Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Chem Biol Interact ; 396: 111044, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729284

RESUMO

Mastitis is an inflammatory disease of the mammary gland with a high incidence in lactating animals, significantly impacting their health and breastfeeding. Moreover, mastitis adversely affects milk quality and yield, resulting in substantial economic losses for the dairy farming industry. Forsythiaside A (FTA), a phenylethanol glycoside analog extracted from Forsythia, exhibits notable anti-inflammatory and antioxidant properties. However, its protective effects and specific mechanisms against mastitis remain unclear. In this study, a lipopolysaccharide (LPS)-induced mouse mastitis model was used to investigate the protective effect of FTA on LPS-induced mastitis and its potential mechanism using histological assays, Western blot, qRT-PCR, FITC-albumin permeability test, 16s rRNA gene sequencing analysis and non-targeted metabolomics assays to investigate the protective effect of FTA on LPS-induced mastitis model and its potential mechanism. The results demonstrated that FTA significantly mitigated LPS-induced mouse mastitis by reducing inflammation and apoptosis levels, modulating the PI3K/AKT/mTOR signaling pathways, inducing autophagy, and enhancing antioxidant capacity and the expression of tight junction proteins. Furthermore, FTA increased the abundance of beneficial microbiota while decreasing the levels of harmful microbiota in mice, thus counteracting the gut microbiota disruption induced by LPS stimulation. Intestinal metabolomics analysis revealed that FTA primarily regulated LPS-induced metabolite alterations through key metabolic pathways, such as tryptophan metabolism. This study confirms the anti-inflammatory and antioxidant effects of FTA on mouse mastitis, which are associated with key metabolic pathways, including the restoration of gut microbiota balance and the regulation of tryptophan metabolism. These findings provide a novel foundation for the treatment and prevention of mammalian mastitis using FTA.


Assuntos
Autofagia , Microbioma Gastrointestinal , Glicosídeos , Lipopolissacarídeos , Mastite , Animais , Feminino , Autofagia/efeitos dos fármacos , Camundongos , Mastite/induzido quimicamente , Mastite/metabolismo , Mastite/tratamento farmacológico , Mastite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glicosídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos BALB C
2.
J Ethnopharmacol ; 328: 117998, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484956

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to ancient literature, Prunella vulgaris L. (P vulgaris) alleviates mastitis and has been used in China for many years; however, there are no relevant reports that confirm this or the mechanism of its efficacy. AIM OF THE STUDY: To explore the anti-acute mastitis effect and potential mechanism of P vulgaris extract. MATERIALS AND METHODS: First, the active ingredients and targets of P vulgaris against mastitis were predicted using network pharmacology. Next, the relevant active ingredients were enriched using macroporous resins and verified using UV and UPLC-Q-TOF-MS/MS. Lastly, a mouse model of acute mastitis was established by injecting lipopolysaccharides into the mammary gland and administering P vulgaris extract by oral gavage. The pathological changes in mammary tissue were observed by HE staining. Serum and tissue inflammatory factors were measured by ELISA method. MPO activity in mammary tissue was measured using colorimetry and MPO expression was detected by immunohistochemistry. The expression of tight junction proteins (ZO-1, claudin-3, and occludin) in mammary tissue was detected by immunofluorescence and Western blot. iNOS and COX-2 in mammary tissue were detected by Western blot. MAPK pathway and NF-κB pathway related proteins were also detected by Western blot. RESULTS: Network pharmacology predicted that phenolic acids and flavonoids in P vulgaris had anti-mastitis effects. The contents of total flavonoids and total phenolic acids in P vulgaris extract were 64.5% and 29.4%, respectively. UPLC-Q-TOF-MS/MS confirmed that P vulgaris extract contained phenolic acids and flavonoids. The results of animal experiments showed that P vulgaris extract reduced lipopolysaccharide-induced inflammatory edema, inflammatory cell infiltration, and interstitial congestion of mammary tissue. It also reduced the levels of serum and tissue inflammatory factors TNF-α, IL-6, and IL-1ß, and inhibited the activation of MPO. Furthermore, it downregulated the expression of MAPK and NF-κB pathway-related proteins. The expressions of ZO-1, occludin, and claudin-3 in mammary gland tissues were upregulated. CONCLUSIONS: P vulgaris extract can maintain the integrity of mammary connective tissue and reduce its inflammatory response to prevent acute mastitis. Its mechanism probably involves regulating NF-κB and MAPK pathways.


