Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943893

RESUMO

In vascular plants, cryptochromes acting as blue-light photoreceptors have various functions to adapt plants to the fluctuating light conditions on land, while the roles of cryptochromes in bryophytes have been rarely reported. In this study, we investigated functions of a single-copy ortholog of cryptochrome (MpCRY) in the liverwort Marchantia polymorpha. Knock-out of MpCRY showed that a large number of the mutant plants exhibited asymmetric growth of thalli under blue light. Transcriptome analyses indicated that MpCRY is mainly involved in photosynthesis and sugar metabolism. Further physiological analysis showed that Mpcry mutant exhibited a reduction in CO2 uptake and sucrose metabolism. In addition, exogenous application of sucrose or glucose partially restored the symmetrical growth of the Mpcry mutant thalli. Together, these results suggest that MpCRY is involved in the symmetrical growth of thallus and the regulation of carbon fixation and sucrose metabolism in M. polymorpha.


Assuntos
Ciclo do Carbono , Criptocromos/metabolismo , Marchantia/metabolismo , Sacarose/metabolismo , Sequência de Aminoácidos , Ciclo do Carbono/efeitos da radiação , Criptocromos/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glucose/metabolismo , Luz , Marchantia/efeitos da radiação , Mutação/genética , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Transcrição Gênica/efeitos da radiação
2.
PLoS One ; 15(5): e0233302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437457

RESUMO

When exposed to fluctuating light intensity, chloroplasts move towards weak light (accumulation response), and away from strong light (avoidance response). In addition, cold treatment (5°C) induces the avoidance response even under weak-light conditions (cold-avoidance response). These three responses are mediated by the phototropin (phot), which is a blue-light photoreceptor and has also been reported to act as a thermosensory protein that perceives temperature variation. Our previous report indicated that cold-induced changes in phot biochemical activity initiate the cold-avoidance response. In this study, we further explored the induction mechanism of the cold-avoidance response in the liverwort Marchantia polymorpha and examined the relationship between changes in the amount of phot and the induction of the cold-avoidance response. The switch between the accumulation and avoidance responses occurs at a so-called 'transitional' light intensity. Our physiological experiments revealed that a cold-mediated decrease in the transitional light intensity leads to the induction of the cold-avoidance response. While artificial overexpression of phot decreased the transitional light intensity as much as cold treatment did, the amount of endogenous phot was not increased by cold treatment in wild-type M. polymorpha. Taken together, these findings show that the cold-avoidance response is initiated by a cold-mediated reduction of the transitional light intensity, independent of the amount of endogenous phot. This study provides a clue to understanding the mechanism underlying the switch in direction of chloroplast relocation in response to light and temperature.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Fototropinas/metabolismo , Cloroplastos/ultraestrutura , Temperatura Baixa , Genes de Plantas , Luz , Marchantia/genética , Marchantia/metabolismo , Marchantia/efeitos da radiação , Movimento/efeitos da radiação , Fototropinas/genética , Fototropismo , Plantas Geneticamente Modificadas , Regulação para Cima
3.
Methods Mol Biol ; 2026: 215-223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31317416

RESUMO

Bryophytes, which comprise liverworts, mosses, and hornworts, are one of the earliest diverging lineages of extant land plants and a key plant group for understanding evolutionary aspects of land plant adaptation. Marchantia polymorpha, a liverwort, has recently been established as a model plant species having molecular genetic tractability. In M. polymorpha, phytochrome is encoded by a single-copy gene, MpPHY, with Mpphy regulating various physiological responses through PHYTOCHROME INTERACTING FACTOR (PIF)-mediated transcriptional regulation. The phytochrome signaling system of M. polymorpha, with its single Mpphy and single PIF (MpPIF), is relatively simple compared with other model plants carrying multiple phytochromes and PIFs. Consequently, investigation of phytochrome signaling using M. polymorpha may provide novel insights into fundamental mechanisms and roles of phytochrome during the course of land plant evolution. This chapter provides a number of basic procedures, along with some tips, for designing and performing experiments with M. polymorpha to study phytochrome signaling.


