Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
BMC Ophthalmol ; 24(1): 193, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664679

RESUMO

BACKGROUND: We aimed to investigate the anatomical features of optical coherence tomography (OCT) and vitreous cytokine levels as predictors of outcomes of combined phacovitrectomy with intravitreal dexamethasone (DEX) implants for idiopathic epiretinal membrane (iERM) treatment. METHODS: A prospective, single-masked, randomized, controlled clinical trial included 48 eyes. They were randomly assigned in a 1:1 ratio to undergo the DEX group (combined phacovitrectomy with ERM peeling and Ozurdex implantation) and control group (phacovitrectomy only). Best-corrected visual acuity (BCVA) and central macular thickness (CMT) were assessed at 1 d, 1 week, 1 month, and 3 months. The structural features of OCT before surgery were analysed for stratified analysis. Baseline soluble CD14 (sCD14) and sCD163 levels in the vitreous fluid were measured using ELISA. RESULTS: BCVA and CMT were not significantly different in the DEX and control groups. Eyes with hyperreflective foci (HRF) at baseline achieved better BCVA (Ptime*group=0.746; Pgroup=0.043, Wald χ²=7.869) and lower CMT (Ptime*group = 0.079; Pgroup = 0.001, Wald χ²=6.774) responses to DEX during follow-up. In all patients, the mean vitreous level of sCD163 in eyes with HRF was significantly higher than that in eyes without HRF (P = 0.036, Z=-2.093) at baseline. In the DEX group, higher sCD163 predicted greater reduction in CMT from baseline to 1 month (r = 0.470, P = 0.049). CONCLUSIONS: We found that intraoperative DEX implantation did not have beneficial effects on BCVA and CMT over a 3-month period in all patients with iERM, implying that the use of DEX for all iERM is not recommended. In contrast, for those with HRF on OCT responded better to DEX implants at the 3-month follow-up and thier vitreous fluid expressed higher levels of sCD163 at baseline. These data support the hypothesis that DEX implants may be particularly effective in treating cases where ERM is secondary to inflammation. TRIAL REGISTRATION: The trail has been registered at Chinese Clinical Trail Registry( https://www.chictr.org.cn ) on 2021/03/12 (ChiCTR2100044228). And all patients in the article were enrolled after registration.


Assuntos
Biomarcadores , Dexametasona , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/metabolismo , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Implantes de Medicamento , Membrana Epirretiniana/cirurgia , Membrana Epirretiniana/metabolismo , Glucocorticoides/administração & dosagem , Glucocorticoides/uso terapêutico , Injeções Intravítreas , Facoemulsificação , Estudos Prospectivos , Método Simples-Cego , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Vitrectomia/métodos , Corpo Vítreo/metabolismo , Corpo Vítreo/diagnóstico por imagem
2.
Exp Eye Res ; 240: 109810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296106

RESUMO

Rhegmatogenous retinal detachment (RRD) is a type of ophthalmologic emergency, if left untreated, the blindness rate approaches 100 %. The RRD patient postoperative recovery of visual function is unsatisfactory, most notably due to photoreceptor death. We conducted to identify the key genes for oxidative stress (OS) in RRD through bioinformatics analysis and clinical validation, thus providing new ideas for the recovery of visual function in RRD patients after surgery. A gene database for RRD was obtained from the Gene Expression Omnibus (GEO) database (GSE28133). Then we screened differentially expressed OS genes (DEOSGs) from the database and assessed the critical pathways in RRD with Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Protein-protein interaction (PPI) networks and hub genes among the common DEOSGs were identified. In addition, we collected general information and vitreous fluid from 42 patients with RRD and 22 controls [11 each of epiretinal membrane (EM) and macular hole (MH)], examined the expression levels of proteins encoded by hub genes in vitreous fluid by enzyme-linked immunosorbent assay (ELISA) to further assess the relationship between the ELISA data and the clinical characteristics of patients with RRD. Ten hub genes (CCL2, ICAM1, STAT3, CD4, ITGAM, PTPRC, CCL5, IL18, TLR2, VCAM1) were finally screened out from the dataset. The ELISA results showed that, compared with the control group, patients with RRD: TLR2 and ICAM-1 were significantly elevated, and CCL2 had a tendency to be elevated, but no statistically significant; RRD patients and MH patients compared with EM patients: STAT3 and VCAM-1 were significantly elevated. We found affected eyes of RRD patients compared with healthy eyes: temporal and nasal retinal nerve fiber layer (RNFL) were significantly thickened. By correlation analysis, we found that: STAT3 was negatively correlated with ocular perfusion pressure (OPP); temporal RNFL was not only significantly positively correlated with CCL2, but also negatively correlated with Scotopic b-wave amplitude. These findings help us to further explore the mechanism of RRD development and provide new ideas for finding postoperative visual function recovery.


