Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.975
Filtrar
1.
Front Immunol ; 15: 1410564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007148

RESUMO

Background: Immune checkpoint blockade (ICB) is rapidly becoming a standard of care in the treatment of many cancer types. However, the subset of patients who respond to this type of therapy is limited. Another way to promote antitumoral immunity is the use of immunostimulatory molecules, such as cytokines or T cell co-stimulators. The systemic administration of immunotherapeutics leads to significant immune-related adverse events (irAEs), therefore, the localized antitumoral action is needed. One way to achieve this is intratumoral non-viral gene-immune therapy, which allows for prolonged and localized gene expression, and multiple drug administration. In this study, we combined the previously described non-viral gene delivery system, PEG-PEI-TAT copolymer, PPT, with murine OX40L-encoding plasmid DNA. Methods: The resulting OX40L/PPT nanoparticles were characterized via gel mobility assay, dynamic light scattering analysis and in vitro transfection efficiency evaluation. The antitumoral efficacy of intratumorally (i.t.) administered nanoparticles was estimated using subcutaneously (s.c.) implanted CT26 (colon cancer), B16F0 (melanoma) and 4T1 (breast cancer) tumor models. The dynamics of stromal immune cell populations was analyzed using flow cytometry. Weight loss and cachexia were used as irAE indicators. The effect of combination of i.t. OX40L/PPT with intraperitoneal PD-1 ICB was estimated in s.c. CT26 tumor model. Results: The obtained OX40L/PPT nanoparticles had properties applicable for cell transfection and provided OX40L protein expression in vitro in all three investigated cancer models. We observed that OX40L/PPT treatment successfully inhibited tumor growth in B16F0 and CT26 tumor models and showed a tendency to inhibit 4T1 tumor growth. In B16F0 tumor model, OX40L/PPT treatment led to the increase in antitumoral effector NK and T killer cells and to the decrease in pro-tumoral myeloid cells populations within tumor stroma. No irAE signs were observed in all 3 tumor models, which indicates good treatment tolerability in mice. Combining OX40L/PPT with PD-1 ICB significantly improved treatment efficacy in the CT26 subcutaneous colon cancer model, providing protective immunity against CT26 colon cancer cells. Conclusion: Overall, the anti-tumor efficacy observed with OX40L non-viral gene therapy, whether administered alone or in combination with ICB, highlights its potential to revolutionize cancer gene therapy, thus paving the way for unprecedented advancements in the cancer therapy field.


Assuntos
Imunoterapia , Ligante OX40 , Animais , Ligante OX40/genética , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Feminino , Terapia Genética/métodos , Nanopartículas , Técnicas de Transferência de Genes , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia , Polietilenoimina/química , Humanos , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Polietilenoglicóis/química
2.
Theranostics ; 14(10): 3810-3826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994034

RESUMO

Rationale: Surgical resection is a primary treatment for solid tumors, but high rates of tumor recurrence and metastasis post-surgery present significant challenges. Manganese (Mn2+), known to enhance dendritic cell-mediated cancer immunotherapy by activating the cGAS-STING pathway, has potential in post-operative cancer management. However, achieving prolonged and localized delivery of Mn2+ to stimulate immune responses without systemic toxicity remains a challenge. Methods: We developed a post-operative microenvironment-responsive dendrobium polysaccharide hydrogel embedded with Mn2+-pectin microspheres (MnP@DOP-Gel). This hydrogel system releases Mn2+-pectin microspheres (MnP) in response to ROS, and MnP shows a dual effect in vitro: promoting immunogenic cell death and activating immune cells (dendritic cells and macrophages). The efficacy of MnP@DOP-Gel as a post-surgical treatment and its potential for immune activation were assessed in both subcutaneous and metastatic melanoma models in mice, exploring its synergistic effect with anti-PD1 antibody. Result: MnP@DOP-Gel exhibited ROS-responsive release of MnP, which could exert dual effects by inducing immunogenic cell death of tumor cells and activating dendritic cells and macrophages to initiate a cascade of anti-tumor immune responses. In vivo experiments showed that the implanted MnP@DOP-Gel significantly inhibited residual tumor growth and metastasis. Moreover, the combination of MnP@DOP-Gel and anti-PD1 antibody displayed superior therapeutic potency in preventing either metastasis or abscopal brain tumor growth. Conclusions: MnP@DOP-Gel represents a promising drug-free strategy for cancer post-operative management. Utilizing this Mn2+-embedding and ROS-responsive delivery system, it regulates surgery-induced immune responses and promotes sustained anti-tumor responses, potentially increasing the effectiveness of surgical cancer treatments.


