens. The objective of this study was to screen and select bacterial therapeutic candidates from the nasopharynxes of feedlot cattle to mitigate the BRD pathogen Mannheimia haemolytica In a stepwise approach, bacteria (n = 300) isolated from the nasopharynxes of 100 healthy feedlot cattle were identified and initially screened (n = 178 isolates from 12 different genera) for growth inhibition of M. haemolytica Subsequently, selected isolates were evaluated for the ability to adhere to bovine turbinate (BT) cells (n = 47), compete against M. haemolytica for BT cell adherence (n = 15), and modulate gene expression in BT cells (n = 10). Lactobacillus strains had the strongest inhibition of M. haemolytica, with 88% of the isolates (n =33) having inhibition zones ranging from 17 to 23 mm. Adherence to BT cells ranged from 3.4 to 8.0 log10 CFU per 105 BT cells. All the isolates tested in competition assays reduced M. haemolytica adherence to BT cells (32% to 78%). Among 84 bovine genes evaluated, selected isolates upregulated expression of interleukin 8 (IL-8) and IL-6 (P < 0.05). After ranking isolates for greatest inhibition, adhesion, competition, and immunomodulation properties, 6 Lactobacillus strains from 4 different species were selected as the best candidates for further development as intranasal bacterial therapeutics to mitigate M. haemolytica infection in feedlot cattle.IMPORTANCE Bovine respiratory disease (BRD) is a significant animal health issue impacting the beef industry. Current BRD prevention strategies rely mainly on metaphylactic use of antimicrobials when cattle enter feedlots. However, a recent increase in BRD-associated bacterial pathogens that are resistant to metaphylactic antimicrobials highlights a pressing need for the development of novel mitigation strategies. Based upon previous research showing the importance of respiratory commensal bacteria in protecting against bronchopneumonia, this study aimed to develop bacterial therapeutics that could be used to mitigate the BRD pathogen Mannheimia haemolytica Bacteria isolated from the respiratory tracts of healthy cattle were characterized for their inhibitory, adhesive, and immunomodulatory properties. In total, 6 strains were identified as having the best properties for use as intranasal therapeutics to inhibit M. haemolytica If successful in vivo, these strains offer an alternative to metaphylactic antimicrobial use in feedlot cattle for mitigating BRD.


Assuntos
Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/terapia , Mannheimia haemolytica/patogenicidade , Pneumonia Enzoótica dos Bezerros/microbiologia , Pneumonia Enzoótica dos Bezerros/terapia , Infecções Respiratórias/terapia , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Broncopneumonia/microbiologia , Broncopneumonia/terapia , Bovinos , Doenças dos Bovinos/imunologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Imunidade Inata , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/fisiologia , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/crescimento & desenvolvimento , Mannheimia haemolytica/isolamento & purificação , Testes de Sensibilidade Microbiana , Nasofaringe/microbiologia , Sistema Respiratório/microbiologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia
16.
Vet Microbiol ; 235: 110-117, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31282368

RESUMO

Bovine Respiratory Disease (BRD) is a major threat to animal health and welfare in the cattle industry. Strains of Mannheimia haemolytica (Mh) that are resistant to multiple classes of antimicrobials are becoming a major concern in the beef industry, as the frequency of isolation of these strains has been increasing. Mobile genetic elements, such as integrative conjugative elements (ICE), are frequently implicated in this rapid increase in multi-drug resistance. The objectives of the current study were to determine the genetic relationship between the isolates collected at arrival before metaphylaxis and at revaccination after metaphylaxis, to identify which resistance genes might be present in these isolates, and to determine if they were carried on an ICE. Twenty calves culture positive for Mh at arrival and revaccination were identified, and a total of 48 isolates with unique susceptibility profiles (26 from arrival, and 22 from revaccination) were submitted for whole-genome sequencing (WGS). A phylogenetic tree was constructed, showing the arrival isolates falling into four clades, and all revaccination isolates within one clade. All revaccination isolates, and one arrival isolate, were positive for the presence of an ICE. Three different ICEs with resistance gene modules were identified. The resistance genes aphA1, strA, strB, sul2, floR, erm42, tetH/R, aadB, aadA25, blaOXA-2, msrE, mphE were all located within an ICE. The gene bla-ROB1 was also present in the isolates, but was not located within an ICE.


Assuntos
Antibacterianos/farmacologia , Bovinos/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/genética , Pasteurelose Pneumônica/microbiologia , Animais , Antibacterianos/uso terapêutico , Dissacarídeos/uso terapêutico , Variação Genética , Genoma Bacteriano , Compostos Heterocíclicos/uso terapêutico , Imunização Secundária , Sequências Repetitivas Dispersas , Mannheimia haemolytica/isolamento & purificação , Testes de Sensibilidade Microbiana , Pasteurelose Pneumônica/tratamento farmacológico , Filogenia , Vacinação , Sequenciamento Completo do Genoma
17.
J Microbiol Methods ; 159: 138-147, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30849421

RESUMO

Disruptive innovations in long-range, cost-effective direct template nucleic acid sequencing are transforming clinical and diagnostic medicine. A multidrug resistant strain and a pan-susceptible strain of Mannheimia haemolytica, isolated from pneumonic bovine lung samples, were sequenced at 146× and 111× coverage, respectively with Oxford Nanopore Technologies MinION. De novo assembly produced a complete genome for the non-resistant strain and a nearly complete assembly for the drug resistant strain. Functional annotation using RAST (Rapid Annotations using Subsystems Technology), CARD (Comprehensive Antibiotic Resistance Database) and ResFinder databases identified genes conferring resistance to different classes of antibiotics including ß-lactams, tetracyclines, lincosamides, phenicols, aminoglycosides, sulfonamides and macrolides. Resistance phenotypes of the M. haemolytica strains were determined by minimum inhibitory concentration (MIC) of the antibiotics. Sequencing with a highly portable MinION device corresponded to MIC assays with most of the antimicrobial resistant determinants being identified with as few as 5437 reads, except for the genes responsible for resistance to Fluoroquinolones. The resulting quality assemblies and AMR gene annotation highlight the efficiency of ultra-long read, whole-genome sequencing (WGS) as a valuable tool in diagnostic veterinary medicine.