Assuntos
Membrana Epirretiniana , Descolamento Retiniano , Perfurações Retinianas , Humanos , Descolamento Retiniano/genética , Descolamento Retiniano/cirurgia , Descolamento Retiniano/metabolismo , Receptor 2 Toll-Like/metabolismo , Corpo Vítreo/metabolismo , Retina/metabolismo , Membrana Epirretiniana/metabolismo , Perfurações Retinianas/cirurgia , Estresse Oxidativo
3.
Exp Eye Res ; 238: 109745, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043763

RESUMO

The epiretinal membrane is a fibrocontractile tissue that forms on the inner surface of the retina, causing visual impairment ranging from mild to severe, and even retinal detachment. Müller glial cells actively participate in the formation of this membrane. Current research is constantly seeking for new therapeutic approaches that aim to prevent or treat cellular dysfunctions involved in the progression of this common fibrosis condition. The Rho GTPases signaling pathway regulates several processes associated with the epiretinal membrane, such as cell proliferation, migration, and contraction. Rho kinase (ROCK), an effector of the RhoA GTPase, is an interesting potential therapeutic target. This study aimed to evaluate the effects of a ROCK inhibitor (Y27632) on human Müller cells viability, growth, cytoskeletal organization, expression of extracellular matrix components, myofibroblast differentiation, migration, and contractility. Müller cells of the MIO-M1 lineage were cultured and treated for different periods with the inhibitor. Viability was evaluated by MTT assay and trypan blue exclusion method, and growth was evaluated by growth curve and BrdU incorporation assay. The actin cytoskeleton was stained with fluorescent phalloidin, intermediate filaments and microtubules were analyzed with immunofluorescence for vimentin and α-tubulin. Gene and protein expression of collagens I and V, laminin and fibronectin were evaluated by rt-PCR and immunofluorescence. Chemotactic and spontaneous cell migration were studied by transwell assay and time-lapse observation of live cells, respectively. Cell contractility was assessed by collagen gel contraction assay. The results showed that ROCK inhibition by Y27632 did not affect cell viability, but decreased cell growth and proliferation after 72 h. There was a change in cell morphology and organization of F-actin, with a reduction in the cell body, disappearance of stress fibers and formation of long, branched cell extensions. Microtubules and vimentin filaments were also affected, possibly because of F-actin alterations. The inhibitor also reduced gene expression and immunoreactivity of smooth muscle α-actin, a marker of myofibroblasts. The expression of extracellular matrix components was not affected by the inhibitor. Chemotactic cell migration showed no significant changes, while cell contractility was substantially reduced. No spontaneous migration of MIO-M1 cells was observed. In conclusion, pharmacological inhibition of ROCK in Müller cells could be a potentially promising approach to treat epiretinal membranes by preventing cell proliferation, contractility and transdifferentiation, without affecting cell viability.


Assuntos
Membrana Epirretiniana , Quinases Associadas a rho , Humanos , Actinas/metabolismo , Células Ependimogliais/metabolismo , Vimentina/metabolismo , Sobrevivência Celular , Membrana Epirretiniana/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo
4.
Transl Vis Sci Technol ; 12(11): 23, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982769

RESUMO

Purpose: To evaluate the role of interleukin-4 in influencing idiopathic epiretinal membrane (iERM) formation and early progression post cataract surgery (PCS) from clinical and experimental perspectives. Methods: We quantified levels of IL-4 in aqueous humor (AH) samples from 22 iERM patients and 31 control subjects collected before and 20 hours after cataract surgeries using ELISA. After a 3-month follow-up, the association between IL-4 levels and iERM progression measurements was identified. In addition, in vitro studies were conducted to investigate the effects of IL-4 on primary rat retinal Müller glia proliferation, migration, and glial-mesenchymal transition (GMT). Results: Concentrations of IL-4 were significantly higher in preoperative AH samples from iERM patients versus controls (P = 0.006). Postoperatively, although IL-4 levels were elevated in both groups compared to their respective preoperative levels, they were even more obviously so in the iERM group (P < 0.001). Multivariate linear regression analyses revealed that, postoperatively, IL-4 level elevation was positively associated with macular volume and thickness increase (both P < 0.05) in iERM patients. However, no correlations were observed between IL-4 level (changes) and clinical characters in the controls. In vitro studies demonstrated that IL-4 promoted Müller glia proliferation and migration and increased the expression of GMT-related markers in a manner independent of transforming growth factor-ß1 (TGF-ß1). Conclusions: IL-4 plays a crucial pro-fibrotic role in iERM formation and early progression 3 months PCS possibly by stimulating Müller glia proliferation, migration, and GMT in a TGF-ß1-independent manner. Translational Relevance: The current study suggests the potential of IL-4 as a novel therapeutic target for iERM.


