Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.095
Filtrar
1.
J Nanobiotechnology ; 22(1): 316, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844939

RESUMO

Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.


Assuntos
Tecido Adiposo , Vesículas Extracelulares , Células-Tronco Mesenquimais , Medicina Regenerativa , Humanos , Vesículas Extracelulares/metabolismo , Medicina Regenerativa/métodos , Tecido Adiposo/citologia , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Cicatrização , Regeneração
2.
Cells ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38727315

RESUMO

Mesenchymal stem cells (MSCs) have garnered significant interest in the field of regenerative medicine for their ability to potentially treat various diseases, especially neurodegenerative disorders [...].


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Animais , Medicina Regenerativa/métodos
3.
Nihon Yakurigaku Zasshi ; 159(3): 138-143, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692875

RESUMO

Japan Tissue Engineering Co., Ltd., J-TEC, was launched in 1999 to industrialize regenerative medicine in Japan. We developed the first regenerative medicine product, JACE (autologous cultured epidermis), which received PMDA approval for treating serious burns in 2007. Then, JACC (autologous cultured cartilage), the second product, was approved in 2012 for efficacy on traumatic cartilage defects. In 2014, the Pharmaceutical Affairs Law was revised to the Pharmaceutical and Medical Device Act, and regenerative medicine products, including gene therapies, were newly classified to accelerate productization. Subsequently, Nepic (autologous cultured corneal epithelium) and Ocural (autologous cultured oral mucosal epithelium) for epithelialization of limbal stem cell deficiencies in ophthalmology were approved in 2020 and 2021, respectively. Furthermore, a new product, JACEMIN (autologous cultured epidermis maintaining melanocyte) for vitiligo treatment was approved in 2023. We have developed five products of regenerative medicine that construct human tissues to graft rather than injectable cell suspensions like drugs. To develop regenerative medicine products, it is necessary to ensure the safety of raw materials, standardize the cultivation process, examine cell characteristics on GLP tests, construct transportation methods, build GCTP facilities, and conduct clinical trials on GCP. Re-examinations of JACE for serious burns and JACC for cartilage defects were completed after 7 years of all-case postmarketing surveillance. The commercialization of these products has become a benchmark for domestic regulation and has induced the development of a regenerative medicine industry promoted by Japan.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Humanos , Japão
4.
Nihon Yakurigaku Zasshi ; 159(3): 144-149, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692876

RESUMO

We have been making 3D tissues consist of cells only, based on the corporate philosophy of "contributing to dramatic advances in medical care through the practical application of innovative 3D cell stacking technology." Currently, in the field of regenerative medicine, we are working toward obtaining approval from the Ministry of Health, Labor and Welfare and commercializing large artificial organs that are made from patients' own cells and have functions such as nerve regeneration, osteochondral regeneration, and blood vessels. On the other hand, this three-dimensional cell stacking technology can be extended to technology for culturing cells in an environment similar to the human body, and is expected to serve as a new methodology for evaluating the effects of new products in various fields on living organisms. Therefore, we are planning a business to provide developers of pharmaceuticals, foods, cosmetics, etc. with a small device called "Functional Cell Device (FCD)" that reproduces some of the functions of human organs outside the body. As the first step, we have developed a three-dimensional liver construct (3D mini-liver). The in vitro human liver model has a wide range of usage, such as evaluation of hepatotoxicity of drugs, elucidation of drug metabolism mechanism, and model of liver disease. In this report, we will outline it together with actual examples in regenerative medicine.