Assuntos
Mastite , Prunella , Humanos , Animais , Feminino , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Transdução de Sinais , Leite/metabolismo , Ocludina/metabolismo , Claudina-3/metabolismo , Espectrometria de Massas em Tandem , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/metabolismo , Flavonoides/farmacologia
3.
Cytokine ; 174: 156471, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103301

RESUMO

The mammary gland is an adipose tissue containing not only adipocytes but also epithelial, endothelial, and immune cells. Epithelial cells and macrophages, as the integral components of the immune system, are on the front line of defense against infection. Our preliminary work proved that caffeic acid (CA) can effectively inhibit the inflammatory cascade of bovine mammary epithelial cells (BMEC) induced by lipopolysaccharide (LPS) and maintain cellular integrity and viability. Here, we investigated the therapeutic effect of CA on LPS-induced mice mastitis and explored its regulatory mechanism on macrophage inflammatory response induced by LPS in vitro. Firstly, the mice mastitis model was established by intramammary injection with 10 µg LPS, after which different CA doses (5, 10, 15 mg/kg) were administered. Then, the pathological section, myeloperoxidase (MPO) activity, proinflammatory factors and chemokines releasement, and redox state of mammary tissues were assessed, confirming CA's effectiveness on mice mastitis. In vitro, we validated the therapeutic relevance of CA in relieving LPS-induced RAW264.7 inflammatory and oxidative stress responses. Moreover, we further provided evidence that CA significantly reduced LPS-induced reactive oxygen species (ROS) generation via NADPH oxidase (NOX), which improved the imbalance relationship between nuclear factor kappa-B (NF-κB) and NF-E2 p45-related factor 2 (Nrf2) and led to a marked weakening of M1 polarization. The NOX-ROS signal inhibited by CA weakened the oxidative burst and neutrophil chemotaxis of macrophages, thus alleviating the immune cascade in mammary gland tissue and reducing the LPS-induced inflammatory damage. Collectively, CA would be a potential candidate or antibacterial synergist for curbing mastitis.


Assuntos
Lipopolissacarídeos , Mastite , Humanos , Feminino , Animais , Bovinos , Camundongos , Lipopolissacarídeos/efeitos adversos , Espécies Reativas de Oxigênio , NADPH Oxidases , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , NF-kappa B , Modelos Animais de Doenças , Macrófagos , Células Epiteliais
4.
Cell Stress Chaperones ; 28(6): 989-999, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910344

RESUMO

Mastitis is a disease involved in inflammation of breast which affects human and animals. Wogonin is one bioactive compound from many Chinese herbal medicines, which have multiple properties, including anti-inflammatory activity. However, the roles of wogonin in mastitis progression are largely undefined. Mastitis models were established using LPS-treated mice and mammary epithelial cells (MECs). Infiltration of inflammatory cells was analyzed by hematoxylin-eosin staining and myeloperoxidase (MPO) activity. Inflammatory cytokine (TNF-α and IL-1ß) levels were detected via ELISA. The phosphorylation and total of Akt and NF-κB levels and content of Nrf2 and HO-1 were measured via western blot. Cell viability was examined by CCK-8 assay. Oxidative stress was assessed by ROS generation and levels of MDA, GSH, and SOD. Wogonin attenuated LPS-induced infiltration of inflammatory cells, increase of MPO activity and levels of TNF-α and IL-1ß, and activation of the Akt/NF-κB pathway in murine mammary gland tissues, and promoted activation of Nrf2/HO-1 signaling. Wogonin did not affect MEC viability, but mitigated LPS-induced inflammation in MECs by reducing TNF-α and IL-1ß levels. Wogonin relieved LPS-induced oxidative stress in MECs through decreasing ROS generation and MDA level and increasing GSH and SOD levels. Wogonin repressed LPS-induced activation of the Akt/NF-κB pathway in MECs and increased Nrf2/HO-1 signaling activation. Activated Akt/NF-κB signaling or Nrf2/HO-1 signaling inactivation reversed the suppressive effects of wogonin on LPS-induced inflammation and oxidative stress in MECs. Wogonin mitigates LPS-induced inflammation and oxidative stress of MECs via suppressing activation of the Akt/NF-κB signaling and activating Nrf2/HO-1 pathway, indicating the therapeutic potential of wogonin in mastitis.


