Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cell Sci ; 132(4)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787112

RESUMO

The centriole organelle consists of microtubules (MTs) that exhibit a striking 9-fold radial symmetry. Centrioles play fundamental roles across eukaryotes, notably in cell signaling, motility and division. In this Cell Science at a Glance article and accompanying poster, we cover the cellular life cycle of this organelle - from assembly to disappearance - focusing on human centrioles. The journey begins at the end of mitosis when centriole pairs disengage and the newly formed centrioles mature to begin a new duplication cycle. Selection of a single site of procentriole emergence through focusing of polo-like kinase 4 (PLK4) and the resulting assembly of spindle assembly abnormal protein 6 (SAS-6) into a cartwheel element are evoked next. Subsequently, we cover the recruitment of peripheral components that include the pinhead structure, MTs and the MT-connecting A-C linker. The function of centrioles in recruiting pericentriolar material (PCM) and in forming the template of the axoneme are then introduced, followed by a mention of circumstances in which centrioles form de novo or are eliminated.


Assuntos
Centríolos/ultraestrutura , Microtúbulos/ultraestrutura , Biogênese de Organelas , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Embrião de Mamíferos , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Marsileaceae/genética , Marsileaceae/metabolismo , Marsileaceae/ultraestrutura , Camundongos , Microtúbulos/metabolismo , Mitose , Naegleria/genética , Naegleria/metabolismo , Naegleria/ultraestrutura , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
3.
Cytoskeleton (Hoboken) ; 73(3): 145-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26887361

RESUMO

The male gametophyte of the semi-aquatic fern, Marsilea vestita, produces multiciliated spermatozoids in a rapid developmental sequence that is controlled post-transcriptionally when dry microspores are placed in water. Development can be divided into two phases, mitosis and differentiation. During the mitotic phase, a series of nine successive division cycles produce 7 sterile cells and 32 spermatids in 4.5-5 h. During the next 5-6 h, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ∼140 cilia. In order to study the mechanisms that regulate spermatogenesis, we used RNAseq to generate a reference transcriptome that allowed us to assess abundance of transcripts at different stages of development. Here, we characterize transcripts present in the kinesin motor family. Over 120 kinesin-like sequences were identified in our transcriptome that represent 56 unique kinesin transcripts. Members of the kinesin-2, -4, -5, -7, -8, -9, -12, -13, and -14 families, in addition to several plant specific and 'orphan' kinesins are present. Most (91%) of these kinesin transcripts change in abundance throughout gametophyte development, with 52% of kinesin mRNAs enriched during the mitotic phase and 39% enriched during differentiation. Functional analyses of six kinesins with different patterns of transcript abundance show that the temporal regulation of these transcripts during gametogenesis correlates directly with kinesin protein function.


Assuntos
Gametogênese Vegetal/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Cinesinas/biossíntese , Marsileaceae/metabolismo , Proteínas de Plantas/biossíntese , Pólen/metabolismo , Transcriptoma/fisiologia , Cinesinas/genética , Marsileaceae/citologia , Marsileaceae/genética , Proteínas de Plantas/genética , Pólen/citologia
4.
Methods Cell Biol ; 127: 403-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837402

RESUMO

Marsilea vestita is a semiaquatic fern that produces its spores (meiotic products) as it undergoes a process of natural desiccation. During the period of desiccation, the spores mature, and produce large quantities of pre-mRNA, which is partially processed and stored in nuclear speckles and can remain stable during a period of extended quiescence in the dry spore. Rehydration of the spores initiates a highly coordinated developmental program, featuring nine successive mitotic division cycles that occur at precise times and in precise planes within the spore wall to produce 39 cells, 32 of which are spermatids. The spermatids then undergo de novo basal body formation, the assembly of a massive cytoskeleton, nuclear and cell elongation, and finally ciliogenesis, before being released from the spore wall. The entire developmental program requires only 11 h to reach completion, and is synchronous in a population of spores rehydrated at the same time. Rapid development in this endosporic gametophyte is controlled posttranscriptionally, where stored pre-mRNAs, many of which are intron-retaining transcripts, are unmasked, processed, and translated under tight spatial and temporal control. Here, we describe posttranscriptional mechanisms that exert temporal and spatial control over this developmental program, which culminates in the production of ∼140 ciliary axonemes in each spermatozoid.