Assuntos
Impressão Tridimensional , Medicina Regenerativa , Engenharia Tecidual , Humanos , Disciplinas das Ciências Biológicas , Animais
5.
Mo Med ; 121(2): 170-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694604

RESUMO

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has emerged as a powerful gene editing technology that is revolutionizing biomedical research and clinical medicine. The CRISPR system allows scientists to rewrite the genetic code in virtually any organism. This review provides a comprehensive overview of CRISPR and its clinical applications. We first introduce the CRISPR system and explain how it works as a gene editing tool. We then highlight current and potential clinical uses of CRISPR in areas such as genetic disorders, infectious diseases, cancer, and regenerative medicine. Challenges that need to be addressed for the successful translation of CRISPR to the clinic are also discussed. Overall, CRISPR holds great promise to advance precision medicine, but ongoing research is still required to optimize delivery, efficacy, and safety.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Neoplasias/genética , Neoplasias/terapia , Terapia Genética/métodos , Terapia Genética/tendências , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Medicina de Precisão/métodos , Medicina de Precisão/tendências
6.
Sports Med Arthrosc Rev ; 32(1): 46-50, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695503

RESUMO

Rotator cuff (RC) injuries include a wide range of pathologic states. Athletes are perhaps the most susceptible to RC injuries ranging from tendinopathy to partial or full-thickness tears, due to functional overload and repetitive movements, causing abstention from sports for long periods. Regenerative medicine keeps giving us multiple choices to fight the disability caused by these pathologies. A literature search was performed, and findings related to the structure-function of rotator cuff units, pathophysiology of injuries, regenerative medicine treatments, and future strategies were outlined. Platelet-rich plasma (PRP) has a greater number of articles and clinical trials, accompanied by stem cells progenitor, prolotherapy, and new approaches such as microfragmented adipose tissue and exosomes. RC injuries in athletes can cause pain, functional impotence, and the risk of recurrence, and can lead them to stop playing sports. Regenerative medicine offers a range of treatments, but some of them need further studies to underline their actual validity.


Assuntos
Traumatismos em Atletas , Plasma Rico em Plaquetas , Medicina Regenerativa , Lesões do Manguito Rotador , Humanos , Lesões do Manguito Rotador/terapia , Traumatismos em Atletas/terapia , Proloterapia , Tecido Adiposo , Transplante de Células-Tronco
7.
Swiss Dent J ; 134(1): 144-157, 2024 Apr 05.
Artigo em Alemão | MEDLINE | ID: mdl-38741457

RESUMO

The clinical impact of platelet-rich fibrin (PRF) and plasma rich in growth factors (PRGF®) respectively has been studied extensively in the field of regenerative dentistry during the last two decades. Literature supports evidence for additional benefits in regenerative periodontal therapy, alveolar ridge preservation, management of extraction sockets, implantology including guided bone regeneration as well as defect management in oral surgery. Regarding gingival wound healing and soft tissue regeneration, there is sufficient evidence for their positive effects which have been confirmed in several systematic reviews. The effects seem less clear in conjunction with osseous regenerative treatments, where the inter-study heterogenity in terms of different PRF-protocols, indications and application forms might hinder a systematic comparison. Nevertheless there is evidence that PRF might have beneficial effects on hard-tissue or its regeneration respectively.For being able to facilitate conclusions in systematic reviews, precise reporting of the used PRF-protocols is mandatory for future (clinical) research in the field of autologous platelet concentrates.


Assuntos
Fibrina Rica em Plaquetas , Plasma Rico em Plaquetas , Humanos , Regeneração Tecidual Guiada Periodontal/métodos , Plaquetas/fisiologia , Regeneração Óssea/fisiologia , Regeneração Óssea/efeitos dos fármacos , Cicatrização/fisiologia , Cicatrização/efeitos dos fármacos , Medicina Regenerativa/métodos
8.
Biofabrication ; 16(3)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697093

RESUMO

Organoids have emerged as crucial platforms in tissue engineering and regenerative medicine but confront challenges in faithfully mimicking native tissue structures and functions. Bioprinting technologies offer a significant advancement, especially when combined with organoid bioinks-engineered formulations designed to encapsulate both the architectural and functional elements of specific tissues. This review provides a rigorous, focused examination of the evolution and impact of organoid bioprinting. It emphasizes the role of organoid bioinks that integrate key cellular components and microenvironmental cues to more accurately replicate native tissue complexity. Furthermore, this review anticipates a transformative landscape invigorated by the integration of artificial intelligence with bioprinting techniques. Such fusion promises to refine organoid bioink formulations and optimize bioprinting parameters, thus catalyzing unprecedented advancements in regenerative medicine. In summary, this review accentuates the pivotal role and transformative potential of organoid bioinks and bioprinting in advancing regenerative therapies, deepening our understanding of organ development, and clarifying disease mechanisms.