Assuntos
Mastite , NF-kappa B , Feminino , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Estresse Oxidativo , Superóxido Dismutase/metabolismo
5.
Int Immunopharmacol ; 122: 110551, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406397

RESUMO

Mastitis occurs frequently in breastfeeding women and not only affects the women's health but also hinders breastfeeding. Maslinic acid is a type of pentacyclic triterpenoid widely found in olives that has good anti-inflammatory activity. This study aims to discuss the protective function of maslinic acid against mastitis and its underlying mechanism. For this, mice models of mastitis were established using lipopolysaccharide (LPS). The results revealed that maslinic acid reduced the pathological lesions in the mammary gland. In addition, it reduced the generation of pro-inflammatory factors and enzymes (IL-6, IL-1ß, TNF-α, iNOS, and COX2) in both mice mammary tissue and mammary epithelial cells. The high-throughput 16S rDNA sequencing of intestinal flora showed that in mice with mastitis, maslinic acid treatment altered ß-diversity and regulated microbial structure by increasing the abundance of probiotics such as Enterobacteriaceae and downregulating harmful bacteria such as Streptococcaceae. In addition, maslinic acid protected the blood-milk barrier by maintaining tight-junction protein expression. Furthermore, maslinic acid downregulated mammary inflammation by inhibiting the activation of NLRP3 inflammasome, AKT/NF-κB, and MAPK signaling pathways. Thus, in a mice model of LPS-induced mastitis, maslinic acid can inhibit the inflammatory response, protect the blood-milk barrier, and regulate the constitution of intestinal flora.


Assuntos
Microbioma Gastrointestinal , Mastite , Humanos , Feminino , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Leite/metabolismo , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/metabolismo , NF-kappa B/metabolismo , Glândulas Mamárias Animais/patologia
6.
J Cell Mol Med ; 27(16): 2321-2327, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328960

RESUMO

Mastitis refers to the inflammation in the mammary gland caused by various reasons. Protocatechuic acid (PCA) exerts anti-inflammatory effect. However, no studies have shown the protective role of PCA on mastitis. We investigated the protective effect of PCA on LPS-induced mastitis in mice and elucidated its possible mechanism. LPS-induced mastitis model was established by injection of LPS into the mammary gland. The pathology of mammary gland, MPO activity and inflammatory cytokine production were detected to evaluate the effects of PCA on mastitis. In vivo, PCA significantly attenuated LPS-induced mammary pathological changes, MPO activity, TNF-α and IL-1ß production. In vitro, the production of inflammatory cytokines TNF-α and IL-1ß was significantly reduced by PCA. Furthermore, LPS-induced NF-κB activation was also inhibited by PCA. In addition, PCA was found to activate pregnane X receptor (PXR) transactivation and PCA dose-dependently increased the expression of PXR downstream molecule CYP3A4. In addition, the inhibitory effect of PCA on inflammatory cytokine production was also reversed when PXR was knocked down. In conclusion, the protective effects of PCA on LPS-induced mastitis in mice through regulating PXR.


Assuntos
Lipopolissacarídeos , Mastite , Feminino , Humanos , Animais , Camundongos , Receptor de Pregnano X , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/genética , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Citocinas
7.
Cells ; 11(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429086

RESUMO

Mastitis is a common clinical disease which threatens the welfare and health of dairy cows and causes huge economic losses. Sanguinarine (SG) is a plant-derived alkaloid which has many biological functions, including antibacterial and antioxidant properties. The present study attempted to evaluate the effect of SG on lipopolysaccharide (LPS)-induced oxidative stress reactions and explore its potential mechanisms. The expression profile of SG was analyzed by network pharmacology, and it was found that differentially expressed genes were mainly involved in the Wnt signaling pathway and oxidative stress through GO and KEGG enrichment. In in vitro experiments, the dosage of SG was non-toxic to mouse mammary epithelial cells (mMECs) (p > 0.05). SG not only inhibited the increase in ROS induced by LPS, but also enhanced the activity of antioxidant enzymes (p < 0.05). Moreover, the results of the in vivo experiments showed that SG alleviated LPS-induced inflammatory damage of mouse mammary glands and enhanced the integrity of the blood-milk barrier (p < 0.05). Further studies suggested that SG promoted Nrf2 expression and suppressed the activation of the Wnt signaling pathway (p < 0.05). Conclusively, this study clarified the protective effect of SG on mastitis and provided evidence for new potential mechanisms. SG exerted its antioxidant function through activating Nrf2 and inhibiting the Wnt/ß-catenin pathway, repairing the blood-milk barrier.