Assuntos
Catarata , Membrana Epirretiniana , Animais , Humanos , Ratos , Membrana Epirretiniana/cirurgia , Membrana Epirretiniana/metabolismo , Interleucina-4 , Retina/metabolismo , Fator de Crescimento Transformador beta1
5.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298679

RESUMO

Epiretinal membranes (ERMs) are sheets of tissue that pathologically develop in the vitreoretinal interface leading to progressive vision loss. They are formed by different cell types and by an exuberant deposition of extracellular matrix proteins. Recently, we reviewed ERMs' extracellular matrix components to better understand molecular dysfunctions that trigger and fuel the onset and development of this disease. The bioinformatics approach we applied delineated a comprehensive overview on this fibrocellular tissue and on critical proteins that could really impact ERM physiopathology. Our interactomic analysis proposed the hyaluronic-acid-receptor cluster of differentiation 44 (CD44) as a central regulator of ERM aberrant dynamics and progression. Interestingly, the interaction between CD44 and podoplanin (PDPN) was shown to promote directional migration in epithelial cells. PDPN is a glycoprotein overexpressed in various cancers and a growing body of evidence indicates its relevant function in several fibrotic and inflammatory pathologies. The binding of PDPN to partner proteins and/or its ligand results in the modulation of signaling pathways regulating proliferation, contractility, migration, epithelial-mesenchymal transition, and extracellular matrix remodeling, all processes that are vital in ERM formation. In this context, the understanding of the PDPN role can help to modulate signaling during fibrosis, hence opening a new line of therapy.


Assuntos
Membrana Epirretiniana , Vitreorretinopatia Proliferativa , Humanos , Membrana Epirretiniana/metabolismo , Membrana Epirretiniana/patologia , Proteínas da Matriz Extracelular , Fibrose , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Fatores de Transcrição , Vitreorretinopatia Proliferativa/metabolismo
6.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902265

RESUMO

Pathological tissue on the surface of the retina that can be of different etiology and pathogenesis can cause changes in the retina that have a direct consequence on vision. Tissues of different etiology and pathogenesis have different morphological structures and also different macromolecule compositions usually characteristic of specific diseases. In this study, we evaluated and compared biochemical differences among samples of three different types of epiretinal proliferations: idiopathic epiretinal membrane (ERMi), membranes in proliferative vitreoretinopathy (PVRm), and proliferative diabetic retinopathy (PDRm). The membranes were analyzed by using synchrotron radiation-based Fourier transform infrared micro-spectroscopy (SR-FTIR). We used the SR-FTIR micro-spectroscopy setup, where measurements were set to achieve a high resolution that was capable of showing clear biochemical spectra in biological tissue. We were able to identify differences between PVRm, PDRm, and ERMi in protein and lipid structure; collagen content and collagen maturity; differences in proteoglycan presence; protein phosphorylation; and DNA expression. Collagen showed the strongest expression in PDRm, lower expression in ERMi, and very low expression in PVRm. We also demonstrated the presence of silicone oil (SO) or polydimethylsiloxane in the structure of PVRm after SO endotamponade. This finding suggests that SO, in addition to its many benefits as an important tool in vitreoretinal surgery, could be involved in PVRm formation.


