Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.223
Filtrar
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731801

RESUMO

Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.


Assuntos
Medicago truncatula , Folhas de Planta , Pulvínulo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Medicago truncatula/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Pulvínulo/metabolismo , Movimento , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Mimosa/fisiologia , Mimosa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
New Phytol ; 243(2): 720-737, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38812277

RESUMO

During arbuscular mycorrhizal (AM) symbiosis, plant innate immunity is modulated to a prime state to allow for fungal colonization. The underlying mechanisms remain to be further explored. In this study, two rice genes encoding LysM extracellular (LysMe) proteins were investigated. By obtaining OsLysMepro:GUS transgenic plants and generating oslysme1, oslysme2 and oslysme1oslysme2 mutants via CRISPR/Cas9 technique, OsLysMe genes were revealed to be specifically induced in the arbusculated cells and mutations in either gene caused significantly reduced root colonization rate by AM fungus Rhizophagus irregularis. Overexpression of OsLysMe1 or OsLysMe2 dramatically increased the colonization rates in rice and Medicago truncatula. The electrophoretic mobility shift assay and dual-luciferase reporter assay supported that OsLysMe genes are regulated by OsWRI5a. Either OsLysMe1 or OsLysMe2 can efficiently rescue the impaired AM phenotype of the mtlysme2 mutant, supporting a conserved function of LysMe across monocotyledonous and dicotyledonous plants. The co-localization of OsLysMe proteins with the apoplast marker SP-OsRAmy3A implies their probable localization to the periarbuscular space (PAS) during symbiosis. Relative to the fungal biomass marker RiTEF, some defense-related genes showed disproportionately high expression levels in the oslysme mutants. These data support that rice plants deploy two OsLysMe proteins to facilitate AM symbiosis, likely by diminishing plant defense responses.


Assuntos
Regulação da Expressão Gênica de Plantas , Mutação , Micorrizas , Oryza , Proteínas de Plantas , Simbiose , Micorrizas/fisiologia , Oryza/microbiologia , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutação/genética , Plantas Geneticamente Modificadas , Medicago truncatula/microbiologia , Medicago truncatula/genética , Motivos de Aminoácidos , Espaço Extracelular/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Fungos
4.
J Plant Physiol ; 297: 154262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703548

RESUMO

Aluminum (Al) is the major limiting factor affecting plant productivity in acidic soils. Al3+ ions exhibit increased solubility at a pH below 5, leading to plant root tip toxicity. Alternatively, plants can perceive very low concentrations of Al3+, and Al triggers downstream signaling even at pH 5.7 without causing Al toxicity. The ALUMINUM-ACTIVATED-MALATE-TRANSPORTER (ALMT) family members act as anion channels, with some regulating the secretion of malate from root apices to chelate Al, which is a crucial mechanism for plant Al resistance. To date, the role of the ALMT gene family within the legume Medicago species has not been fully characterized. In this study, we investigated the ALMT gene family in M. sativa and M. truncatula and identified 68 MsALMTs and 18 MtALMTs, respectively. Phylogenetic analysis classified these genes into five clades, and synteny analysis uncovered genuine paralogs and orthologs. The real-time quantitative reverse transcription PCR (qRT-PCR) analysis revealed that MtALMT8, MtALMT9, and MtALMT15 in clade 2-2b are expressed in both roots and root nodules, and MtALMT8 and MtALMT9 are significantly upregulated by Al in root tips. We also observed that MtALMT8 and MtALMT9 can partially restore the Al sensitivity of Atalmt1 in Arabidopsis. Moreover, transcriptome analysis examined the expression patterns of these genes in M. sativa in response to Al at both pH 5.7 and pH 4.6, as well as to protons, and found that Al and protons can independently induce some Al-resistance genes. Overall, our findings indicate that MtALMT8 and MtALMT9 may play a role in Al resistance, and highlight the resemblance between the ALMT genes in Medicago species and those in Arabidopsis.