Assuntos
Lipopolissacarídeos , Mastite , Animais , Bovinos , Feminino , Camundongos , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Lipopolissacarídeos/efeitos adversos , Glândulas Mamárias Animais , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/metabolismo , Leite , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
8.
Theriogenology ; 193: 87-92, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156428

RESUMO

A single infusion of lipopolysaccharide (LPSs) into the uterus induces inflammation in the mammary gland. This indicates that LPS can translocate from the uterus to the mammary gland. Natural endometritis is characterized by continuous intrauterine inflammation. The aim of the present study was to determine the effect of repeated intrauterine infusion of two different types of LPSs obtained from Escherichia coli O111:B4 (LPS-O111) and O55:B5 (LPS-O55) on the inflammatory status of the mammary glands of goats. Goats were assigned to three groups: LPS-O111, LPS-O55, and saline (control). Saline with (LPS-O111 and 55 groups) and without (control) 100 µg LPS was infused into the uterus continuously for 7 days. Decreased milk yield was detected in both LPS-O111 and LPS-O55 groups 2 days after the first LPS infusion. While somatic cell count (SCC) was significantly increased in all groups 1 day after the first LPS infusion, both LPS infusions further increased SCC 2 days after the first infusion and showed a significantly higher SCC than that in the control group. Plasma LPS-binding protein (LBP) was significantly higher in both LPS groups than in the control group during the days after infusion. In addition, pro-inflammatory cytokines, interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and IL-8, were significantly increased in both LPS infusion groups compared with those in the control group. The LPS-O111 infusion resulted in higher SCC, LBP, TNF-α, and IL-8 concentrations than those in the LPS-O55 group. These results suggest that repeated LPS infusion into the uterus can induce more severe mammary gland inflammation than a single infusion. Interestingly, the mammary tissues recovered from inflammation even though the LPS intrauterine infusion was continued.


Assuntos
Doenças das Cabras , Mastite , Animais , Citocinas/metabolismo , Feminino , Doenças das Cabras/induzido quimicamente , Cabras/metabolismo , Inflamação/metabolismo , Inflamação/veterinária , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/toxicidade , Glândulas Mamárias Animais , Mastite/induzido quimicamente , Mastite/veterinária , Fator de Necrose Tumoral alfa/metabolismo
9.
J Biol Chem ; 298(6): 102017, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526564

RESUMO

Jumonji domain-containing 3 (JMJD3/KDM6B) is a histone demethylase that plays an important role in regulating development, differentiation, immunity, and tumorigenesis. However, the mechanisms responsible for the epigenetic regulation of inflammation during mastitis remain incompletely understood. Here, we aimed to investigate the role of JMJD3 in the lipopolysaccharide (LPS)-induced mastitis model. GSK-J1, a small molecule inhibitor of JMJD3, was applied to treat LPS-induced mastitis in mice and in mouse mammary epithelial cells in vivo and in vitro. Breast tissues were then collected for histopathology and protein/gene expression examination, and mouse mammary epithelial cells were used to investigate the mechanism of regulation of the inflammatory response. We found that the JMJD3 gene and protein expression were upregulated in injured mammary glands during mastitis. Unexpectedly, we also found JMJD3 inhibition by GSK-J1 significantly alleviated the severity of inflammation in LPS-induced mastitis. These results are in agreement with the finding that GSK-J1 treatment led to the recruitment of histone 3 lysine 27 trimethylation (H3K27me3), an inhibitory chromatin mark, in vitro. Furthermore, mechanistic investigation suggested that GSK-J1 treatment directly interfered with the transcription of inflammatory-related genes by H3K27me3 modification of their promoters. Meanwhile, we also demonstrated that JMJD3 depletion or inhibition by GSK-J1 decreased the expression of toll-like receptor 4 and negated downstream NF-κB proinflammatory signaling and subsequently reduced LPS-stimulated upregulation of Tnfa, Il1b, and Il6. Together, we propose that targeting JMJD3 has therapeutic potential for the treatment of inflammatory diseases.