Assuntos
Cílios/genética , Marsileaceae/citologia , Pólen/citologia , Espermidina/metabolismo , Esporos/citologia , Diferenciação Celular/genética , Cílios/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Marsileaceae/genética , Marsileaceae/metabolismo , Morfogênese/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Poliadenilação/genética , Interferência de RNA , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Interferente Pequeno , Reprodução/fisiologia , Esporângios/fisiologia , Transcriptoma/genética
5.
Genome Biol Evol ; 5(7): 1403-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23821521

RESUMO

Previous studies have shown that core leptosporangiates, the most species-rich group of extant ferns (monilophytes), have a distinct plastid genome (plastome) organization pattern from basal fern lineages. However, the details of genome structure transformation from ancestral ferns to core leptosporangiates remain unclear because of limited plastome data available. Here, we have determined the complete chloroplast genome sequences of Lygodium japonicum (Lygodiaceae), a member of schizaeoid ferns (Schizaeales), and Marsilea crenata (Marsileaceae), a representative of heterosporous ferns (Salviniales). The two species represent the sister and the basal lineages of core leptosporangiates, respectively, for which the plastome sequences are currently unavailable. Comparative genomic analysis of all sequenced fern plastomes reveals that the gene order of L. japonicum plastome occupies an intermediate position between that of basal ferns and core leptosporangiates. The two exons of the fern ndhB gene have a unique pattern of intragenic copy number variances. Specifically, the substitution rate heterogeneity between the two exons is congruent with their copy number changes, confirming the constraint role that inverted repeats may play on the substitution rate of chloroplast gene sequences.


Assuntos
Gleiquênias/genética , Genes de Plantas , Genoma de Cloroplastos , Marsileaceae/genética , Análise de Sequência de DNA , Variações do Número de Cópias de DNA , Evolução Molecular , Ordem dos Genes , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Alinhamento de Sequência
6.
Dev Cell ; 24(5): 517-29, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23434411

RESUMO

The utilization of stored RNA is a driving force in rapid development. Here, we show that retention and subsequent removal of introns from pre-mRNAs regulate temporal patterns of translation during rapid and posttranscriptionally controlled spermatogenesis of the fern Marsilea vestita. Analysis of RNAseq-derived transcriptomes revealed a large subset of intron-retaining transcripts (IRTs) that encode proteins essential for gamete development. Genomic and IRT sequence comparisons show that other introns have been previously removed from the IRT pre-mRNAs. Fully spliced isoforms appear at distinct times during development in a spliceosome-dependent and transcription-independent manner. RNA interference knockdowns of 17/17 IRTs produced anomalies after the time points when those transcripts would normally be spliced. Intron retention is a functional mechanism for forestalling precocious translation of transcripts in the male gametophyte of M. vestita. These results have broad implications for plant gene regulation, where intron retention is widespread.


Assuntos
Regulação da Expressão Gênica de Plantas , Íntrons/genética , Marsileaceae/genética , Proteínas de Plantas/genética , Pólen/genética , Biossíntese de Proteínas , Espermatogênese/fisiologia , Western Blotting , Diferenciação Celular , Imunofluorescência , Marsileaceae/citologia , Interferência de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Protoplasma ; 248(3): 457-73, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21487804

RESUMO

The endosporic male gametophyte of the water fern, Marsilea vestita, provides a unique opportunity to study the mechanisms that control cell fate determination during a burst of rapid development. In this review, we show how the spatial and temporal control of development in this simple gametophyte involves several distinct modes of RNA processing that allow the translation of specific mRNAs at distinct stages during gametogenesis. During the early part of development, nine successive cell division cycles occur in precise planes within a closed volume to produce seven sterile cells and 32 spermatids. There is no cell movement in the gametophyte; so, cell position and size within the spore wall define cell fate. After the division cycles have been completed, the spermatids become sites for the de novo formation of basal bodies, for the assembly of a complex cytoskeleton, for nuclear and cell elongation, and for ciliogenesis. In contrast, the adjacent sterile cells exhibit none of these changes. The spermatids differentiate into multiciliated, corkscrew-shaped gametes that resemble no other cells in the entire plant. Development is controlled post-transcriptionally. The transcripts stored in the microspore are released (unmasked) in the gametophyte at different times during development. At the start of these studies, we identified several key mRNAs that undergo translation at specific stages of gametophyte development. We developed RNA silencing protocols that enabled us to block the translation of these proteins and thereby establish their necessity and sufficiency for the completion of specific stages of gametogenesis. In addition, RNAi enabled us to identify additional proteins that are essential for other phases of development. Since the distributions of mRNAs and the proteins they encode are not identical in the gametophyte, transcript processing is apparently important in allowing translation to occur under strict temporal and spatial control. Transcript polyadenylation occurs in the spermatogenous cells in ways that match the translation of specific mRNAs. We have found that the exon junction complex plays key roles in transcript regulation and modifications that underlie cell specification in the gametophyte. We have recently become interested in the mechanisms that control the unmasking of the stored transcripts and have linked the synthesis and redistribution of spermidine in the gametophyte to the control of mRNA release from storage during early development and later to basal body formation, cytoskeletal assembly, and nuclear and cell elongation in the differentiating spermatids.