Assuntos
Marchantia/metabolismo , Fitocromo/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Transdução de Sinal Luminoso/efeitos da radiação , Marchantia/efeitos da radiação , Transdução de Sinais/efeitos da radiação
4.
Planta ; 249(5): 1349-1364, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30840176

RESUMO

MAIN CONCLUSION: The physiological importance of MpUVR8 in UV-B resistance and translocation in a UV-B-dependent manner from the cytosol into the nucleus is characterized in Marchantia polymorpha. UV RESISTANCE LOCUS 8 (UVR8) is an ultraviolet-B (UV-B) light receptor functioning for UV-B sensing and tolerance in Arabidopsis thaliana and other species. It is unclear whether UVR8 physiologically functions in UV-B-induced defense responses in Marchantia polymorpha, which belongs to the earliest diverging group of embryophyte lineages. Here, we demonstrate that UVR8 has a physiological function in UV-B tolerance and that there is a UVR8-dependent pathway involved. In addition, a UVR8-independent pathway is revealed. We examine the tissue-specific expression pattern of M. polymorpha UVR8 (MpUVR8), showing that it is highly expressed in the apical notch in thalli and gametangiophores, as well as in antheridial and archegonial heads. Furthermore, Mpuvr8KO plant transformants, in which the MpUVR8 locus was disrupted, were produced and analyzed to understand the physiological and molecular function of MpUVR8. Analysis using these plants indicates the important roles of MpUVR8 and MpUVR8-regulated genes, and of MpUVR8-independent pathways in UV-B tolerance. Subcellular localization of Citrine-fused MpUVR8 in M. polymorpha cells was also investigated. It was found to translocate from the cytosol into the nucleus in response to UV-B irradiation. Our findings indicate strong conservation of the physiological function of UVR8 and the molecular mechanisms for UVR8-dependent signal transduction through regulation of gene expression in embryophytes.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Marchantia/metabolismo , Marchantia/efeitos da radiação , Proteínas de Plantas/metabolismo , Raios Ultravioleta , Proteínas Cromossômicas não Histona/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Marchantia/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/efeitos da radiação , Transdução de Sinais/efeitos da radiação
5.
Astrobiology ; 19(2): 145-157, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742496

RESUMO

BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.


Assuntos
Cianobactérias/fisiologia , Exobiologia , Líquens/fisiologia , Marte , Biofilmes , Cianobactérias/efeitos da radiação , Deinococcus/fisiologia , Deinococcus/efeitos da radiação , Meio Ambiente Extraterreno , Líquens/efeitos da radiação , Marchantia/fisiologia , Marchantia/efeitos da radiação , Methanosarcina/fisiologia , Methanosarcina/efeitos da radiação , Minerais , Raios Ultravioleta
6.
Methods Mol Biol ; 1924: 53-61, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694467

RESUMO

The liverwort species, Marchantia polymorpha, shows environment-dependent morphological plasticity throughout its life cycle. Thalli, representing the predominant body form throughout most of this bryophyte's life cycle, grow with repeated dichotomous branching at the apex and develop horizontally under sufficient light intensity. Spores, after germination, produce a mass of cells, called sporelings, which then grow into thalli. Both thalli and sporelings, if grown under weak light conditions, form narrow shapes, and their apices grow toward the light source. These phototropic responses are specific to blue light and dependent on the blue-light receptor phototropin. This chapter provides several basic procedures, along with some tips, for designing and performing experiments with M. polymorpha to observe their phototropic responses, as well as methods for observing the localization of the phototropin "Mpphot" with a fluorescent protein tag.


