Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 5279, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210346

RESUMO

Melia azedarach-rhizosphere mediated degradation of benzo(a)pyrene (BaP), in the presence of cadmium (Cd) was studied, using efficient rhizobacterial isolate. Serratia marcescens S2I7, isolated from the petroleum-contaminated site, was able to tolerate up to 3.25 mM Cd. In the presence of Cd, the isolate S2I7 exhibited an increase in the activity of stress-responsive enzyme, glutathione-S-transferase. Gas Chromatography-Mass spectroscopy analysis revealed up to 59% in -vitro degradation of BaP after 21 days, while in the presence of Cd, the degradation was decreased by 14%. The bacterial isolate showed excellent plant growth-promoting attributes and could enhance the growth of host plant in Cd contaminated soil. The 52,41,555 bp genome of isolate S. marcescens S2I7 was sequenced, assembled and annotated into 4694 genes. Among these, 89 genes were identified for the metabolism of aromatic compounds and 172 genes for metal resistance, including the efflux pump system. A 2 MB segment of the genome was identified to contain operons for protocatechuate degradation, catechol degradation, benzoate degradation, and an IclR type regulatory protein pcaR, reported to be involved in the regulation of protocatechuate degradation. A pot trial was performed to validate the ability of S2I7 for rhizodegradation of BaP when applied through Melia azedarach rhizosphere. The rhizodegradation of BaP was significantly higher when augmented with S2I7 (85%) than degradation in bulk soil (68%), but decreased in the presence of Cd (71%).


Assuntos
Benzo(a)pireno/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Cádmio/toxicidade , Melia azedarach/efeitos dos fármacos , Rizosfera , Serratia marcescens/metabolismo , Microbiologia do Solo , Poluentes do Solo/toxicidade , Proteínas de Bactérias/metabolismo , Catecol 1,2-Dioxigenase/metabolismo , Catecol 2,3-Dioxigenase/metabolismo , Catecóis/metabolismo , DNA Bacteriano/genética , Cromatografia Gasosa-Espectrometria de Massas , Genoma Bacteriano , Glutationa Transferase/metabolismo , Hidroxibenzoatos/metabolismo , Melia azedarach/crescimento & desenvolvimento , Óperon , Filogenia , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Ácido Succínico/farmacologia
2.
Cryo Letters ; 28(4): 281-90, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17962832

RESUMO

In paradise tree (Melia azedarach L.), immature zygotic embryos sampled from immature fruits are the starting material for the production of somatic embryos. These somatic embryos are employed for freezing experiments. Immature fruits could be stored at 25 degrees C for up to 80 days without impairing the embryogenic potential of zygotic embryos, which represents a four-fold increase in immature fruit storage duration, compared with previous studies. Among the three cryopreservation techniques tested for freezing paradise tree somatic embryos, namely desiccation, encapsulation-dehydration and pregrowth-dehydration, only encapsulation-dehydration and pregrowth-dehydration led to successful results. The optimal protocol was the following: i) somatic embryos (encapsulated or not) pretreated in liquid Murashige & Skoog medium with daily increasing sucrose concentration (0.5 M/0.75 M/1.0 M); ii) dehydrated with silica gel to 21 - 26% moisture content (fresh weight basis), for encapsulation-dehydration, or to 19% moisture content, for pregrowth-dehydration; iii) frozen at 1 degree C/min from 20 degrees C to -30 degrees C with a programmable freezing apparatus; iv) rapid immersion in liquid nitrogen. The highest recovery achieved was 36% with encapsulation-dehydration and 30% with pregrowth-dehydration. Regrowth of frozen embryos was direct in most cases, as secondary embryogenesis originating from the root pole was observed on only around 10% of cryopreserved somatic embryos. Plants recovered from cryopreserved embryos presented the same phenotypic traits as non-frozen control plants.