Assuntos
Retinopatia Diabética , Membrana Epirretiniana , Humanos , Síncrotrons , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Retina/metabolismo , Retinopatia Diabética/metabolismo , Membrana Epirretiniana/etiologia , Membrana Epirretiniana/metabolismo , Membrana Epirretiniana/patologia
7.
Invest Ophthalmol Vis Sci ; 64(2): 1, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723927

RESUMO

Purpose: Myo/Nog cells are the source of myofibroblasts in the lens and synthesize muscle proteins in human epiretinal membranes (ERMs). In the current study, we examined the response of Myo/Nog cells during ERM formation in a mouse model of proliferative vitreoretinopathy (PVR). Methods: PVR was induced by intravitreal injections of gas and ARPE-19 cells. PVR grade was scored by fundus imaging, optical coherence tomography, and histology. Double label immunofluorescence localization was performed to quantify Myo/Nog cells, myofibroblasts, and leukocytes. Results: Myo/Nog cells, identified by co-labeling with antibodies to brain-specific angiogenesis inhibitor 1 (BAI1) and Noggin, increased throughout the eye with induction of PVR and disease progression. They were present on the inner surface of the retina in grades 1/2 PVR and were the largest subpopulation of cells in grades 3 to 6 ERMs. All α-SMA-positive (+) cells and all but one striated myosin+ cell expressed BAI1 in grades 1 to 6 PVR. Folds and areas of retinal detachment were overlain by Myo/Nog cells containing muscle proteins. Low numbers of CD18, CD68, and CD45+ leukocytes were detected throughout the eye. Small subpopulations of BAI1+ cells expressed leukocyte markers. ARPE-19 cells were found in the vitreous but were rare in ERMs. Pigmented cells lacking Myo/Nog and muscle cell markers were present in ERMs and abundant within the retina by grade 5/6. Conclusions: Myo/Nog cells differentiate into myofibroblasts that appear to contract and produce retinal folds and detachment. Targeting BAI1 for Myo/Nog cell depletion may be a pharmacological approach to preventing and treating PVR.


Assuntos
Membrana Epirretiniana , Vitreorretinopatia Proliferativa , Animais , Camundongos , Humanos , Vitreorretinopatia Proliferativa/metabolismo , Membrana Epirretiniana/metabolismo , Miofibroblastos/metabolismo , Retina/metabolismo , Proteínas Musculares/metabolismo
8.
Exp Eye Res ; 226: 109336, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455675

RESUMO

Aging increases the risks for developing fibrocontractile membranes on the retina, which causes significant macular distortion, as in the idiopathic epiretinal membrane (iERM). Retinal Müller glial cells are components of these membranes and may play a key role in the iERM pathogenesis. The transforming growth factor-ß (TGF-ß) induces Müller cell transdifferentiation into myofibroblast, reducing glial cell markers (glutamine synthetase, GS, and glial fibrillary acidic protein, GFAP) and increasing α-smooth muscle actin (α-SMA). Our aim was to investigate the effect of the TGF-ß inhibitor galunisertib (LY2157299) on the glial-mesenchymal transition and contraction of Müller cells. MIO-M1 human Müller cells were treated with TGF-ß1 (10 ng/mL), galunisertib (5, 10 and 20 µM) and TGF-ß1+galunisertib for 24h and 48h. Galunisertib cytotoxicity was analyzed by MTT and trypan blue, and TGF-ß1 blockade by phospho-SMAD3 immunofluorescence. Caspase-3 (cell death indicator), GS, GFAP and α-SMA expression was examined by immunofluorescence, Western blotting, and qPCR analysis. Cell contractility was determined by collagen gel contraction assay with Müller cells incorporated. Galunisertib did not show cytotoxicity at the concentrations evaluated and maintained the Müller cells phenotype, ensuring the GS expression. Galunisertib inhibited the TGF-ß1 pathway by decreasing phospho-SMAD3 immunoreactivity, attenuated the α-SMA expression, and prevented the contraction of Müller cells in collagen gel. Although more studies are needed, in vitro assays suggest that galunisertib may be a potential candidate to attenuate the formation of fibrocontractile membranes and prevent retinal detachment and consequent loss of vision.


Assuntos
Células Ependimogliais , Membrana Epirretiniana , Humanos , Células Ependimogliais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Neuroglia/metabolismo , Actinas/metabolismo , Colágeno/metabolismo , Membrana Epirretiniana/metabolismo
9.
Biomed Res Int ; 2022: 7497816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36567907