Assuntos
Bioimpressão , Organoides , Medicina Regenerativa , Engenharia Tecidual , Organoides/citologia , Humanos , Bioimpressão/métodos , Engenharia Tecidual/métodos , Animais , Medicina Regenerativa/métodos , Tinta
9.
Clin Plast Surg ; 51(3): 435-443, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789152

RESUMO

Regenerative therapies such as fat grafting and Platelet Rich Plasma (PRP) have emerged as new options to tackle burn-related injuries and their long-term sequelae. Fat grafting is able to promote wound healing by regulating the inflammatory response, stimulating angiogenesis, favoring the remodeling of the extracellular matrix, and enhancing scar appearance. PRP can enhance wound healing by accelerating stages including hemostasis and re-epithelization. It can improve scar quality and complement fat grafting procedures. Their cost-effectiveness, minimal invasiveness, and promising results observed in the literature have made these tools as therapeutic candidates. The current evidence on fat grafting and PRP in acute and reconstructive burns is described and discussed in this study.


Assuntos
Tecido Adiposo , Queimaduras , Plasma Rico em Plaquetas , Medicina Regenerativa , Cicatrização , Queimaduras/cirurgia , Queimaduras/terapia , Humanos , Tecido Adiposo/transplante , Medicina Regenerativa/métodos , Cicatrização/fisiologia , Procedimentos de Cirurgia Plástica/métodos
10.
Vestn Oftalmol ; 140(2. Vyp. 2): 158-165, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38739146

RESUMO

The lacrimal gland (LG) is a tubuloacinar exocrine gland composed of acinar, ductal, and myoepithelial cells. Three-dimensional distribution of acinar lobules, ducts, and myoepithelial cells is necessary for the effective functioning of the organ. LG is the main organ of immune surveillance of the ocular surface system. The embryogenesis of the gland is regulated by the interaction of genetic mechanisms, internal epigenetic (enzyme systems, hormones) and exogenous factors. There is no doubt that there is a clear genetic program for the implementation of the complex process of embryonic development. The mechanisms regulating LG organogenesis initiate the work of a huge number of structural oncogenes, transcription and growth factors, etc. Studying the expression and selective activity of regulatory genes during organ development, their participation in the differentiation of different cell types is a current trend at the nexus of clinical genetics, molecular biology, embryology and immunocytochemistry. Due to its relatively simple structure and accessibility, human LG is a suitable object for potential application in regenerative medicine. Development of a universal protocol for obtaining functional differentiated secretory epithelium of LG capable of expressing tissue-specific markers is an urgent task. Determining the nature and origin of stem cells and progenitor cells will allow the isolation and multiplication of these cells in culture. After obtaining a functionally active culture of LG cells, it is possible to create a model of autoimmune diseases.


Assuntos
Doenças do Aparelho Lacrimal , Aparelho Lacrimal , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Aparelho Lacrimal/embriologia , Aparelho Lacrimal/fisiologia , Doenças do Aparelho Lacrimal/terapia , Doenças do Aparelho Lacrimal/fisiopatologia , Diferenciação Celular/fisiologia
11.
J Am Vet Med Assoc ; 262(S1): S4-S6, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38810663
12.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791452

RESUMO

The evaluation of nanostructured biomaterials and medicines is associated with 2D cultures that provide insight into biological mechanisms at the molecular level, while critical aspects of the tumor microenvironment (TME) are provided by the study of animal xenograft models. More realistic models that can histologically reproduce human tumors are provided by tissue engineering methods of co-culturing cells of varied phenotypes to provide 3D tumor spheroids that recapitulate the dynamic TME in 3D matrices. The novel approaches of creating 3D tumor models are combined with tumor tissue engineering (TTE) scaffolds including hydrogels, bioprinted materials, decellularized tissues, fibrous and nanostructured matrices. This review focuses on the use of nanostructured materials in cancer therapy and regeneration, and the development of realistic models for studying TME molecular and immune characteristics. Tissue regeneration is an important aspect of TTE scaffolds used for restoring the normal function of the tissues, while providing cancer treatment. Thus, this article reports recent advancements in the development of 3D TTE models for antitumor drug screening, studying tumor metastasis, and tissue regeneration. Also, this review identifies the significant opportunities of using 3D TTE scaffolds in the evaluation of the immunological mechanisms and processes involved in the application of immunotherapies.