Assuntos
Luz , Marchantia/efeitos da radiação , Plantas Geneticamente Modificadas/efeitos da radiação , Transformação Genética/efeitos da radiação , Marchantia/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética/genética
7.
Photochem Photobiol Sci ; 18(2): 400-412, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608105

RESUMO

We studied the effects of different radiation treatments on the physiology and UV-absorbing compounds of the model liverwort Marchantia polymorpha subsp. ruderalis. Starting from gemmae, samples were exposed to five radiation treatments: low photosynthetically active radiation (PAR), low PAR+ UV-A, low PAR + UV-B, low PAR + UV-A + UV-B, and high PAR. After 35 days, the maximum quantum yield of photosystem II was similar between treatments, which suggested comparable photoinhibition and physiological vitality, also supported by results showing an unchanged chlorophyll a/b ratio and only slight changes in growth. However, the total contents of both chlorophylls and carotenoids decreased in the UV radiation treatments and, more strongly, in the high-PAR samples, suggesting mainly PAR-dependent damage to the photosynthetic pigments. The xanthophyll index (antheraxanthin + zeaxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) was only increased in the high-PAR samples, indicating an increase in photoprotection through nonphotochemical dissipation of the excess energy. The sclerophylly index (the ratio between the thallus dry mass and surface area) was increased in the UV-B-exposed samples, suggesting a UV-induced structural protection. Only the UV-B-exposed samples showed DNA damage. Several apigenin and luteolin derivatives were found in the methanol-soluble vacuolar fraction of the liverwort and p-coumaric and ferulic acids in the methanol-insoluble cell wall-bound fraction. Most individual soluble compounds, the bulk level of soluble compounds, and chalcone synthase expression increased in UV-B-exposed samples, whereas individual insoluble compounds increased in the samples exposed to only PAR. Principal components analysis summarized these responses, showing the strong influence of both UV-B and PAR levels on the physiology and UV protection of the samples.


Assuntos
Marchantia/metabolismo , Marchantia/efeitos da radiação , Fotossíntese/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Metabolismo Energético/efeitos da radiação , Marchantia/fisiologia , Fatores de Tempo , Xantofilas/metabolismo
8.
Plant J ; 96(3): 503-517, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30044520

RESUMO

Damaging UVB radiation is a major abiotic stress facing land plants. In angiosperms the UV RESISTANCE LOCUS8 (UVR8) photoreceptor coordinates UVB responses, including inducing biosynthesis of protective flavonoids. We characterised the UVB responses of Marchantia polymorpha (marchantia), the model species for the liverwort group of basal plants. Physiological, chemical and transcriptomic analyses were conducted on wild-type marchantia exposed to three different UVB regimes. CRISPR/Cas9 was used to obtain plant lines with mutations for components of the UVB signal pathway or the flavonoid biosynthetic pathway, and transgenics overexpressing the marchantia UVR8 sequence were generated. The mutant and transgenic lines were analysed for changes in flavonoid content, their response to UVB exposure, and transcript abundance of a set of 48 genes that included components of the UVB response pathway characterised for angiosperms. The marchantia UVB response included many components in common with Arabidopsis, including production of UVB-absorbing flavonoids, the central activator role of ELONGATED HYPOCOTYL5 (HY5), and negative feedback regulation by REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1). Notable differences included the greater importance of CHALCONE ISOMERASE-LIKE (CHIL). Mutants disrupted in the response pathway (hy5) or flavonoid production (chalcone isomerase, chil) were more easily damaged by UVB. Mutants (rup1) or transgenics (35S:MpMYB14) with increased flavonoid content had increased UVB tolerance. The results suggest that UVR8-mediated flavonoid induction is a UVB tolerance character conserved across land plants and may have been an early adaptation to life on land.