RESUMO

Background: A plethora of inflammatory, angiogenic, and tissue remodeling factors has been reported in idiopathic epiretinal membranes (ERMs). Herein we focused on the expression of a few mediators (oxidative, inflammatory, and angiogenic/vascular factors) by means of short-term vitreal cell cultures and biomolecular analysis. Methods: Thirty-nine (39) ERMs and vitreal samples were collected at the time of vitreoretinal surgery and biomolecular analyses were performed in clear vitreous, vitreal cell pellets, and ERMs. ROS products and iNOS were investigated in adherent vitreal cells and/or ERMs, and iNOS, VEGF, Ang-2, IFNγ, IL18, and IL22 were quantified in vitreous (ELISA/Ella, IF/WB); transcripts specific for iNOS, p65NFkB, KEAP1, NRF2, and NOX1/NOX4 were detected in ERMs (PCR). Biomolecular changes were analyzed and correlated with disease severity. Results: The higher ROS production was observed in vitreal cells at stage 4, and iNOS was found in ERMs and increased in the vitreous as early as at stage 3. Both iNOS and NOX4 were upregulated at all stages, while p65NFkB was increased at stage 3. iNOS and NOX1 were positively and inversely related with p65NFkB. While NOX4 transcripts were always upregulated, NRF2 was upregulated at stage 3 and inverted at stage 4. No significant changes occurred in the release of angiogenic (VEGF, Ang-2) and proinflammatory (IL18, IL22 and IFNγ) mediators between all stages investigated. Conclusions: ROS production was strictly associated with iNOS and NOX4 overexpression and increased depending on ERM stadiation. The higher iNOS expression occurred as early as stage 3, with respect to p65NFkB and NRF2. These last mediators might have potential prognostic values in ERMs as representative of an underneath retinal damage.


Assuntos
Membrana Epirretiniana , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Membrana Epirretiniana/genética , Membrana Epirretiniana/metabolismo , Interleucina-18/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia
10.
Cells ; 11(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36010606

RESUMO

Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vitreoretinal interface. The iERMs consist of cells and an extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell-matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pattern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on samples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors and intra- or extracellular proteins that may play a role in matrix biology in this special context. In particular, integrin ß1, cathepsin B, epidermal growth factor receptor, protein-glutamine gamma-glutamyltransferase 2 and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein-protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also presented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysis.


Assuntos
Membrana Epirretiniana , Membrana Epirretiniana/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteômica/métodos , Ciência Translacional Biomédica , Corpo Vítreo/metabolismo
11.
Dis Markers ; 2022: 9886846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571611

RESUMO

Idiopathic epiretinal membrane (iERM) is a pathological fibrocellular change in the vitreoretinal junction over the macular area; however, possible pathogenic mechanisms remain unclear. Changes in the differential protein composition of the aqueous humor (AH) may represent potential molecular changes associated with iERM. To gain new insights into the molecular mechanisms of iERM pathology, a sensitive label-free proteomics analysis was performed to compare AH protein expressions in patients with cataracts with or without iERM. This study employed nanoflow ultra-high-performance liquid chromatography-tandem mass spectrometry to investigate protein compositions of the AH obtained from individual human cataract eyes from 10 patients with iERM and 10 age-matched controls without iERM. Eight proteins were differentially expressed between the iERM and control samples, among which six proteins were upregulated and two were downregulated. A gene ontology (GO) analysis revealed that iERM was closely associated with several biological processes, such as immunity interactions, cell proliferation, and extracellular matrix remodeling. Additionally, multiple proteins, including lumican, cyclin-dependent kinase 13, and collagen alpha-3(VI) chain, were correlated with the central retinal thickness, indicating a multifactorial response in the pathogenic process of iERM. Changes in the AH level of lumican between iERM and control samples were also confirmed by an enzyme-linked immunosorbent assay. In conclusion, several pathological pathways involved in iERM were identified in the AH by a proteomic analysis, including immune reactions, cell proliferation, and remodeling of the extracellular matrix. Lumican is a potential aqueous biomarker for predicting iERM development and monitoring its progression. More clinical parameters also need to be identified to complete the analysis, and those could provide additional targets for treating and preventing iERM.