Assuntos
Dendrobium , Hidrogéis , Manganês , Camundongos Endogâmicos C57BL , Microesferas , Polissacarídeos , Animais , Camundongos , Hidrogéis/química , Manganês/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Dendrobium/química , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Melanoma/imunologia , Melanoma/tratamento farmacológico , Melanoma/terapia , Imunoterapia/métodos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Espécies Reativas de Oxigênio/metabolismo , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/tratamento farmacológico
3.
Exp Biol Med (Maywood) ; 249: 10081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974834

RESUMO

The lack of effective treatment options for an increasing number of cancer cases highlights the need for new anticancer therapeutic strategies. Immunotherapy mediated by Salmonella enterica Typhimurium is a promising anticancer treatment. Candidate strains for anticancer therapy must be attenuated while retaining their antitumor activity. Here, we investigated the attenuation and antitumor efficacy of two S. enterica Typhimurium mutants, ΔtolRA and ΔihfABpmi, in a murine melanoma model. Results showed high attenuation of ΔtolRA in the Galleria mellonella model, and invasion and survival in tumor cells. However, it showed weak antitumor effects in vitro and in vivo. Contrastingly, lower attenuation of the attenuated ΔihfABpmi strain resulted in regression of tumor mass in all mice, approximately 6 days after the first treatment. The therapeutic response induced by ΔihfABpmi was accompanied with macrophage accumulation of antitumor phenotype (M1) and significant increase in the mRNAs of proinflammatory mediators (TNF-α, IL-6, and iNOS) and an apoptosis inducer (Bax). Our findings indicate that the attenuated ΔihfABpmi exerts its antitumor activity by inducing macrophage infiltration or reprogramming the immunosuppressed tumor microenvironment to an activated state, suggesting that attenuated S. enterica Typhimurium strains based on nucleoid-associated protein genes deletion could be immunotherapeutic against cancer.


Assuntos
Salmonella typhimurium , Animais , Salmonella typhimurium/imunologia , Salmonella typhimurium/genética , Camundongos , Camundongos Endogâmicos C57BL , Melanoma/imunologia , Melanoma/genética , Melanoma/patologia , Imunoterapia/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Linhagem Celular Tumoral , Mutação , Feminino , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Modelos Animais de Doenças
4.
ACS Nano ; 18(26): 16967-16981, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888082

RESUMO

Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.


Assuntos
Imunoterapia , Estresse Oxidativo , Piroptose , Espécies Reativas de Nitrogênio , Microambiente Tumoral , Piroptose/efeitos dos fármacos , Animais , Espécies Reativas de Nitrogênio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia
5.
Cancer Cell ; 42(6): 1051-1066.e7, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38861924

RESUMO

PD-1 blockade unleashes potent antitumor activity in CD8+ T cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen the response to immunotherapy. Tumor-Treg inhibition is a promising strategy to improve the efficacy of checkpoint blockade immunotherapy; however, our understanding of the mechanisms supporting tumor-Tregs during PD-1 immunotherapy is incomplete. Here, we show that PD-1 blockade increases tumor-Tregs in mouse models of melanoma and metastatic melanoma patients. Mechanistically, Treg accumulation is not caused by Treg-intrinsic inhibition of PD-1 signaling but depends on an indirect effect of activated CD8+ T cells. CD8+ T cells produce IL-2 and colocalize with Tregs in mouse and human melanomas. IL-2 upregulates the anti-apoptotic protein ICOS on tumor-Tregs, promoting their accumulation. Inhibition of ICOS signaling before PD-1 immunotherapy improves control over immunogenic melanoma. Thus, interrupting the intratumor CD8+ T cell:Treg crosstalk represents a strategy to enhance the therapeutic efficacy of PD-1 immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Imunoterapia , Proteína Coestimuladora de Linfócitos T Induzíveis , Interleucina-2 , Melanoma , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T Reguladores/imunologia , Humanos , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Melanoma/imunologia , Melanoma/terapia , Melanoma/tratamento farmacológico , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-2/imunologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Linhagem Celular Tumoral
6.
Cancer Immunol Immunother ; 73(8): 148, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832958