Assuntos
Materiais Biocompatíveis , Imunoterapia , Nanoestruturas , Neoplasias , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais , Microambiente Tumoral , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Nanoestruturas/química , Medicina Regenerativa/métodos , Animais , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/imunologia , Materiais Biocompatíveis/química , Imunoterapia/métodos , Hidrogéis/química
13.
J Biomed Sci ; 31(1): 47, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724973

RESUMO

The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes Induzidas , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Urina/citologia , Medicina Regenerativa/métodos
14.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732156

RESUMO

During the last three decades, mesenchymal stem/stromal cells (MSCs) were extensively studied, and are mainly considered within the setting of their regenerative and immunomodulatory properties in tissue regeneration [...].


Assuntos
Células-Tronco Mesenquimais , Regeneração , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Diferenciação Celular
15.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732231

RESUMO

Regenerative medicine is an interdisciplinary field aiming at restoring pathologically damaged tissues and whole organs by cell transplantation in combination with proper supporting scaffolds. Gelatine-based ones are very attractive due to their biocompatibility, rapid biodegradability, and lack of immunogenicity. Gelatine-based composite hydrogels, containing strengthening agents to improve their modest mechanical properties, have been demonstrated to act as extracellular matrices (ECMs), thus playing a critical role in "organ manufacturing". Inspired by the lysyl oxidase (LO)-mediated process of crosslinking, which occurs in nature to reinforce collagen, we have recently developed a versatile protocol to crosslink gelatine B (Gel B) in the presence or absence of LO, using properly synthesized polystyrene- and polyacrylic-based copolymers containing the amine or aldehyde groups needed for crosslinking reactions. Here, following the developed protocol with slight modifications, we have successfully crosslinked Gel B in different conditions, obtaining eight out of nine compounds in high yield (57-99%). The determined crosslinking degree percentage (CP%) evidenced a high CP% for compounds obtained in presence of LO and using the styrenic amine-containing (CP5/DMAA) and acrylic aldehyde-containing (CPMA/DMAA) copolymers as crosslinking agents. ATR-FTIR analyses confirmed the chemical structure of all compounds, while optical microscopy demonstrated cavernous, crater-like, and labyrinth-like morphologies and cavities with a size in the range 15-261 µm. An apparent density in the range 0.10-0.45 g/cm3 confirmed the aerogel-like structure of most samples. Although the best biodegradation profile was observed for the sample obtained using 10% CP5/DMAA (M3), high swelling and absorption properties, high porosity, and good biodegradation profiles were also observed for samples obtained using the 5-10% CP5/DMAA (M4, 5, 6) and 20% CPMA/DMAA (M9) copolymers. Collectively, in this work of synthesis and physicochemical characterization, new aerogel-like composites have been developed and, based on their characteristics, which fit well within the requirements for TE, five candidates (M3, M4, M5, M6, and M9) suitable for future biological experiments on cell adhesion, infiltration and proliferation, to confirm their effective functioning, have been identified.


Assuntos
Materiais Biocompatíveis , Gelatina , Hidrogéis , Medicina Regenerativa , Alicerces Teciduais , Gelatina/química , Alicerces Teciduais/química , Medicina Regenerativa/métodos , Materiais Biocompatíveis/química , Hidrogéis/química , Hidrogéis/síntese química , Humanos , Engenharia Tecidual/métodos , Reagentes de Ligações Cruzadas/química
16.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727280

RESUMO

Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.