Assuntos
Membrana Epirretiniana , Humor Aquoso , Membrana Epirretiniana/metabolismo , Membrana Epirretiniana/patologia , Humanos , Lumicana/análise , Proteoma/análise , Proteômica/métodos
12.
Proteomics Clin Appl ; 16(5): e2100128, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35510950

RESUMO

PURPOSE: The purpose of the present study was to characterize the idiopathic epiretinal membrane (iERM) through proteomics and phosphoproteomics analysis to facilitate the diagnosis and treatment of iERM. EXPERIMENTAL DESIGN: The vitreous of 25 patients with an iERM and 15 patients with an idiopathic macular hole were analyzed by proteomic and phosphoproteomic analysis based on tandem mass tag. PRM was used to verify the differential proteins. RESULTS: Proteomic analysis identified a total of 878 proteins, including 50 differential proteins. Tenascin-C, galectin-3-binding protein, glucose-6-phosphate isomerase, neuroserpin, collagen alpha-1(XI) chain, and collagen alpha-1(II) chain were verified to be upregulated in iERM by PRM. Phosphoproteomic analysis identified a total of 401 phosphorylation sites on 213 proteins, including 27 differential phosphorylation sites on 24 proteins. Mitogen-activated protein kinase-activated protein kinase (MAPKAPK)3 and MAPKAPK5 were predicted as the major kinases in the vitreous of iERM. Twenty-six of the differential proteins and phosphorylated proteins may be closely related to fibrosis in iERM. CONCLUSION AND CLINICAL RELEVANCE: Our results indicated the potential biomarkers or therapeutic targets for iERM, provided key kinases that may be involved in iERM. Fibrosis plays an essential role in iERM, and further exploration of related differential proteins has important clinical significance.


Assuntos
Membrana Epirretiniana , Biomarcadores , Colágeno , Membrana Epirretiniana/diagnóstico , Membrana Epirretiniana/metabolismo , Fibrose , Galectina 3 , Glucose-6-Fosfato Isomerase , Humanos , Proteínas Quinases Ativadas por Mitógeno , Proteínas Quinases , Proteômica/métodos , Tenascina
13.
Invest Ophthalmol Vis Sci ; 63(5): 17, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35579905

RESUMO

Purpose: Proliferative vitreoretinopathy (PVR) remains an unresolved clinical challenge and can lead to frequent revision surgery and blindness vision loss. The aim of this study was to characterize the microenvironment of epiretinal PVR tissue, in order to shed more light on the complex pathophysiology and to unravel new treatment options. Methods: A total of 44 tissue samples were analyzed in this study, including 19 epiretinal PVRs, 13 epiretinal membranes (ERMs) from patients with macular pucker, as well as 12 internal limiting membranes (ILMs). The cellular and molecular microenvironment was assessed by cell type deconvolution analysis (xCell), RNA sequencing data and single-cell imaging mass cytometry. Candidate drugs for PVR treatment were identified in silico via a transcriptome-based drug-repurposing approach. Results: RNA sequencing of tissue samples demonstrated distinct transcriptional profiles of PVR, ERM, and ILM samples. Differential gene expression analysis revealed 3194 upregulated genes in PVR compared with ILM, including FN1 and SPARC, which contribute to biological processes, such as extracellular matrix (ECM) organization. The xCell and IMC analyses showed that PVR membranes were composed of macrophages, retinal pigment epithelium, and α-SMA-positive myofibroblasts, the latter predominantly characterized by the co-expression of immune cell signature markers. Finally, 13 drugs were identified as potential therapeutics for PVR, including aminocaproic acid and various topoisomerase-2A inhibitors. Conclusions: Epiretinal PVR membranes exhibit a unique and complex transcriptional and cellular profile dominated by immune cells and myofibroblasts, as well as a variety of ECM components. Our findings provide new insights into the pathophysiology of PVR and suggest potential targeted therapeutic options.


Assuntos
Membrana Epirretiniana , Vitreorretinopatia Proliferativa , Membrana Epirretiniana/metabolismo , Humanos , RNA/genética , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Vitreorretinopatia Proliferativa/metabolismo
14.
Graefes Arch Clin Exp Ophthalmol ; 260(3): 873-884, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34729639

RESUMO

PURPOSE: To describe characteristics of the vitreomacular interface (VMI) in traumatic macular holes (TMH) compared to idiopathic macular holes (IMH) using immunofluorescence and electron microscopy, and to correlate with clinical data. METHODS: For immunocytochemical and ultrastructural analyses, premacular tissue with internal limiting membrane (ILM) and epiretinal membrane (ERM) was harvested during vitrectomy from 5 eyes with TMH and 5 eyes with IMH. All specimens were processed as flat mounts for phase-contrast microscopy, interference and fluorescence microscopy, and transmission electron microscopy (TEM). Primary antibodies were used against microglial and macroglial cells. Clinical data was retrospectively evaluated. RESULTS: Surgically excised premacular tissue of eyes with TMH showed a less pronounced positive immunoreactivity for anti-glutamine synthetase, anti-vimentin and anti-IBA1 compared to eyes with IMH. Cell nuclei staining of the flat-mounted specimens as well as TEM presented a lower cell count in eyes with TMH compared to IMH. All detected cells were found on the vitreal side of the ILM. No collagen fibrils were seen in specimens of TMH. According to patients' age, intraoperative data as well as spectral-domain optical coherence tomography (SD-OCT) analysis revealed an attached posterior vitreous in the majority of TMH cases (60%), whereas all eyes with IMH presented posterior vitreous detachment. CONCLUSION: The vitreomacular interface in TMH and IMH shows significant differences. In TMH, glial cells are a rare finding on the vitreal side of the ILM.