RESUMO

Immunotherapy is one of the most promising anti-cancer treatment. It involves activating the host's own immune system to eliminate cancer cells. Activation of cGAS-STING pathway is promising therapeutic approach for cancer immunotherapy. However, in human clinical trials, targeting cGAS-STING pathway results in insufficient or unsustainable anti-tumor response. To enhance its effectiveness, combination with other anti-cancer therapies seems essential to achieve synergistic systemic anti-tumor response.The aim of this study was to evaluate whether the combination of STING agonist-cGAMP with anti-vascular RGD-(KLAKLAK)2 peptide results in a better anti-tumor response in poorly immunogenic tumors with various STING protein and αvß3 integrin status.Combination therapy inhibited growth of murine breast carcinoma more effectively than melanoma. In melanoma, the administration of STING agonist alone was sufficient to obtain a satisfactory therapeutic effect. In both tumor models we have noted stimulation of innate immune response following cGAMP administration alone or in combination. The largest population of immune cells infiltrating the TME after therapy were activated NK cells. Increased infiltration of cytotoxic CD8+ T lymphocytes within the TME was only observed in melanoma tumors. However, they also expressed the "exhaustion" PD-1 receptor. In contrast, in breast carcinoma tumors each therapy caused the drop in the number of infiltrating CD8+ T cells.The obtained results indicate an additional therapeutic benefit from combining STING agonist with an anti-vascular agent. However, this effect depends on the type of tumor, the status of its microenvironment and the expression of specific proteins such as STING and αvß3 family integrin.


Assuntos
Proteínas de Membrana , Animais , Camundongos , Proteínas de Membrana/agonistas , Feminino , Humanos , Oligopeptídeos/farmacologia , Nucleotídeos Cíclicos/farmacologia , Nucleotídeos Cíclicos/administração & dosagem , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Front Immunol ; 15: 1380069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835781

RESUMO

Bacillus Calmette-Guérin (BCG) is the first line treatment for bladder cancer and it is also proposed for melanoma immunotherapy. BCG modulates the tumor microenvironment (TME) inducing an antitumor effective response, but the immune mechanisms involved still poorly understood. The immune profile of B16-F10 murine melanoma cells was assessed by infecting these cells with BCG or stimulating them with agonists for different innate immune pathways such as TLRs, inflammasome, cGAS-STING and type I IFN. B16-F10 did not respond to any of those stimuli, except for type I IFN agonists, contrasting with bone marrow-derived macrophages (BMDMs) that showed high production of proinflammatory cytokines. Additionally, we confirmed that BCG is able to infect B16-F10, which in turn can activate macrophages and spleen cells from mice in co-culture experiments. Furthermore, we established a subcutaneous B16-F10 melanoma model for intratumoral BCG treatment and compared wild type mice to TLR2-/-, TLR3-/-, TLR4-/-, TLR7-/-, TLR3/7/9-/-, caspase 1-/-, caspase 11-/-, IL-1R-/-, cGAS-/-, STING-/-, IFNAR-/-, MyD88-/-deficient animals. These results in vivo demonstrate that MyD88 signaling is important for BCG immunotherapy to control melanoma in mice. Also, BCG fails to induce cytokine production in the co-culture experiments using B16-F10 and BMDMs or spleen cells derived from MyD88-/- compared to wild-type (WT) animals. Immunotherapy with BCG was not able to induce the recruitment of inflammatory cells in the TME from MyD88-/- mice, impairing tumor control and IFN-γ production by T cells. In conclusion, MyD88 impacts on both innate and adaptive responses to BCG leading to an efficient antitumor response against melanoma.