Assuntos
Alumínio , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas , Alumínio/toxicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Medicago truncatula/genética , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/metabolismo , Medicago sativa/genética , Medicago sativa/efeitos dos fármacos , Medicago sativa/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Genoma de Planta , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Medicago/genética , Medicago/fisiologia
5.
New Phytol ; 242(6): 2746-2762, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666352

RESUMO

Legume plants develop two types of root postembryonic organs, lateral roots and symbiotic nodules, using shared regulatory components. The module composed by the microRNA390, the Trans-Acting SIRNA3 (TAS3) RNA and the Auxin Response Factors (ARF)2, ARF3, and ARF4 (miR390/TAS3/ARFs) mediates the control of both lateral roots and symbiotic nodules in legumes. Here, a transcriptomic approach identified a member of the Lateral Organ Boundaries Domain (LBD) family of transcription factors in Medicago truncatula, designated MtLBD17/29a, which is regulated by the miR390/TAS3/ARFs module. ChIP-PCR experiments evidenced that MtARF2 binds to an Auxin Response Element present in the MtLBD17/29a promoter. MtLBD17/29a is expressed in root meristems, lateral root primordia, and noninfected cells of symbiotic nodules. Knockdown of MtLBD17/29a reduced the length of primary and lateral roots and enhanced lateral root formation, whereas overexpression of MtLBD17/29a produced the opposite phenotype. Interestingly, both knockdown and overexpression of MtLBD17/29a reduced nodule number and infection events and impaired the induction of the symbiotic genes Nodulation Signaling Pathway (NSP) 1 and 2. Our results demonstrate that MtLBD17/29a is regulated by the miR390/TAS3/ARFs module and a direct target of MtARF2, revealing a new lateral root regulatory hub recruited by legumes to act in the root nodule symbiotic program.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Medicago truncatula , Proteínas de Plantas , Nodulação , Raízes de Plantas , Fatores de Transcrição , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Nodulação/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regiões Promotoras Genéticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Técnicas de Silenciamento de Genes , Simbiose/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento
6.
Curr Biol ; 34(8): 1705-1717.e6, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38574729

RESUMO

Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.


Assuntos
Quitina , Quitosana , Medicago truncatula , Micorrizas , Proteínas de Plantas , Simbiose , Micorrizas/fisiologia , Quitina/metabolismo , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/imunologia , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Imunidade Vegetal , Oligossacarídeos/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
7.
Curr Biol ; 34(10): 2212-2220.e7, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642549

RESUMO

The ability of fungi to establish mycorrhizal associations with plants and enhance the acquisition of mineral nutrients stands out as a key feature of terrestrial life. Evidence indicates that arbuscular mycorrhizal (AM) association is a trait present in the common ancestor of land plants,1,2,3,4 suggesting that AM symbiosis was an important adaptation for plants in terrestrial environments.5 The activation of nuclear calcium signaling in roots is essential for AM within flowering plants.6 Given that the earliest land plants lacked roots, whether nuclear calcium signals are required for AM in non-flowering plants is unknown. To address this question, we explored the functional conservation of symbiont-induced nuclear calcium signals between the liverwort Marchantia paleacea and the legume Medicago truncatula. In M. paleacea, AM fungi penetrate the rhizoids and form arbuscules in the thalli.7 Here, we demonstrate that AM germinating spore exudate (GSE) activates nuclear calcium signals in the rhizoids of M. paleacea and that this activation is dependent on the nuclear-localized ion channel DOES NOT MAKE INFECTIONS 1 (MpaDMI1). However, unlike flowering plants, MpaDMI1-mediated calcium signaling is only required for the thalli colonization but not for the AM penetration within rhizoids. We further demonstrate that the mechanism of regulation of DMI1 has diverged between M. paleacea and M. truncatula, including a key amino acid residue essential to sustain DMI1 in an inactive state. Our study reveals functional evolution of nuclear calcium signaling between liverworts and flowering plants and opens new avenues of research into the mechanism of endosymbiosis signaling.


Assuntos
Evolução Biológica , Sinalização do Cálcio , Marchantia , Medicago truncatula , Micorrizas , Simbiose , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/genética , Micorrizas/fisiologia , Marchantia/metabolismo , Marchantia/genética , Marchantia/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Embriófitas/metabolismo , Embriófitas/fisiologia , Núcleo Celular/metabolismo
8.
New Phytol ; 242(5): 2195-2206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571285

RESUMO

Legume nodulation requires the detection of flavonoids in the rhizosphere by rhizobia to activate their production of Nod factor countersignals. Here we investigated the flavonoids involved in nodulation of Medicago truncatula. We biochemically characterized five flavonoid-O-methyltransferases (OMTs) and a lux-based nod gene reporter was used to investigate the response of Sinorhizobium medicae NodD1 to various flavonoids. We found that chalcone-OMT 1 (ChOMT1) and ChOMT3, but not OMT2, 4, and 5, were able to produce 4,4'-dihydroxy-2'-methoxychalcone (DHMC). The bioreporter responded most strongly to DHMC, while isoflavones important for nodulation of soybean (Glycine max) showed no activity. Mutant analysis revealed that loss of ChOMT1 strongly reduced DHMC levels. Furthermore, chomt1 and omt2 showed strongly reduced bioreporter luminescence in their rhizospheres. In addition, loss of both ChOMT1 and ChOMT3 reduced nodulation, and this phenotype was strengthened by the further loss of OMT2. We conclude that: the loss of ChOMT1 greatly reduces root DHMC levels; ChOMT1 or OMT2 are important for nod gene activation in the rhizosphere; and ChOMT1/3 and OMT2 promote nodulation. Our findings suggest a degree of exclusivity in the flavonoids used for nodulation in M. truncatula compared to soybean, supporting a role for flavonoids in rhizobial host range.