Assuntos
Flavonoides/metabolismo , Magnoliopsida/fisiologia , Marchantia/fisiologia , Proteínas de Plantas/genética , Transdução de Sinais/efeitos da radiação , Vias Biossintéticas/efeitos da radiação , Perfilação da Expressão Gênica , Magnoliopsida/genética , Magnoliopsida/efeitos da radiação , Marchantia/genética , Marchantia/efeitos da radiação , Raios Ultravioleta
9.
J Plant Res ; 131(5): 849-864, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29845372

RESUMO

R2R3-MYB transcription factors constitute the largest gene family among plant transcription factor families. They became largely divergent during the evolution of land plants and regulate various biological processes. The functions of R2R3-MYBs are mostly characterized in seed plants but are poorly understood in non-seed plants. Here, we examined the function of two R2R3-MYB genes of Marchantia polymorpha (Mapoly0073s0038 and Mapoly0006s0226) that are closely related to subgroup 4 of the R2R3-MYB family. We performed LC/MS/MS metabolomics, RNA-seq analysis and expression analysis in overexpressors and knockout mutants of MpMYB14 and MpMYB02. Overexpression of MpMYB14 remarkably increased the amount of riccionidins, which are specific anthocyanins in liverworts and a few flowering plants. In contrast, overexpression of MpMYB02 increased the amount of several marchantins, which are characteristic cyclic bis (bibenzyl ether) compounds in M. polymorpha and related liverworts. Knockouts of MpMYB14 and MpMYB02 abolished the accumulation of riccionidins and marchantins, respectively. The expression of MpMYB14 was up-regulated by UV-B irradiation, N deficiency, and NaCl treatment, whereas the expression of MpMYB02 was down-regulated by NaCl treatment. Our results suggest that the regulatory framework of phenolic metabolism by R2R3-MYB was already established in early land plants.


Assuntos
Antocianinas/metabolismo , Marchantia/genética , Fenol/metabolismo , Fatores de Transcrição/metabolismo , Cromatografia Líquida , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Marchantia/metabolismo , Marchantia/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética , Raios Ultravioleta , Regulação para Cima
10.
New Phytol ; 217(1): 151-162, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28892172

RESUMO

The ultraviolet-B (UV-B) photoreceptor UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses to UV-B in Arabidopsis through differential gene expression, but little is known about UVR8 in other species. Bryophyte lineages were the earliest diverging embryophytes, thus being the first plants facing the UV-B regime typical of land. We therefore examined whether liverwort and moss species have functional UVR8 proteins and whether they are regulated similarly to Arabidopsis UVR8. We examined the expression, dimer/monomer status, cellular localisation and function of Marchantia polymorpha and Physcomitrella patens UVR8 in experiments with bryophyte tissue and expression of green fluorescent protein (GFP)-UVR8 fusions in Nicotiana leaves and transgenic Arabidopsis. P. patens expresses two UVR8 genes that encode functional proteins, whereas the single M. polymorpha UVR8 gene expresses two transcripts by alternative splicing that encode functional UVR8 variants. P. patens UVR8 proteins form dimers that monomerise and accumulate in the nucleus following UV-B exposure, similar to Arabidopsis UVR8, but M. polymorpha UVR8 has weaker dimers and the proteins appear more constitutively nuclear. We conclude that liverwort and moss species produce functional UVR8 proteins. Although there are differences in expression and regulation of P. patens and M. polymorpha UVR8, the mechanism of UVR8 action is strongly conserved in evolution.


Assuntos
Bryopsida/genética , Marchantia/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Bryopsida/fisiologia , Bryopsida/efeitos da radiação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Fluorescência Verde , Marchantia/fisiologia , Marchantia/efeitos da radiação , Proteínas de Plantas/genética , Raios Ultravioleta
11.
J Plant Res ; 130(6): 1061-1070, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28634853

RESUMO

Under low-light conditions, chloroplasts localize along periclinal cell walls at temperatures near 20 °C, but they localize along anticlinal cell walls near 5 °C. This phenomenon is known as the cold-positioning response. We previously showed that chloroplasts move as aggregates rather than individually during the cold-positioning response in the fern Adiantum capillus-veneris. This observation suggested that chloroplasts physically interact with each other during the cold-positioning response. However, the physiological processes underlying chloroplast aggregation are unclear. In this report, we characterized chloroplast aggregation during the cold-positioning response in the liverwort Marchantia polymorpha. Confocal laser microscopy observations of transgenic liverwort plants expressing a fluorescent fusion protein that localizes to the chloroplast outer envelope membrane (OEP7-Citrine) showed that neighboring chloroplast membranes did not fuse during the cold-positioning response. Transmission electron microscopy analysis revealed that a distance of at least 10 nm was maintained between neighboring chloroplasts during aggregation. These results indicate that aggregated chloroplasts do not fuse, but maintain a distance of at least 10 nm from each other during the cold-positioning response.