Assuntos
Inibidores Enzimáticos , Histona Desmetilases com o Domínio Jumonji , Mastite , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Células Epiteliais , Feminino , Histonas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Lipopolissacarídeos , Glândulas Mamárias Animais/citologia , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Camundongos
10.
Front Immunol ; 13: 842189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251039

RESUMO

Mastitis is a common inflammatory disease caused by bacterial infection to the mammary gland that impacts human and animal health and causes economic losses. Houttuynia essential oil (HEO), extracted from Houttuynia cordata Thunb, exhibits excellent antibacterial and anti-inflammatory properties. The aim of the study was to investigate the effects of HEO and a self-microemulsion preparation of HEO (SME-HEO) on inflammation and the blood-milk barrier (BMB) in lipopolysaccharide-induced murine mastitis. HEO and SME-HEO significantly downregulated pro-inflammatory factors TNF-α and IL-1ß, upregulated anti-inflammatory factor IL-10, inhibited MPO expression, and alleviated histopathological injury in murine mammary gland tissues. Additionally, HEO and SME-HEO protected the integrity of the BMB by upregulating the expression of junction proteins ZO-1, claudin-1, claudin-3, and occludin. The anti-inflammatory effect of HEO against murine mastitis was mediated by blocking the MAPK signaling pathway and expression of iNOS. By inhibiting the release of inflammatory factors and protecting the integrity of the BMB, HEO may provide a novel treatment for mastitis.


Assuntos
Houttuynia , Mastite , Óleos Voláteis , Animais , Anti-Inflamatórios/uso terapêutico , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Camundongos , Leite/metabolismo , Óleos Voláteis/farmacologia
11.
J Dairy Sci ; 105(4): 3530-3543, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35181137

RESUMO

Nisin Z is a possible alternative for treating bovine mastitis by inhibiting mastitis-causing pathogens and having anti-inflammatory activity. However, the anti-inflammatory mechanism of nisin Z on mastitis is unknown. Our study aimed to investigate the mechanisms of nisin Z on mastitis. Our results showed that nisin Z inhibited the activation of the ERK1/2 and p38 mitogen-activated protein kinase (MAPK) signaling pathway, decreased the release of pro-inflammatory cytokines (i.e., tumor necrosis factor-α, IL-1ß, and IL-6), and increased the anti-inflammatory cytokine (IL-10) in lipopolysaccharide (LPS)-induced MCF10A cells. After intraperitoneal injection, nisin Z significantly decreased inflammatory cell infiltration in the mammary gland, as well as decreased myeloperoxidase and pro-inflammatory cytokines in serum and mammary gland. Western blot analysis revealed that nisin Z also dramatically suppressed the activation of the ERK1/2 and p38 MAPK signaling pathways in LPS-induced mastitis mice. We also found that nisin Z treatment could enhance the blood-milk barrier. In summary, our study demonstrated that nisin Z exerted an anti-inflammatory effect by inhibiting the ERK1/2 and p38 MAPK signaling pathway and promoting the blood-milk barrier on LPS-induced mastitis.


Assuntos
Doenças dos Bovinos , Mastite , Doenças dos Roedores , Animais , Bovinos , Feminino , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/veterinária , Camundongos , NF-kappa B/metabolismo , Nisina/análogos & derivados , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Front Immunol ; 12: 770822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858427