Assuntos
Criopreservação/métodos , Melia azedarach/embriologia , Crioprotetores/farmacologia , Dessecação , Desenvolvimento Embrionário/fisiologia , Melia azedarach/efeitos dos fármacos , Melia azedarach/crescimento & desenvolvimento , Sacarose/farmacologia
3.
Biocell ; 28(1): 35-41, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15176740

RESUMO

In vitro regeneration of shoots from leaf explants of the Paradise tree (Melia azedarach L.) was studied. Three different portions (proximal portion, distal portion and rachis of the leaflets) of three developmental stages (folded, young still expanding and completely expanded) of leaves of 10-15 year old plants of seven genotypes were cultured on Murashige and Skoog (1962) medium (MS) supplemented with 1 mg x l(-1) benzylaminopurine (BAP) + 0.1 mg x l(-1) kinetin (KIN) + 3 mg x l(-1) adenine sulphate (ADS). The rachis of the leaflets of the completely expanded leaves was found to be the most responsive tissue, in most of the genotypes employed. Shoot regeneration occurred in leaf explants of all the genotypes tested. The best genotype for shoot regeneration was clone 4. Rooting was induced on MS medium supplemented with 2.5 mg x l(-1) 3-indolebutyric acid, IBA, (4 days) followed by subculture on MS lacking growth regulators (26 days). Complete plants were transferred to soil.


Assuntos
Melia azedarach/crescimento & desenvolvimento , Organogênese/genética , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Regeneração/genética , Genótipo , Substâncias de Crescimento/farmacologia , Melia azedarach/efeitos dos fármacos , Melia azedarach/genética , Organogênese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Regeneração/efeitos dos fármacos
4.
Biocell ; 28(1): 35-41, Apr. 2004.
Artigo em Inglês | BINACIS | ID: bin-4002

RESUMO

In vitro regeneration of shoots from leaf explants of the Paradise tree (Melia azedarach L.) was studied. Three different portions (proximal portion, distal portion and rachis of the leaflets) of three developmental stages (folded, young still expanding and completely expanded) of leaves of 10-15 year old plants of seven genotypes were cultured on Murashige and Skoog (1962) medium (MS) supplemented with 1 mg x l(-1) benzylaminopurine (BAP) + 0.1 mg x l(-1) kinetin (KIN) + 3 mg x l(-1) adenine sulphate (ADS). The rachis of the leaflets of the completely expanded leaves was found to be the most responsive tissue, in most of the genotypes employed. Shoot regeneration occurred in leaf explants of all the genotypes tested. The best genotype for shoot regeneration was clone 4. Rooting was induced on MS medium supplemented with 2.5 mg x l(-1) 3-indolebutyric acid, IBA, (4 days) followed by subculture on MS lacking growth regulators (26 days). Complete plants were transferred to soil. (AU)


Assuntos
Melia azedarach/crescimento & desenvolvimento , Organogênese/genética , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Regeneração/genética , Genótipo , Substâncias de Crescimento/farmacologia , Melia azedarach/efeitos dos fármacos , Melia azedarach/genética , Organogênese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Regeneração/efeitos dos fármacos
5.
Biocell ; 28(1): 35-41, Apr. 2004.
Artigo em Inglês | LILACS | ID: lil-384229

RESUMO

In vitro regeneration of shoots from leaf explants of the Paradise tree (Melia azedarach L.) was studied. Three different portions (proximal portion, distal portion and rachis of the leaflets) of three developmental stages (folded, young still expanding and completely expanded) of leaves of 10-15 year old plants of seven genotypes were cultured on Murashige and Skoog (1962) medium (MS) supplemented with 1 mg x l(-1) benzylaminopurine (BAP) + 0.1 mg x l(-1) kinetin (KIN) + 3 mg x l(-1) adenine sulphate (ADS). The rachis of the leaflets of the completely expanded leaves was found to be the most responsive tissue, in most of the genotypes employed. Shoot regeneration occurred in leaf explants of all the genotypes tested. The best genotype for shoot regeneration was clone 4. Rooting was induced on MS medium supplemented with 2.5 mg x l(-1) 3-indolebutyric acid, IBA, (4 days) followed by subculture on MS lacking growth regulators (26 days). Complete plants were transferred to soil.


Assuntos
Brotos de Planta/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Melia azedarach/crescimento & desenvolvimento , Organogênese/genética , Regeneração/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Genótipo , Melia azedarach/efeitos dos fármacos , Melia azedarach/genética , Organogênese/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Substâncias de Crescimento/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...