Assuntos
Farmacorresistência Bacteriana , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/genética , Sequenciamento por Nanoporos/métodos , Pneumonia Enzoótica dos Bezerros/microbiologia , Animais , Antibacterianos/farmacologia , Bovinos , Genoma Bacteriano , Mannheimia haemolytica/isolamento & purificação , Testes de Sensibilidade Microbiana , Pneumonia Enzoótica dos Bezerros/diagnóstico , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
18.
Res Vet Sci ; 124: 10-12, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30776549

RESUMO

The objective of this study was to assess the prevalence of three serotypes, A1, A2, and A6 in 98 M. haemolytica isolates collected from clinical BRD cases in European cattle and assess their antimicrobial resistance profiles. Isolates were characterized by serotyping (plate agglutination and serotype specific PCR) and antimicrobial susceptibility testing. The study identified a predominance of serotypes A1 (59%) and A6 (22%) in European M. haemolytica isolates exhibiting a relatively low level of antimicrobial resistance. A comprehensive understanding of the relative prevalence of different M. haemolytica serotypes in Europe informs a targeted approach for vaccine design against BRD.


Assuntos
Complexo Respiratório Bovino/epidemiologia , Farmacorresistência Bacteriana/imunologia , Mannheimia haemolytica/efeitos dos fármacos , Infecções por Pasteurellaceae/veterinária , Sorotipagem/veterinária , Animais , Antibacterianos/farmacologia , Complexo Respiratório Bovino/microbiologia , Bovinos , Europa (Continente)/epidemiologia , Mannheimia haemolytica/fisiologia , Infecções por Pasteurellaceae/epidemiologia , Infecções por Pasteurellaceae/microbiologia , Prevalência
19.
J Vet Pharmacol Ther ; 42(1): 52-59, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30267412

RESUMO

For clinical isolates of bovine Mannheimia haemolytica and Pasteurella multocida, this study reports minimum inhibitory concentration (MIC) differences for tetracycline, oxytetracycline and doxycycline between cation-adjusted Mueller-Hinton broth (CAMHB), foetal bovine serum (FBS) and Roswell Park Memorial Institute (RPMI) medium. MICs were determined according to CLSI standards and additionally using five overlapping sets of twofold dilutions. Matrix effect: (a) free drug MICs and minimum bactericidal concentrations (MBC) for all drugs were significantly higher in FBS than in CAMHB for both pathogens (p < 0.001); (b) MICs and MBCs were higher for CAMHB and FBS compared to RPMI for P. multocida only. Net growth rate for P. multocida in CAMHB was significantly slower than in FBS and higher than in RPMI, correlating to MIC and MBC ranking. Drug effect: doxycycline MICs and MBCs were significantly lower (p < 0.001) in both CAMHB and FBS than tetracycline and oxytetracycline for both pathogens. Only for M. haemolytica were oxytetracycline MIC and MBC significantly lower than tetracycline, precluding the use of tetracycline to predict oxytetracycline susceptibility in this species. Determining potencies of tetracyclines in a physiological medium, such as FBS, is proposed, when the objective is correlation with pharmacokinetic data for dosage determination.


Assuntos
Antibacterianos/farmacologia , Doxiciclina/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Oxitetraciclina/farmacologia , Pasteurella multocida/efeitos dos fármacos , Tetraciclina/farmacologia , Meios de Cultura , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana/veterinária
20.
Sci Rep ; 8(1): 10553, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002424

RESUMO

To design an antimicrobial treatment regimen for a bacterial disease, data on the drug pharmacodynamics (PD) against selected drug-susceptible strains of the pathogen are used. The regimen is applied across such strains in the field, assuming the PD parameter values remain the same. We used time-kill experiments and PD modeling to investigate the fluoroquinolone enrofloxacin PD against different isolates of two bovine respiratory disease pathogens: four Mannheimia haemolytica and three Pasteurella multocida isolates. The models were fitted as mixed-effects non-linear regression; the fixed-effects PD parameter values were estimated after accounting for random variation among experimental replicates. There was both inter- and intra- bacterial species variability in the PD parameters Hill-coefficient and Emax (maximal decline of bacterial growth rate), with more variable PD responses among M. haemolytica than among P. multocida isolates. Moreover, the Hill-coefficient was correlated to the isolate's maximal population growth rate in the absence of antimicrobial exposure (a.k.a. specific growth rate; Spearman's ρ = 0.98, p-value = 0.003, n = 6 isolates excluding one outlier). Thus, the strain's properties such as growth potential may impact its PD responses. This variability can have clinical implications. Modifying the treatment regimen depending on phenotypic properties of the pathogen strain causing disease may be a precision medicine approach.


Assuntos
Antibacterianos/farmacologia , Complexo Respiratório Bovino/tratamento farmacológico , Fluoroquinolonas/farmacologia , Mannheimia haemolytica/efeitos dos fármacos , Pasteurella multocida/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Complexo Respiratório Bovino/microbiologia , Bovinos , Fluoroquinolonas/uso terapêutico , Mannheimia haemolytica/genética , Mannheimia haemolytica/isolamento & purificação , Testes de Sensibilidade Microbiana , Modelos Biológicos , Pasteurella multocida/genética , Pasteurella multocida/isolamento & purificação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...