RESUMO

Cow mastitis, which significantly lowers milk quality, is mainly caused by pathogenic bacteria such as E. coli. Previous studies have suggested that lactic acid bacteria can have antagonistic effects on pathogenic bacteria that cause mastitis. In the current study, we evaluated the in vitro and in vivo alleviative effects of L. plantarum KLDS 1.0344 in mastitis treatment. In vitro antibacterial experiments were performed using bovine mammary epithelial cell (bMEC), followed by in vivo studies involving mastitis mouse models. In vitro results indicate that lactic acid was the primary substance inhibiting the E. coli pathogen. Meanwhile, treatment with L. plantarum KLDS 1.0344 can reduce cytokines' mRNA expression levels in the inflammatory response of bMEC induced by LPS. In vivo, the use of this strain reduced the secretion of inflammatory factors IL-6, IL-1ß, and TNF-α, and decreased the activity of myeloperoxidase (MPO), and inhibited the secretion of p-p65 and p-IκBα. These results indicate that L. plantarum KLDS 1.0344 pretreatment can reduce the expression of inflammatory factors by inhibiting the activation of NF-κB signaling pathway, thus exerting prevent the occurrence of inflammation in vivo. Our findings show that L. plantarum KLDS 1.0344 has excellent properties as an alternative to antibiotics and can be developed into lactic acid bacteria preparation to prevent mastitis disease.


Assuntos
Escherichia coli/imunologia , Lactobacillus plantarum/imunologia , Glândulas Mamárias Animais/imunologia , Mastite/imunologia , Animais , Antibiose/imunologia , Bovinos , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Lactobacillus plantarum/fisiologia , Lipopolissacarídeos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/microbiologia , Mastite/induzido quimicamente , Mastite/microbiologia , Camundongos Endogâmicos BALB C , NF-kappa B/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/imunologia
13.
Oxid Med Cell Longev ; 2021: 5048375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938382

RESUMO

Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Taurina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Bovinos , Quimioterapia Combinada , Feminino , Sequestradores de Radicais Livres , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Mastite/induzido quimicamente , Mastite/imunologia , Mastite/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
Int J Biol Sci ; 17(15): 4271-4284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803497

RESUMO

Mastitis causes great psychological and physical pain among women. Our previous studies found that niacin has anti-inflammatory effect, and the realization of this function depends on GPR109A. However, there are no previous reports about the anti-inflammatory function of GPR109A in mastitis. In our study, we observed the effect of niacin on the WT and GPR109A-/- mice mastitis model. The results showed that administration of niacin to WT mice reduced the damage, proinflammatory mediators and protected the integrity of the blood milk barrier in mammary gland. While in GPR109A-/- mice, there was no effect on the above indexes. In mammary epithelial cells, GPR109A was able to promote autophagy and Nrf2 nuclear import through AMPK. In LPS-induced mammary epithelial cells, niacin inhibited the LPS-induced inflammatory response and downregulation of tight junction proteins, and these effects were eliminated by knocking down GPR109A, blocking autophagy or inhibiting Nrf2 nuclear import. These results indicate that in mastitis, GPR109A promotes autophagy and Nrf2 nuclear import through AMPK, thereby inhibiting inflammatory damage to the mammary gland and repairing the blood milk barrier. Our results suggested that GPR109A may be a potential target for the treatment of mastitis.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Mastite/induzido quimicamente , Mastite/metabolismo , Niacina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/genética , Animais , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Leite , Fator 2 Relacionado a NF-E2 , Receptores Acoplados a Proteínas G/genética
15.
Environ Toxicol ; 36(12): 2493-2499, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34477289

RESUMO

Inflammation has been known to be involved in the pathogenesis of mastitis. And anti-inflammatory agent is proposed to be a possible efficient therapeutic strategy for mastitis. Corynoline, a bioactive compound extracted from Corydalis bungeana Turcz., has been reported to have anti-inflammatory effect. However, whether corynoline has protective effect against mastitis remains unclear. The aim of this study was to evaluate the protective effect of corynoline on LPS-induced mastitis in mice. Inflammatory cytokine production was measured by ELISA. The proteins of signaling pathways were detected by western blot analysis. The results showed that treatment of corynoline at the doses of 15, 30, and 60 mg/kg significantly attenuated LPS-induced pathological damage of mammary tissues. Corynoline also ameliorated LPS-induced MPO activity, MDA content, and inflammatory cytokine TNF-α and IL-1ß production in mammary tissues. LPS-induced NF-κB activation was inhibited by corynoline. Furthermore, our results showed corynoline significantly increased the expression of Nrf2 and the phosphorylation levels of AKT and GSK3ß. In conclusion, our results indicated that corynoline protected against LPS-induced mastitis through regulating AKT/GSK3ß/Nrf2 signaling pathway, which subsequently led to the inhibition of NF-κB and inflammatory response.