Assuntos
Vacina BCG , Imunoterapia , Melanoma Experimental , Fator 88 de Diferenciação Mieloide , Transdução de Sinais , Animais , Camundongos , Vacina BCG/imunologia , Vacina BCG/uso terapêutico , Linhagem Celular Tumoral , Citocinas/metabolismo , Imunoterapia/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Microambiente Tumoral/imunologia
8.
J Med Chem ; 67(13): 10848-10874, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38912753

RESUMO

Bifunctional conjugates targeting PD-L1/PARP7 were designed, synthesized, and evaluated for the first time. Compounds B3 and C6 showed potent activity against PD-1/PD-L1 interaction (IC50 = 0.426 and 0.342 µM, respectively) and PARP7 (IC50 = 2.50 and 7.05 nM, respectively). They also displayed excellent binding affinity with hPD-L1, approximately 100-200-fold better than that of hPD-1. Both compounds restored T-cell function, leading to the increase of IFN-γ secretion. In the coculture assay, B3 and C6 enhanced the killing activity of MDA-MB-231 cells by Jurkat T cells in a concentration-dependent manner. Furthermore, B3 and C6 displayed significant in vivo antitumor efficacy in a melanoma B16-F10 tumor mouse model, more than 5.3-fold better than BMS-1 (a PD-L1 inhibitor) and RBN-2397 (a PARP7i clinical candidate) at the dose of 25 mg/kg, without observable side effects. These results provide valuable insight and understanding for developing bifunctional conjugates for potential anticancer therapy.


Assuntos
Antineoplásicos , Antígeno B7-H1 , Imunoterapia , Humanos , Animais , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Melanoma Experimental/terapia
9.
Cancer Res ; 84(14): 2333-2351, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885087

RESUMO

The genetic landscape of cancer cells can lead to specific metabolic dependencies for tumor growth. Dietary interventions represent an attractive strategy to restrict the availability of key nutrients to tumors. In this study, we identified that growth of a subset of melanoma was severely restricted by a rationally designed combination therapy of a stearoyl-CoA desaturase (SCD) inhibitor with an isocaloric low-oleic acid diet. Despite its importance in oncogenesis, SCD underwent monoallelic codeletion along with PTEN on chromosome 10q in approximately 47.5% of melanoma, and the other SCD allele was methylated, resulting in very low-SCD expression. Although this SCD-deficient subset was refractory to SCD inhibitors, the subset of PTEN wild-type melanoma that retained SCD was sensitive. As dietary oleic acid could potentially blunt the effect of SCD inhibitors, a low oleic acid custom diet was combined with an SCD inhibitor. The combination reduced monounsaturated fatty acids and increased saturated fatty acids, inducing robust apoptosis and growth suppression and inhibiting lung metastasis with minimal toxicity in preclinical mouse models of PTEN wild-type melanoma. When combined with anti-PD1 immunotherapy, the SCD inhibitor improved T-cell functionality and further constrained melanoma growth in mice. Collectively, these results suggest that optimizing SCD inhibitors with diets low in oleic acid may offer a viable and efficacious therapeutic approach for improving melanoma treatment. Significance: Blockade of endogenous production of fatty acids essential for melanoma combined with restriction of dietary intake blocks tumor growth and enhances response to immunotherapy, providing a rational drug-diet treatment regimen for melanoma.


Assuntos
Melanoma , Ácido Oleico , PTEN Fosfo-Hidrolase , Estearoil-CoA Dessaturase , Animais , Camundongos , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/antagonistas & inibidores , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/terapia , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Imunoterapia/métodos , Progressão da Doença , Camundongos Endogâmicos C57BL , Feminino , Linhagem Celular Tumoral , Terapia Combinada , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Dieta , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/terapia
10.
ACS Biomater Sci Eng ; 10(7): 4587-4600, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38869192