Assuntos
Cloroplastos/fisiologia , Marchantia/fisiologia , Parede Celular/fisiologia , Parede Celular/ultraestrutura , Cloroplastos/genética , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Temperatura Baixa , Luz , Marchantia/genética , Marchantia/efeitos da radiação , Marchantia/ultraestrutura , Microscopia de Fluorescência , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Estresse Fisiológico
12.
Plant Cell ; 28(6): 1406-21, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27252292

RESUMO

Phytochromes are red light (R) and far-red light (FR) receptors that play important roles in many aspects of plant growth and development. Phytochromes mainly function in the nucleus and regulate sets of genes by inhibiting negatively acting basic helix-loop-helix transcription factors named PHYTOCHROME INTERACTING FACTORs (PIFs) in Arabidopsis thaliana Although R/FR photoreversible responses and phytochrome genes are well documented in diverse lineages of plants, the extent to which phytochrome signaling is mediated by gene regulation beyond angiosperms remains largely unclear. Here, we show that the liverwort Marchantia polymorpha, an emerging model basal land plant, has only one phytochrome gene, Mp-PHY, and only one PIF gene, Mp-PIF These genes mediate typical low fluence responses, which are reversibly elicited by R and FR, and regulate gene expression. Mp-phy is light-stable and translocates into the nucleus upon irradiation with either R or FR, demonstrating that the single phytochrome Mp-phy exhibits combined biochemical and cell-biological characteristics of type I and type II phytochromes. Mp-phy photoreversibly regulates gemma germination and downstream gene expression by interacting with Mp-PIF and targeting it for degradation in an R-dependent manner. Our findings suggest that the molecular mechanisms for light-dependent transcriptional regulation mediated by PIF transcription factors were established early in land plant evolution.


Assuntos
Marchantia/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Marchantia/efeitos da radiação , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Phytochemistry ; 117: 547-553, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26055979

RESUMO

Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha.


Assuntos
Ácido Abscísico/metabolismo , Bibenzilas/metabolismo , Marchantia/metabolismo , Ácido Abscísico/farmacologia , Catecóis/metabolismo , Relação Dose-Resposta a Droga , Éteres Cíclicos/metabolismo , Marchantia/efeitos dos fármacos , Marchantia/efeitos da radiação , Éteres Fenílicos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos da radiação , Metabolismo Secundário , Estresse Fisiológico , Raios Ultravioleta
14.
J Plant Res ; 128(3): 407-21, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25841334

RESUMO

Light regulates various aspects of development throughout the life cycle of sessile land plants. Photoreceptors, such as the red (R) and far-red (FR) light receptors phytochromes, play pivotal roles in modulating developmental programs. Reflecting high developmental plasticity, plants can regenerate tissues, organs, and whole bodies from varieties of cells. Among land plants, bryophytes exhibit extraordinary competency of regeneration under hormone-free conditions. As an environmental factor, light plays critical roles in regeneration of bryophytes. However, how light regulates regeneration remains unknown. Here we show that using the liverwort Marchantia polymorpha, which contains a single phytochrome gene, the phytochrome regulates re-entry into the cell cycle and cell shape in newly regenerating tissues. Our morphological and cytological observations revealed that S-phase entry of G1-arrested epidermal cells around the midrib on the ventral surface of thallus explants was greatly retarded in the dark or under phytochrome-inactive R/FR cycle irradiation conditions, where, nevertheless, small, laterally narrow regenerants were eventually formed. Thus, consistent with earlier descriptions published over a century ago, light is not essential for, but exerts profound effects on regeneration in M. polymorpha. Ventral cells in regenerants grown under R/FR cycle conditions were longer and narrower than those under R cycle. Expression of a constitutively active mutant of M. polymorpha phytochrome allowed regeneration of well grown, widely expanded thalli even in the dark when sugar was supplied, further demonstrating that the phytochrome signal promotes cell proliferation, which is rate-limited by sucrose availability. Similar effects of R and FR irradiation on cell division and elongation were observed in sporelings as well. Thus, besides activation of photosynthesis, major roles of R in regeneration of M. polymorpha are to facilitate proliferation of rounder cells through the phytochrome by mechanisms that are likely to operate in the sporeling.