Assuntos
Lipopolissacarídeos , Mastite , Animais , Alcaloides de Berberina , Feminino , Glicogênio Sintase Quinase 3 beta , Humanos , Lipopolissacarídeos/toxicidade , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/prevenção & controle , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
16.
Aging (Albany NY) ; 13(15): 19460-19474, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34383710

RESUMO

Mastitis is a disease that seriously threatens the health of the mammary gland after delivery. Pedunculoside (PE) is the main bioactive component of Aquifoliaceae. The purpose of this experiment is to explore the effects of PE on mastitis and its underlying mechanisms. Our research results showed that PE could significantly inhibit the increase in the levels of inflammatory mediators such as TNF-α, IL-6, IL-1ß, MPO and iNOS during mastitis. Mechanism studies have found that PE could significantly inhibit the phosphorylation of AKT protein and binds to the ASP-184 site. Further research found that PE also inhibited the activation of AKT's downstream pro-inflammatory signals NF-κB and MAPK. In addition, PE effectively promote the expression of tight junction proteins occludin and claudin-3 during inflammation, maintaining the integrity of the blood-milk barrier. In summary, our research shows that PE inhibits the phosphorylation of AKT/NF-κB and MAPK signals; It also relieves mastitis by repairing the blood-milk barrier.


Assuntos
Glucose/análogos & derivados , Inflamação/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mastite/prevenção & controle , Triterpenos/uso terapêutico , Animais , Feminino , Glucose/farmacologia , Glucose/uso terapêutico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Mastite/induzido quimicamente , Mastite/metabolismo , Camundongos , NF-kappa B/metabolismo , Triterpenos/farmacologia
17.
Carbohydr Polym ; 269: 118345, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294352

RESUMO

This work reports novel chitosan functionalized graphene oxide (GO) nanocomposites combined fluorescence imaging and therapeutic functions in one agent, which can serve as a promising alternative to alleviate related diseases caused hyperinflammation. Briefly, GO was designed to be conjugated with chitosan, fluorescein-labeled peptide, toll-like receptor 4 antibody and hydroxycamptothecin/aloe emodin. We have demonstrated that such nanocomposites could effectively achieve active targeted delivery of pro-apoptotic and anti-inflammatory drugs into inflammatory cells and cause cells apoptosis by acid-responsive drug release. Moreover, confocal fluorescence imaging confirms that the drug-induced inflammatory cells apoptosis could be visualized the light-up fluorescence of fluorescein activated by caspase-3. Meanwhile, inflammatory-related biomarkers have down-regulated after the nanocomposites' treatment in both vitro and vivo experiments consistent with the results in histological sections. In summary, the bifunctional nanocomposites that possess anti-inflammation and fluorescence imaging could serve as a promising therapeutic agent for reducing hyperinflammation caused by numerous diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Apoptose/fisiologia , Portadores de Fármacos/química , Inflamação/tratamento farmacológico , Nanocompostos/química , Animais , Anti-Inflamatórios/química , Anticorpos/imunologia , Camptotecina/análogos & derivados , Camptotecina/química , Camptotecina/uso terapêutico , Bovinos , Linhagem Celular , Quitosana/química , Liberação Controlada de Fármacos , Emodina/química , Emodina/uso terapêutico , Corantes Fluorescentes/química , Grafite/química , Humanos , Lipopolissacarídeos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/patologia , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/patologia , Camundongos , Receptor 4 Toll-Like/imunologia
18.
Res Vet Sci ; 136: 390-395, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799169

RESUMO

Forsythiaside A, a major bioactive component extracted from Forsythiae fructus, possesses multiple biological properties, especially anti-inflammatory properties. In the present study, the anti-inflammatory effect of forsythiaside A was investigated in lipopolysaccharide (LPS)-induced acute mastitis in mice. Our results showed that the expression levels of IL-1ß, IL-6, TNF-α, p38 MAPK, IκBα, and NF-κB p65 in the LPS group were all up-regulated, and obvious pathological changes were observed by sectioning. Compared with those in the LPS group, the expression levels of the above factors were significantly reduced, and the inflammation symptoms were also significantly reduced by section observation after forsythiaside A intervention. These results indicated that forsythiaside A effectively inhibited LPS-induced mammary inflammation in mice by attenuating the activation of the NF-κB and p38 MAPK signaling pathways.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Glicosídeos/farmacologia , Mastite/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Animais , Feminino , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Mastite/induzido quimicamente , Mastite/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
19.
Biomed Pharmacother ; 137: 111353, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578236