RESUMO

It is difficult to obtain specific tumor antigens, which is one of the main obstacles in the development of tumor vaccines. The vaccines containing multivalent antigens are thought to be more effective in antitumor therapy. In this study, a mRNA encoding three neoantigens of melanoma were prepared and encapsulated into the mannosylated chitosan-modified ethosomes (EthsMC) to obtain a multivalent mRNA vaccine (MmRV) for transcutaneous immunization (TCI). MmRV can effectively induce maturation of dendritic cells, with a better performance than mRNA of a single neoantigen. TCI patches (TCIPs) loading MmRV or siRNA against PDL1 (siPDL1) were prepared and applied to the skin of melanoma-bearing mice. The results showed that TCIPs significantly increase the levels of TNF-α, IFN-γ, and IL-12 in both plasma and tumor tissues, inhibit tumor growth, as well as promote infiltration of CD4+ and CD8+ T cells in the tumor tissues. Furthermore, the combination of MmRV and siPDL1 showed much better antitumor effects than either monotherapy, suggesting a synergistic effect between the vaccine and PDL1 blocker. In addition, the treatment with the TCIPs did not cause damage to the skin, blood, and vital organs of the mice, showing good biosafety. To the best of our knowledge, this work is the first to construct a noninvasive TCI system containing MmRV and siPDL1, providing a convenient and promising approach for tumor treatment.


Assuntos
Administração Cutânea , Vacinas Anticâncer , Vacinas de mRNA , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Camundongos , Antígenos de Neoplasias/imunologia , Camundongos Endogâmicos C57BL , Feminino , Melanoma/terapia , Melanoma/imunologia , Melanoma/patologia , Quitosana/química , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/patologia , Linhagem Celular Tumoral , RNA Mensageiro/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/patologia , Linfócitos T CD8-Positivos/imunologia
11.
J Immunother Cancer ; 12(6)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38945552

RESUMO

BACKGROUND: How distinct methods of host preconditioning impact the efficacy of adoptively transferred antitumor T helper cells is unknown. METHODS: CD4+ T cells with a transgenic T-cell receptor that recognize tyrosinase-related peptide (TRP)-1 melanoma antigen were polarized to the T helper 17 (Th17) phenotype and then transferred into melanoma-bearing mice preconditioned with either total body irradiation or chemotherapy. RESULTS: We found that preconditioning mice with a non-myeloablative dose of total body irradiation (TBI of 5 Gy) was more effective than using an equivalently dosed non-myeloablative chemotherapy (cyclophosphamide (CTX) of 200 mg/kg) at augmenting therapeutic activity of antitumor TRP-1 Th17 cells. Antitumor Th17 cells engrafted better following preconditioning with TBI and regressed large established melanoma in all animals. Conversely, only half of mice survived long-term when preconditioned with CTX and infused with anti-melanoma Th17 cells. Interleukin (IL)-17 and interferon-γ, produced by the infused Th17 cells, were detected in animals given either TBI or CTX preconditioning. Interestingly, inflammatory cytokines (granulocyte colony stimulating factor, IL-6, monocyte chemoattractant protein-1, IL-5, and keratinocyte chemoattractant) were significantly elevated in the serum of mice preconditioned with TBI versus CTX after Th17 therapy. The addition of fludarabine (FLU, 200 mg/kg) to CTX (200 mg/kg) improved the antitumor response to the same degree mediated by TBI, whereas FLU alone with Th17 therapy was ineffective. CONCLUSIONS: Our results indicate, for the first time, that the antitumor response, persistence, and cytokine profiles resulting from Th17 therapy are impacted by the specific regimen of host preconditioning. This work is important for understanding mechanisms that promote long-lived responses by adoptive cellular therapy, particularly as CD4+ based T-cell therapies are now emerging in the clinic.


Assuntos
Células Th17 , Animais , Células Th17/imunologia , Células Th17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Imunoterapia Adotiva/métodos , Irradiação Corporal Total , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/tratamento farmacológico , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Transferência Adotiva/métodos , Feminino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/terapia
12.
Front Immunol ; 15: 1345046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827732

RESUMO

Introduction: Recently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase. Methods: To understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated. Results: IFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1ß generation, and thereby further amplifying Th1 response. Discussion: Our finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.