Assuntos
Ciclo Celular/fisiologia , Desdiferenciação Celular/fisiologia , Marchantia/fisiologia , Fitocromo/fisiologia , Transdução de Sinais/fisiologia , Carboidratos/fisiologia , Forma Celular , Luz , Marchantia/efeitos da radiação , Marchantia/ultraestrutura , Modelos Biológicos , Fotossíntese/fisiologia , Regeneração
15.
Plant Physiol ; 166(1): 411-27, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25096976

RESUMO

Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants.


Assuntos
Cloroplastos/efeitos da radiação , Marchantia/efeitos da radiação , Fototropinas/metabolismo , Adiantum/metabolismo , Adiantum/efeitos da radiação , Sequência de Aminoácidos , Membrana Celular/metabolismo , Cor , Teste de Complementação Genética , Marchantia/genética , Marchantia/metabolismo , Dados de Sequência Molecular , Fosforilação , Fototropinas/genética , Plantas Geneticamente Modificadas/efeitos da radiação
16.
Plant Physiol ; 159(2): 826-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496511

RESUMO

The plasma membrane H(+)-ATPase generates an electrochemical gradient of H(+) across the plasma membrane that provides the driving force for solute transport and regulates pH homeostasis and membrane potential in plant cells. Recent studies have demonstrated that phosphorylation of the penultimate threonine in H(+)-ATPase and subsequent binding of a 14-3-3 protein is the major common activation mechanism for H(+)-ATPase in vascular plants. However, there is very little information on the plasma membrane H(+)-ATPase in nonvascular plant bryophytes. Here, we show that the liverwort Marchantia polymorpha, which is the most basal lineage of extant land plants, expresses both the penultimate threonine-containing H(+)-ATPase (pT H(+)-ATPase) and non-penultimate threonine-containing H(+)-ATPase (non-pT H(+)-ATPase) as in the green algae and that pT H(+)-ATPase is regulated by phosphorylation of its penultimate threonine. A search in the expressed sequence tag database of M. polymorpha revealed eight H(+)-ATPase genes, designated MpHA (for M. polymorpha H(+)-ATPase). Four isoforms are the pT H(+)-ATPase; the remaining isoforms are non-pT H(+)-ATPase. An apparent 95-kD protein was recognized by anti-H(+)-ATPase antibodies against an Arabidopsis (Arabidopsis thaliana) isoform and was phosphorylated on the penultimate threonine in response to the fungal toxin fusicoccin in thalli, indicating that the 95-kD protein contains pT H(+)-ATPase. Furthermore, we found that the pT H(+)-ATPase in thalli is phosphorylated in response to light, sucrose, and osmotic shock and that light-induced phosphorylation depends on photosynthesis. Our results define physiological signals for the regulation of pT H(+)-ATPase in the liverwort M. polymorpha, which is one of the earliest plants to acquire pT H(+)-ATPase.


Assuntos
Membrana Celular/enzimologia , Marchantia/enzimologia , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Membrana Celular/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Glicosídeos/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Manose/farmacologia , Marchantia/efeitos dos fármacos , Marchantia/genética , Marchantia/efeitos da radiação , Toxinas Marinhas , Dados de Sequência Molecular , Pressão Osmótica , Oxazóis/farmacologia , Fosforilação , Fotossíntese , Filogenia , Proteínas de Plantas/genética , Ligação Proteica , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/genética , Sacarose/farmacologia , Treonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...