Assuntos
Âmnio , Diferenciação Celular , Condrogênese , Humanos , Âmnio/citologia , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
17.
Cells ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727281

RESUMO

This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Organoides/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Neuropatologia/métodos , Medicina Regenerativa/métodos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/patologia , Diferenciação Celular
18.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732198

RESUMO

Osteoporotic vertebral compression fractures (OVCFs) significantly increase morbidity and mortality, presenting a formidable challenge in healthcare. Traditional interventions such as vertebroplasty and kyphoplasty, despite their widespread use, are limited in addressing the secondary effects of vertebral fractures in adjacent areas and do not facilitate bone regeneration. This review paper explores the emerging domain of regenerative therapies, spotlighting stem cell therapy's transformative potential in OVCF treatment. It thoroughly describes the therapeutic possibilities and mechanisms of action of mesenchymal stem cells against OVCFs, relying on recent clinical trials and preclinical studies for efficacy assessment. Our findings reveal that stem cell therapy, particularly in combination with scaffolding materials, holds substantial promise for bone regeneration, spinal stability improvement, and pain mitigation. This integration of stem cell-based methods with conventional treatments may herald a new era in OVCF management, potentially improving patient outcomes. This review advocates for accelerated research and collaborative efforts to translate laboratory breakthroughs into clinical practice, emphasizing the revolutionary impact of regenerative therapies on OVCF management. In summary, this paper positions stem cell therapy at the forefront of innovation for OVCF treatment, stressing the importance of ongoing research and cross-disciplinary collaboration to unlock its full clinical potential.


Assuntos
Fraturas por Compressão , Fraturas por Osteoporose , Medicina Regenerativa , Fraturas da Coluna Vertebral , Humanos , Fraturas da Coluna Vertebral/terapia , Fraturas por Compressão/terapia , Fraturas por Osteoporose/terapia , Medicina Regenerativa/métodos , Regeneração Óssea , Animais , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia
19.
J Cell Mol Med ; 28(10): e18359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770886

RESUMO

Cell therapy offers hope, but it also presents challenges, most particularly the limited ability of human organs and tissues to regenerate. Since many diseases are associated with irreversible pathophysiological or traumatic changes, stem cells and their derivatives are unable to secure healing. Although regenerative medicine offers chances for improvements in many diseases, such as type one diabetes and Parkinson's disease, it cannot eliminate the primary cause of many of them. While successes can be expected for diseases such as sickle cell disease, this is not the case for hereditary diseases with varied mutation types or for ciliopathies, which start in embryogenesis. In this complicated medical environment, synthetic biology offers some solutions, but their implementation will take many years. Still, positive examples such as CAR-T therapy offer hope.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Medicina Regenerativa , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Medicina Regenerativa/métodos , Animais
20.
PLoS One ; 19(5): e0302537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771829

RESUMO

BACKGROUND: Stem cell research, particularly in the domain of induced pluripotent stem cell (iPSC) technology, has shown significant progress. The integration of artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), has played a pivotal role in refining iPSC classification, monitoring cell functionality, and conducting genetic analysis. These enhancements are broadening the applications of iPSC technology in disease modelling, drug screening, and regenerative medicine. This review aims to explore the role of AI in the advancement of iPSC research. METHODS: In December 2023, data were collected from three electronic databases (PubMed, Web of Science, and Science Direct) to investigate the application of AI technology in iPSC processing. RESULTS: This systematic scoping review encompassed 79 studies that met the inclusion criteria. The number of research studies in this area has increased over time, with the United States emerging as a leading contributor in this field. AI technologies have been diversely applied in iPSC technology, encompassing the classification of cell types, assessment of disease-specific phenotypes in iPSC-derived cells, and the facilitation of drug screening using iPSC. The precision of AI methodologies has improved significantly in recent years, creating a foundation for future advancements in iPSC-based technologies. CONCLUSIONS: Our review offers insights into the role of AI in regenerative and personalized medicine, highlighting both challenges and opportunities. Although still in its early stages, AI technologies show significant promise in advancing our understanding of disease progression and development, paving the way for future clinical applications.


Assuntos
Inteligência Artificial , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Medicina Regenerativa/métodos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...