Assuntos
Diferenciação Celular , Interferon gama , Melanoma Experimental , Camundongos Endogâmicos C57BL , Células Th1 , Animais , Células Th1/imunologia , Camundongos , Interferon gama/metabolismo , Diferenciação Celular/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Crioterapia/métodos , Linhagem Celular Tumoral , Feminino
13.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702343

RESUMO

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Terapia Viral Oncolítica/métodos , Terapia Combinada , Vacinas de mRNA/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T/imunologia , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/administração & dosagem
14.
J Nanobiotechnology ; 22(1): 230, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720322

RESUMO

Tumor vaccines, a crucial immunotherapy, have gained growing interest because of their unique capability to initiate precise anti-tumor immune responses and establish enduring immune memory. Injected tumor vaccines passively diffuse to the adjacent draining lymph nodes, where the residing antigen-presenting cells capture and present tumor antigens to T cells. This process represents the initial phase of the immune response to the tumor vaccines and constitutes a pivotal determinant of their effectiveness. Nevertheless, the granularity paradox, arising from the different requirements between the passive targeting delivery of tumor vaccines to lymph nodes and the uptake by antigen-presenting cells, diminishes the efficacy of lymph node-targeting tumor vaccines. This study addressed this challenge by employing a vaccine formulation with a tunable, controlled particle size. Manganese dioxide (MnO2) nanoparticles were synthesized, loaded with ovalbumin (OVA), and modified with A50 or T20 DNA single strands to obtain MnO2/OVA/A50 and MnO2/OVA/T20, respectively. Administering the vaccines sequentially, upon reaching the lymph nodes, the two vaccines converge and simultaneously aggregate into MnO2/OVA/A50-T20 particles through base pairing. This process enhances both vaccine uptake and antigen delivery. In vitro and in vivo studies demonstrated that, the combined vaccine, comprising MnO2/OVA/A50 and MnO2/OVA/T20, exhibited robust immunization effects and remarkable anti-tumor efficacy in the melanoma animal models. The strategy of controlling tumor vaccine size and consequently improving tumor antigen presentation efficiency and vaccine efficacy via the DNA base-pairing principle, provides novel concepts for the development of efficient tumor vaccines.


Assuntos
Vacinas Anticâncer , Linfonodos , Compostos de Manganês , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina , Óxidos , Animais , Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Camundongos , Ovalbumina/imunologia , Ovalbumina/química , Óxidos/química , Nanopartículas/química , Compostos de Manganês/química , Imunidade Celular , Feminino , Linhagem Celular Tumoral , DNA/química , DNA/imunologia , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Tamanho da Partícula , Antígenos de Neoplasias/imunologia
15.
J Control Release ; 370: 453-467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697315

RESUMO

Negative immunoregulatory signal (PD-L1, CXCR4, et al.) and weak immunogenicity elicited immune system failing to detect and destroy cancerous cells. CXCR4 blockade promoted T cell tumor infiltration and increased tumor sensitivity to anti-PD-L1 therapy. Here, pH-responsive reassembled nanomaterials were constructed with anti-PD-L1 peptide and CXCR4 antagonists grafting (APAB), synergized with photothermal therapy for melanoma and breast tumor interference. The self-assembled APAB nanoparticles accumulated in the tumor and rapidly transformed into nanofibers in response to the acidic tumor microenvironment, leading to the exposure of grafted therapeutic agents. APAB enabling to reassemble around tumor cells and remained stable for over 96 h due to the aggregation induced retention (AIR) effect, led to long-term efficiently combined PD-L1 and CXCR4 blockade. Photothermal efficiency (ICG) induced immunogenic cell death (ICD) of tumor cells so as to effectively improve the immunogenicity. The combined therapy (ICG@APAB) could effectively inhibit the growth of primary tumor (∼83.52%) and distant tumor (∼76.24%) in melanoma-bearing mice, and significantly (p < 0.05) prolong the survival time over 42 days. The inhibition assay on tumor metastasis in 4 T1 model mice exhibited ICG@APAB almostly suppressed the occurrence of lung metastases and the expression levels of CD31, MMP-9 and VEGF in tumor decreased by 82.26%, 90.45% and 41.54%, respectively. The in vivo reassembly strategy will offer novel perspectives benefical future immunotherapies and push development of combined therapeutics into clinical settings.