Assuntos
Chalconas , Medicago truncatula , Nodulação , Rizosfera , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Chalconas/metabolismo , Nodulação/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Flavonoides/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sinorhizobium/fisiologia , Sinorhizobium/genética , Metiltransferases/metabolismo , Metiltransferases/genética
9.
Int J Biol Macromol ; 268(Pt 1): 131631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631584

RESUMO

Acyl-CoA-binding proteins (ACBPs) are mainly involved in acyl-CoA ester binding and trafficking in eukaryotic cells, and they function in lipid metabolism, membrane biosynthesis, cellular signaling, stress response, disease resistance, and other biological activities in plants. However, the roles of ACBP family members in Medicago remain unclear. In this study, a total of eight ACBP genes were identified in the genome of Medicago truncatula and Medicago sativa, and they were clustered into four sub-families (Class I-IV). Many cis-acting elements related to abiotic response were identified in the promoter region of these ACBP genes, in particular light-responsive elements. These ACBP genes exhibited distinct expression pattern in various tissues, and the expression level of MtACBP1/MsACBP1 and MtACBP2/MsACBP2 gene pairs were significantly increased under NaCl treatment. Subcellular localization analysis showed that MtACBP1/MsACBP1 and MtACBP2/MsACBP2 were localized in the endoplasmic reticulum of tobacco epidermal cells. Arabidopsis seedlings over-expressing MtACBP2/MsACBP2 displayed increased root length than the wild type under short light, Cu2+, ABA, PEG, and NaCl treatments. Over-expression of MtACBP2/MsACBP2 also significantly enhanced Arabidopsis tolerance under NaCl and PEG treatments in mature plants. Collectively, our study identified salt and drought responsive ACBP genes in Medicago and verified their functions in increasing resistance against salt and drought stresses.


Assuntos
Arabidopsis , Resistência à Seca , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal , Arabidopsis/genética , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Medicago/genética , Medicago truncatula/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética
10.
Methods Mol Biol ; 2788: 295-316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656522

RESUMO

This protocol outlines the construction of a plant transformation plasmid to express both the Cas9 nuclease and individual guide RNA (gRNA), facilitating the induction of double-stranded breaks (DSBs) in DNA and subsequent imprecise repair via the non-homologous end-joining (NHEJ) pathway. The gRNA expression cassettes are assembled from three components. First, the Medicago truncatula U6.6 (MtU6) promoter (352 bp) and scaffold (83 bp) sequences are amplified from a pUC-based plasmid. Additionally, a third fragment, corresponding to the target sequence, is synthesized as an oligonucleotide. The three gRNA expression fragments are then loosely assembled in a ligation-free cloning reaction and used as a template for an additional PCR step to amplify a single gRNA expression construct, ready for assembly into the transformation vector. The benefits of this design include cost efficiency, as subsequent cloning reactions only require 59 oligonucleotides and standard cloning reagents. Researchers engaged in CRISPR/Cas9-mediated genome editing in plants will find this protocol a clear and resource-efficient approach to create transformation plasmids for their experiments.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Vetores Genéticos , RNA Guia de Sistemas CRISPR-Cas , Vetores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes/métodos , Plasmídeos/genética , Medicago truncatula/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Clonagem Molecular/métodos , Regiões Promotoras Genéticas/genética , Reparo do DNA por Junção de Extremidades/genética , Transformação Genética
11.
Plant Physiol Biochem ; 209: 108542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531119

RESUMO

High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.