RESUMO

BACKGROUND: Mastitis is a common disease occurs in breast-feeding mothers, but published data are poor. This study aimed to study the effects of Tanshinones on treating mastitis. METHODS: Clinical trials performed in 58 breast-feeding mothers were carried out. B-ultrasound and blood test were used to measure the size of breast mass and the change of blood cell counts. BALB/c mice were injected with LPS and then treated by Tanshinone I or Tanshinone IIA/B. Myeloperoxidase (MPO) activity and the release of inflammatory cytokines were tested by MPO kit, RT-qPCR and ELISA. Mouse mammary epithelial cells (mMECs) were isolated and the effects of Tanshinones were measured by conducting CCK-8 assay, flow cytometry, RT-qPCR and ELISA. RESULTS: Patients treated by Cefprozil combined with Tanshinone got better outcomes than patients treated by Cefprozil alone. In animal trials, Tanshinone I and Tanshinone IIA/B significantly reduced MPO activity, and the levels of TNF-α, IL-1ß and IL-6 in serum and mammary gland tissues. In mMECs, Tanshinone I and Tanshinone IIA/B attenuated LPS-induced viability loss and apoptosis. And they effectively inhibited the release of TNF-α, IL-1ß and IL-6. Also, Tanshinone I and Tanshinone IIA/B significantly attenuated LPS-evoked NF-κB activation. CONCLUSION: Tanshinone I and Tanshinone IIA/B have potentials in treating mastitis. The beneficial effects might be through regulating NF-κB activation.


Assuntos
Abietanos/farmacologia , Anti-Infecciosos/farmacologia , Mastite/tratamento farmacológico , Subunidade p50 de NF-kappa B/metabolismo , Abietanos/uso terapêutico , Adulto , Animais , Anti-Infecciosos/uso terapêutico , Apoptose/efeitos dos fármacos , Aleitamento Materno/efeitos adversos , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Inflamação/tratamento farmacológico , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/diagnóstico por imagem , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo , Mastite/induzido quimicamente , Mastite/metabolismo , Camundongos Endogâmicos BALB C , Peroxidase/efeitos dos fármacos , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Ultrassonografia Mamária , Cefprozil
20.
Int Immunopharmacol ; 91: 107324, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385711

RESUMO

It is well-established that lysine-specific demethylase 1 (LSD1) is the first identified histone demethylase. Based on its demethylase enzymatic activity, LSD1 plays a pivotal role in vast range of cellular processes and cancers, but the understanding of its effects on inflammation is relatively limited. Using in vivo models of lipopolysaccharide (LPS)-induced inflammation and in vitro assays in mouse mammary epithelial cells, we identified the novel regulatory roles and underlying mechanisms of LSD1 on LPS-induced mastitis. Mammary gland and cells were collected for the following experiments after treatment. Histological changes were determined by H&E. Western blot analysis was used to detect the protein expression. ELISA and real-time PCR were used to evaluate protein and mRNA expression of inflammatory genes. Our results showed that LPS treatment resulted in a significant increase in LSD1 protein expression. GSK-LSD1 is a selective inhibitor of LSD1 enzyme activity. Treatment of mice with GSK-LSD1 inhibited LSD1 activity, reduced inflammatory cells recruitment to tissues and attenuated LPS-induced damage in mammary gland. Mechanistic investigations suggested that LSD1 inhibition led to the increase of histone H3K4me2 and H3K9me2. Furthermore, GSK-LSD1 inhibition of LSD1 further inhibited nuclear factor κ-B (NF-κB) signaling cascades, and subsequently inhibited the production of cytokines (TNF-α, IL-6 and IL-1ß) in mammary gland. Taken together, our data reveal LSD1 as a potential regulator of inflammation and improve our understanding of epigenetic control on inflammation.


Assuntos
Epigênese Genética , Células Epiteliais/enzimologia , Histona Desmetilases/metabolismo , Glândulas Mamárias Humanas/enzimologia , Mastite/enzimologia , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/patologia , Mastite/induzido quimicamente , Mastite/genética , Mastite/prevenção & controle , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...