Assuntos
Antígeno B7-H1 , Camundongos Endogâmicos C57BL , Receptores CXCR4 , Animais , Receptores CXCR4/antagonistas & inibidores , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Feminino , Linhagem Celular Tumoral , Camundongos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Nanopartículas , Humanos , Terapia Fototérmica/métodos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Verde de Indocianina/administração & dosagem
16.
Nat Commun ; 15(1): 4444, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789421

RESUMO

Mitochondrial respiration is essential for the survival and function of T cells used in adoptive cellular therapies. However, strategies that specifically enhance mitochondrial respiration to promote T cell function remain limited. Here, we investigate methylation-controlled J protein (MCJ), an endogenous negative regulator of mitochondrial complex I expressed in CD8 cells, as a target for improving the efficacy of adoptive T cell therapies. We demonstrate that MCJ inhibits mitochondrial respiration in murine CD8+ CAR-T cells and that deletion of MCJ increases their in vitro and in vivo efficacy against murine B cell leukaemia. Similarly, MCJ deletion in ovalbumin (OVA)-specific CD8+ T cells also increases their efficacy against established OVA-expressing melanoma tumors in vivo. Furthermore, we show for the first time that MCJ is expressed in human CD8 cells and that the level of MCJ expression correlates with the functional activity of CD8+ CAR-T cells. Silencing MCJ expression in human CD8 CAR-T cells increases their mitochondrial metabolism and enhances their anti-tumor activity. Thus, targeting MCJ may represent a potential therapeutic strategy to increase mitochondrial metabolism and improve the efficacy of adoptive T cell therapies.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Mitocôndrias , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Mitocôndrias/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Respiração Celular , Linhagem Celular Tumoral , Feminino , Ovalbumina/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia
17.
Cancer Lett ; 592: 216934, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38710299

RESUMO

The Staphylococcal nuclease and Tudor domain containing 1 (SND1) has been identified as an oncoprotein. Our previous study demonstrated that SND1 impedes the major histocompatibility complex class I (MHC-I) assembly by hijacking the nascent heavy chain of MHC-I to endoplasmic reticulum-associated degradation. Herein, we aimed to identify inhibitors to block SND1-MHC-I binding, to facilitate the MHC-I presentation and tumor immunotherapy. Our findings validated the importance of the K490-containing sites in SND1-MHC-I complex. Through structure-based virtual screening and docking analysis, (-)-Epigallocatechin (EGC) exhibited the highest docking score to prevent the binding of MHC-I to SND1 by altering the spatial conformation of SND1. Additionally, EGC treatment resulted in increased expression levels of membrane-presented MHC-I in tumor cells. The C57BL/6J murine orthotopic melanoma model validated that EGC increases infiltration and activity of CD8+ T cells in both the tumor and spleen. Furthermore, the combination of EGC with programmed death-1 (PD-1) antibody demonstrated a superior antitumor effect. In summary, we identified EGC as a novel inhibitor of SND1-MHC-I interaction, prompting MHC-I presentation to improve CD8+ T cell response within the tumor microenvironment. This discovery presents a promising immunotherapeutic candidate for tumors.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos , Catequina , Endonucleases , Camundongos Endogâmicos C57BL , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Humanos , Apresentação de Antígeno/imunologia , Endonucleases/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Simulação de Acoplamento Molecular , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/terapia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo
18.
Biomater Sci ; 12(12): 3100-3111, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38712522

RESUMO

In this study, we developed a ROS-responsive thermosensitive poly(ethylene glycol)-polypeptide hydrogel loaded with a chemotherapeutic drug, doxorubicin (Dox), an antiviral imidazoquinoline, resiquimod (R848), and antibody targeting programmed cell death protein 1 (aPD-1) for local chemoimmunotherapy. The hydrogel demonstrated controllable degradation and sustained drug release behavior according to the concentration of ROS in vitro. Following intratumoral injection into mice bearing B16F10 melanoma, the Dox/R848/aPD-1 co-loaded hydrogel effectively inhibited tumor growth, prolonged animal survival time and promoted anti-tumor immune responses with low systemic toxicity. In the postoperative model, the Dox/R848/aPD-1 co-loaded hydrogel exhibited enhanced tumor recurrence prevention and long-term immune memory effects. Thus, the hydrogel-based local chemoimmunotherapy system demonstrates potential for effective anti-tumor treatment and suppression of tumor recurrence.