Assuntos
Arabidopsis , Medicago truncatula , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Tolerância ao Sal , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Germinação/genética
12.
New Phytol ; 242(5): 2207-2222, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481316

RESUMO

In terrestrial ecosystems, most plant species can form beneficial associations with arbuscular mycorrhizal (AM) fungi. Arbuscular mycorrhizal fungi benefit plant nutrient acquisition and enhance plant tolerance to drought. The high osmolarity glycerol 1 mitogen-activated protein kinase (HOG1-MAPK) cascade genes have been characterized in Rhizophagus irregularis. However, the upstream receptor of the HOG1-MAPK cascade remains to be investigated. We identify the receptor kinase RiSho1 from R. irregularis, containing four transmembrane domains and one Src homology 3 (SH3) domain, corresponding to the homologue of Saccharomyces cerevisiae. Higher expression levels of RiSho1 were detected during the in planta phase in response to drought. RiSho1 protein was localized in the plasma membrane of yeast, and interacted with the HOG1-MAPK module RiPbs2 directly by protein-protein interaction. RiSho1 complemented the growth defect of the yeast mutant ∆sho1 under sorbitol conditions. Knock-down of RiSho1 led to the decreased expression of downstream HOG1-MAPK cascade (RiSte11, RiPbs2, RiHog1) and drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3), hampered arbuscule development and decreased plants antioxidation ability under drought stress. Our study reveals the role of RiSho1 in regulating arbuscule development and drought-resistant genes via the HOG1-MAPK cascade. These findings provide new perspectives on the mechanisms by which AM fungi respond to drought.


Assuntos
Secas , Micorrizas , Simbiose , Micorrizas/fisiologia , Simbiose/genética , Simbiose/fisiologia , Adaptação Fisiológica/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/microbiologia , Medicago truncatula/genética , Medicago truncatula/enzimologia , Resistência à Seca , Fungos
13.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474164

RESUMO

The interaction of plants and soil bacteria rhizobia leads to the formation of root nodule symbiosis. The intracellular form of rhizobia, the symbiosomes, are able to perform the nitrogen fixation by converting atmospheric dinitrogen into ammonia, which is available for plants. The symbiosis involves the resource sharing between two partners, but this exchange does not include equivalence, which can lead to resource scarcity and stress responses of one of the partners. In this review, we analyze the possible involvement of the autophagy pathway in the process of the maintenance of the nitrogen-fixing bacteria intracellular colony and the changes in the endomembrane system of the host cell. According to in silico expression analysis, ATG genes of all groups were expressed in the root nodule, and the expression was developmental zone dependent. The analysis of expression of genes involved in the response to carbon or nitrogen deficiency has shown a suboptimal access to sugars and nitrogen in the nodule tissue. The upregulation of several ER stress genes was also detected. Hence, the root nodule cells are under heavy bacterial infection, carbon deprivation, and insufficient nitrogen supply, making nodule cells prone to autophagy. We speculate that the membrane formation around the intracellular rhizobia may be quite similar to the phagophore formation, and the induction of autophagy and ER stress are essential to the success of this process.


Assuntos
Medicago truncatula , Rhizobium , Simbiose/fisiologia , Medicago truncatula/genética , Proteínas de Plantas/genética , Fixação de Nitrogênio/genética , Rhizobium/metabolismo , Autofagia , Nitrogênio/metabolismo , Carbono/metabolismo , Nódulos Radiculares de Plantas/metabolismo
14.
Arch Microbiol ; 206(4): 147, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462552

RESUMO

Legumes can establish a mutual association with soil-derived nitrogen-fixing bacteria called 'rhizobia' forming lateral root organs called root nodules. Rhizobia inside the root nodules get transformed into 'bacteroids' that can fix atmospheric nitrogen to ammonia for host plants in return for nutrients and shelter. A substantial 200 million tons of nitrogen is fixed annually through biological nitrogen fixation. Consequently, the symbiotic mechanism of nitrogen fixation is utilized worldwide for sustainable agriculture and plays a crucial role in the Earth's ecosystem. The development of effective nitrogen-fixing symbiosis between legumes and rhizobia is very specialized and requires coordinated signaling. A plethora of plant-derived nodule-specific cysteine-rich (NCR or NCR-like) peptides get actively involved in this complex and tightly regulated signaling process of symbiosis between some legumes of the IRLC (Inverted Repeat-Lacking Clade) and Dalbergioid clades and nitrogen-fixing rhizobia. Recent progress has been made in identifying two such peptidases that actively prevent bacterial differentiation, leading to symbiotic incompatibility. In this review, we outlined the functions of NCRs and two nitrogen-fixing blocking peptidases: HrrP (host range restriction peptidase) and SapA (symbiosis-associated peptidase A). SapA was identified through an overexpression screen from the Sinorhizobium meliloti 1021 core genome, whereas HrrP is inherited extra-chromosomally. Interestingly, both peptidases affect the symbiotic outcome by degrading the NCR peptides generated from the host plants. These NCR-degrading peptidases can shed light on symbiotic incompatibility, helping to elucidate the reasons behind the inefficiency of nitrogen fixation observed in certain groups of rhizobia with specific legumes.