Assuntos
Células Germinativas Vegetais/metabolismo , Marsileaceae/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Diferenciação Celular/fisiologia , Células Germinativas Vegetais/citologia , Marsileaceae/citologia , Marsileaceae/genética , Morfogênese , Proteínas de Plantas/genética , Pólen/citologia , Pólen/genética
8.
Plant Cell ; 22(11): 3678-91, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21097708

RESUMO

Here, we show that the polyamine spermidine plays a key role as a morphogenetic determinant during spermatid development in the water fern Marsilea vestita. Spermidine levels rise first in sterile jacket cells and then increase dramatically in spermatogenous cells as the spermatids mature. RNA interference and drug treatments were employed to deplete spermidine in the gametophyte at different stages of gametogenesis. Development in spermidine-depleted gametophytes was arrested before the completion of the last round of cell divisions. In spermidine-depleted spermatogenous cells, chromatin failed to condense properly, basal body positioning was altered, and the microtubule ribbon was in disarray. When cyclohexylamine, a spermidine synthase (SPDS) inhibitor, was added at the start of spermatid differentiation, the spermatid nuclei remained round, centrin failed to localize into basal bodies, thus blocking basal body formation, and the microtubule ribbon was completely abolished. In untreated gametophytes, spermidine made in the jacket cells moves into the spermatids, where it is involved in the unmasking of stored SPDS mRNAs, leading to substantial spermidine synthesis in the spermatids. We found that treating spores directly with spermidine or other polyamines was sufficient to unmask a variety of stored mRNAs in gametophytes and arrest development. Differences in patterns of transcript distribution after these treatments suggest that specific transcripts reside in different locations in the dry spore; these differences may be linked to the timing of unmasking and translation for that mRNA during development.


Assuntos
Diferenciação Celular/fisiologia , Marsileaceae/citologia , Marsileaceae/fisiologia , Morfogênese/fisiologia , Pólen/citologia , Pólen/fisiologia , Espermidina/metabolismo , Cicloexilaminas/metabolismo , Inativação Gênica , Marsileaceae/genética , Dados de Sequência Molecular , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermidina Sintase/antagonistas & inibidores , Espermidina Sintase/metabolismo
9.
Evolution ; 63(2): 498-513, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19154361

RESUMO

Using an explicit phylogenetic framework, ontogenetic patterns of leaf form are compared among the three genera of marsileaceous ferns (Marsilea, Regnellidium, and Pilularia) with the outgroup Asplenium to address the hypothesis that heterochrony played a role in their evolution. We performed a Fourier analysis on a developmental sequence of leaves from individuals of these genera. Principal components analysis of the harmonic coefficients was used to characterize the ontogenetic trajectories of leaf form in a smaller dimensional space. Results of this study suggest that the "evolutionary juvenilization" observed in these leaf sequences is best described using a mixed model of heterochrony (accelerated growth rate and early termination at a simplified leaf form). The later stages of the ancestral, more complex, ontogenetic pattern were lost in Marsileaceae, giving rise to the simplified adult leaves of Marsilea, Regnellidium, and Pilularia. Life-history traits such as ephemeral and uncertain habitats, high reproductive rates, and accelerated maturation, which are typical for marsileaceous ferns, suggest that they may be "r strategists." The evidence for heterochrony presented here illustrates that it has resulted in profound ecological and morphological consequences for the entire life history of Marsileaceae.