Assuntos
Doxorrubicina , Hidrogéis , Imunoterapia , Peptídeos , Espécies Reativas de Oxigênio , Animais , Hidrogéis/química , Hidrogéis/administração & dosagem , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Peptídeos/química , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Camundongos Endogâmicos C57BL , Polietilenoglicóis/química , Linhagem Celular Tumoral , Temperatura , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Portadores de Fármacos/química
19.
Elife ; 122024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805560

RESUMO

Solid tumors generally exhibit chromosome copy number variation, which is typically caused by chromosomal instability (CIN) in mitosis. The resulting aneuploidy can drive evolution and associates with poor prognosis in various cancer types as well as poor response to T-cell checkpoint blockade in melanoma. Macrophages and the SIRPα-CD47 checkpoint are understudied in such contexts. Here, CIN is induced in poorly immunogenic B16F10 mouse melanoma cells using spindle assembly checkpoint MPS1 inhibitors that generate persistent micronuclei and diverse aneuploidy while skewing macrophages toward a tumoricidal 'M1-like' phenotype based on markers and short-term anti-tumor studies. Mice bearing CIN-afflicted tumors with wild-type CD47 levels succumb similar to controls, but long-term survival is maximized by SIRPα blockade on adoptively transferred myeloid cells plus anti-tumor monoclonal IgG. Such cells are the initiating effector cells, and survivors make de novo anti-cancer IgG that not only promote phagocytosis of CD47-null cells but also suppress tumor growth. CIN does not affect the IgG response, but pairing CIN with maximal macrophage anti-cancer activity increases durable cures that possess a vaccination-like response against recurrence.


Assuntos
Instabilidade Cromossômica , Imunoglobulina G , Macrófagos , Animais , Camundongos , Macrófagos/imunologia , Antígeno CD47/metabolismo , Antígeno CD47/genética , Antígeno CD47/imunologia , Camundongos Endogâmicos C57BL , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/genética , Linhagem Celular Tumoral , Feminino
20.
Biochem Biophys Res Commun ; 718: 150058, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38729076

RESUMO

The therapeutic efficacy of radiotherapy (RT) is primarily driven by two factors: biophysical DNA damage in cancer cells and radiation-induced anti-tumor immunity. However, Anti-tumor immune responses between X-ray RT (XRT) and carbon-ion RT (CIRT) remain unclear. In this study, we, employed mouse models to assess the immunological contribution, especially cytotoxic T-lymphocyte (CTL)-mediated immunity, to the therapeutic effectiveness of XRT and CIRT in shrinking tumors. We irradiated mouse intradermal tumors of B16F10-ovalbumin (OVA) mouse melanoma cells and 3LL-OVA mouse lung cancer cells with carbon-ion beams or X-rays in the presence or absence of CTLs. CTL removal was performed by administration of anti-CD8 monoclonal antibody (mAb) in mice. Based on tumor growth delay, we determined the tumor growth and regression curves. The enhancement ratio (ER) of the slope of regression lines in the presence of CTLs, relative to the absence of CTLs, indicates the dependency of RT on CTLs for shrinking mouse tumors, and the biological effectiveness (RBE) of CIRT relative to XRT were calculated. Tumor growth curves revealed that the elimination of CD8+ CTLs by administrating anti-CD8 mAb accelerated tumor growth compared to the presence of CTLs in both RTs. The ERs were larger in CIRT compared to XRT in the B16F10-OVA tumor models, but not in the 3LL-OVA models, suggesting a greater contribution of CTL-mediated anti-tumor immunity to tumor reduction in CIRT compared to XRT in the B16F10-OVA tumor model. In addition, the RBE values for both models were larger in the presence of CTLs compared to models without CTLs, suggesting that CIRT may utilize CTL-mediated anti-tumor immunity more than X-ray. The findings from this study suggest that although immunological contribution to therapeutic efficacy may vary depending on the type of tumor cell, CIRT utilizes CTL-mediated immunity to a greater extent compared to XRT.


Assuntos
Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos , Animais , Linfócitos T Citotóxicos/imunologia , Camundongos , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Melanoma Experimental/radioterapia , Melanoma Experimental/terapia , Melanoma Experimental/patologia , Radioterapia com Íons Pesados/métodos , Terapia por Raios X , Feminino , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...