Assuntos
Medicago truncatula , Rhizobium , Peptídeo Hidrolases/genética , Rhizobium/genética , Rhizobium/metabolismo , Simbiose , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Ecossistema , Peptídeos/metabolismo , Verduras , Nitrogênio , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia
15.
Commun Biol ; 7(1): 289, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459083

RESUMO

Long non-coding RNAs (lncRNAs) are abundant in plants, however, their regulatory roles remain unclear in most biological processes, such as response in salinity stress which is harm to plant production. Here we show a lncRNA in Medicago truncatula identified from salt-treated Medicago truncatula is important for salinity tolerance. We name the lncRNA LAL, LncRNA ANTISENSE to M. truncatula LIGHT-HARVESTING CHLOROPHYLL A/B BINDING (MtLHCB) genes. LAL is an antisense to four consecutive MtLHCB genes on chromosome 6. In salt-treated M. truncatula, LAL is suppressed in an early stage but induced later; this pattern is opposite to that of the four MtLHCBs. The lal mutants show enhanced salinity tolerance, while overexpressing LAL disrupts this superior tolerance in the lal background, which indicates its regulatory role in salinity response. The regulatory role of LAL on MtLHCB1.4 is further verified by transient co-expression of LAL and MtLHCB1.4-GFP in tobacco leaves, in which the cleavage of MtLHCB1.4 and production of secondary interfering RNA is identified. This work demonstrates a lncRNA, LAL, functioning as a regulator that fine-tunes salinity tolerance via regulating MtLHCB1s' expression in M. truncatula.


Assuntos
Medicago truncatula , RNA Longo não Codificante , Tolerância ao Sal/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Estresse Fisiológico/genética , Clorofila A/metabolismo
16.
Curr Biol ; 34(4): 825-840.e7, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38301650

RESUMO

Legumes produce specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting nitrogen-fixing bacteria. We have previously shown that a lateral root program underpins nodule initiation, but there must be additional developmental regulators that confer nodule identity. Here, we show two members of the LIGHT-SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, predominantly known to define shoot meristem complexity and organ boundaries, function as regulators of nodule organ identity. In parallel to the root initiation program, LSH1/LSH2 recruit a program into the root cortex that mediates the divergence into nodules, in particular with cell divisions in the mid-cortex. This includes regulation of auxin and cytokinin, promotion of NODULE ROOT1/2 and Nuclear Factor YA1, and suppression of the lateral root program. A principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a key feature unique to nodules.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Hipocótilo/genética , Hipocótilo/metabolismo , Citocininas/genética , Meristema/metabolismo , Simbiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
17.
Plant J ; 118(3): 607-625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361340

RESUMO

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Proteínas de Plantas , Raízes de Plantas , Nódulos Radiculares de Plantas , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Nodulação/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/genética
18.
Plant Cell ; 36(5): 1755-1776, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318972

RESUMO

The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Folhas de Planta , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Morfogênese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
19.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365913

RESUMO

The soil bacterium Sinorhizobium meliloti can establish a nitrogen-fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Although toxin-antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a mapping by overexpression of an RNase in Escherichia coli (MORE) RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Humanos , Sinorhizobium meliloti/genética , RNA de Transferência de Serina , Medicago truncatula/genética , Medicago truncatula/microbiologia , Bactérias , Fixação de Nitrogênio/fisiologia , Estilo de Vida , Nitrogênio , Ribonucleases , Simbiose/fisiologia
20.
Physiol Plant ; 176(1): e14212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353133

RESUMO

Plant-specific WUSCHEL-related homeobox (WOX) family transcription factors play critical roles in maintaining meristems and lateral organ development. The WUS clade member STF/LAM1 physically interacts with the intermediate clade member WOX9. This interaction contributes to their antagonistical functions on leaf blade outgrowth by competing for the same cis-elements in the promoter of their common target in M. truncatula and N. sylvestris. Here, we identified the main interaction domains of STF and MtWOX9 in Medicago, shedding light on the mechanism of WOX gene function. The middle domain of STF and MtWOX9 are both critical for the interaction, while the conserved motif of STF in the C-terminal domain is also required. Deletion of the middle domain of STF partially rescued the leaf blade phenotypes of the stf null mutant, indicating that the middle domain plays an essential role during leaf blade expansion. This finding provides a new insight that the versatility of WOX function is not only caused by the conserved DNA binding and repression domains but also by the middle domain that recruits different partners.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...