Assuntos
Evolução Biológica , Marsileaceae/anatomia & histologia , Marsileaceae/genética , Modelos Genéticos , Folhas de Planta/anatomia & histologia , Filogenia
10.
Dev Biol ; 269(2): 319-30, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15110703

RESUMO

We are interested in the mechanisms that underlie cell fate determination in the endosporic male gametophytes of the fern, Marsilea vestita. Synchronous development is initiated by placing dry spores into water and involves the translation of stored mRNAs, with little transcription. Nine division cycles produce 32 spermatids surrounded by 7 sterile cells, and then each spermatid differentiates into a multiciliate gamete. Here, we focus on changes in the distribution of particular proteins, mRNAs, and patterns of polyadenylation as essential prerequisites for cell fate determination and gametogenesis. Earlier, we showed that alpha- and beta-tubulin proteins become concentrated in spermatogenous initials, and that centrin mRNA is translated only in spermatogenous initials. In situ hybridizations reveal that centrin, cyclin B, and beta-tubulin mRNAs are present in both sterile and spermatogenous cells, but that transcripts encoding RNA helicase and PRP-19 (a spliceosome component) become localized in spermatogenous cells. The targeted destruction of these two transcripts by RNAi treatments does not affect the numbers of division cycles, but the gametophytes exhibit anomalous patterns of cytokinesis, and a subsequent failure of spermatid differentiation. Thus, cell fate determination in the gametophyte involves localized translation, and the localization of mRNAs for proteins involved in transcript processing. We found differences in polyadenylation levels in sterile and spermatogenous cells that match the distribution of cytoplasmic poly(A) polymerase (PAP), which, in immunolocalizations, is abundant in spermatogenous cells, but undetectable in sterile cells. The activation of translation in spermatogenous initials, but not in sterile cells, may be under the control of mRNA processing enzymes, which become localized either as proteins or mRNAs in the spermatogenous subdomains before any divisions occur.


Assuntos
Diferenciação Celular , Marsileaceae/fisiologia , RNA Mensageiro/análise , Marsileaceae/citologia , Marsileaceae/genética , Proteínas de Plantas/análise , Poliadenilação , RNA Mensageiro/metabolismo
11.
Cell Motil Cytoskeleton ; 56(1): 57-73, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12905531

RESUMO

Spermiogenesis in the male gametophytes of the water fern Marsilea vestita is a precise and rapid process resulting in the production of ciliated gametes. Development begins from a single cell within the microspore wall that undergoes nine rapid cell division cycles in distinct planes to produce 32 spermatids that are surrounded by 7 sterile cells. Thereafter, the de novo formation of basal bodies occurs in a discrete cytoplasmic particle known as a blepharoplast, with the subsequent formation of a complex ciliary apparatus in elongating spermatids. The rate and extent of development appear to be controlled at a post-transcriptional level, where the sudden translation of specific stored mRNAs (e.g., centrin) results in the formation of particular structures in the cells (e.g., blepharoplasts). We show here that additional centrosomal and cytoskeletal antigens known as SF assemblin, p95 kDa protein, delta tubulin, gamma tubulin, Xgrip109, Aik, CTR453, RanBPM, BX63, RSP6, and alpha tubulin each exhibit specific localization patterns both on immunoblots of gametophyte protein isolates and in fixed cells. BAp90, PP4, and RLC exhibit specific localization patterns in fixed cells. We show that the antigens exhibit complex patterns of abundance during spermiogenesis. In an attempt to identify regulatory agents involved in spermiogenesis, we employed a RNAi-based screen of 41 randomly selected gametophyte cDNAs on developing populations of synchronously growing gametophytes. The gametophytes treated with each of the RNAi probes exhibited arrest at a specific stage of development. A consequence of anomalous development was the block to assembly of the ciliary apparatus, an effect highlighted by altered staining with anti-centrin, anti-beta-tubulin, and anti-RSP6 antibodies. Our results show that complex, integrated processes of translation and protein partitioning apparently underlie the assembly of the ciliary apparatus during spermiogenesis in male gametophytes of M. vestita.


Assuntos
Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Marsileaceae/fisiologia , Proteínas de Plantas/metabolismo , Esporos/crescimento & desenvolvimento , Anticorpos/imunologia , Western Blotting , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/imunologia , DNA Complementar/química , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Imuno-Histoquímica , Marsileaceae/efeitos dos fármacos , Marsileaceae/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia , Reprodução/imunologia , Reprodução/fisiologia , Alinhamento de Sequência , Esporos/efeitos dos fármacos , Esporos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...