Assuntos
Membrana Epirretiniana , Perfurações Retinianas , Membrana Basal/metabolismo , Membrana Epirretiniana/diagnóstico , Membrana Epirretiniana/metabolismo , Membrana Epirretiniana/cirurgia , Humanos , Perfurações Retinianas/diagnóstico , Perfurações Retinianas/metabolismo , Perfurações Retinianas/cirurgia , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Vitrectomia/métodos
15.
Front Immunol ; 12: 757607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795670

RESUMO

Background: Retinal neovascularization (RNV) membranes can lead to a tractional retinal detachment, the primary reason for severe vision loss in end-stage disease proliferative diabetic retinopathy (PDR). The aim of this study was to characterize the molecular, cellular and immunological features of RNV in order to unravel potential novel drug treatments for PDR. Methods: A total of 43 patients undergoing vitrectomy for PDR, macular pucker or macular hole (control patients) were included in this study. The surgically removed RNV and epiretinal membranes were analyzed by RNA sequencing, single-cell based Imaging Mass Cytometry and conventional immunohistochemistry. Immune cells of the vitreous body, also known as hyalocytes, were isolated from patients with PDR by flow cytometry, cultivated and characterized by immunohistochemistry. A bioinformatical drug repurposing approach was applied in order to identify novel potential drug options for end-stage diabetic retinopathy disease. Results: The in-depth transcriptional and single-cell protein analysis of diabetic RNV tissue samples revealed an accumulation of endothelial cells, macrophages and myofibroblasts as well as an abundance of secreted ECM proteins such as SPARC, FN1 and several types of collagen in RNV tissue. The immunohistochemical staining of cultivated vitreal hyalocytes from patients with PDR showed that hyalocytes express α-SMA (alpha-smooth muscle actin), a classic myofibroblast marker. According to our drug repurposing analysis, imatinib emerged as a potential immunomodulatory drug option for future treatment of PDR. Conclusion: This study delivers the first in-depth transcriptional and single-cell proteomic characterization of RNV tissue samples. Our data suggest an important role of hyalocyte-to-myofibroblast transdifferentiation in the pathogenesis of diabetic vitreoretinal disease and their modulation as a novel possible clinical approach.


Assuntos
Transdiferenciação Celular , Retinopatia Diabética/patologia , Membrana Epirretiniana/patologia , Miofibroblastos/patologia , Neovascularização Retiniana/patologia , Corpo Vítreo/imunologia , Adulto , Idoso , Células Cultivadas , Biologia Computacional , Retinopatia Diabética/complicações , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Reposicionamento de Medicamentos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Membrana Epirretiniana/metabolismo , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Feminino , Ontologia Genética , Humanos , Mesilato de Imatinib/uso terapêutico , Fatores Imunológicos/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Perfurações Retinianas/patologia , Análise de Célula Única , Transcriptoma , Corpo Vítreo/patologia , Adulto Jovem
16.
Invest Ophthalmol Vis Sci ; 62(12): 26, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34554178

RESUMO

Purpose: To characterize vitreous microparticles (MPs) in patients with traumatic proliferative vitreoretinopathy (PVR) and investigate their role in PVR pathogenesis. Methods: Vitreous MPs were characterized in patients with traumatic PVR, patients with rhegmatogenous retinal detachment (RRD) complicated with PVR, and control subjects by flow cytometry. The presence of M2 macrophages in epiretinal membranes was measured by immunostaining. Vitreous cytokines were quantified by ELISA assay. For in vitro studies, MPs isolated from THP-1 cell differentiated M1 and M2 macrophages, termed M1-MPs and M2-MPs, were used. The effects and mechanisms of M1-MPs and M2-MPs on RPE cell proliferation, migration, and epithelial to mesenchymal transition were analyzed. Results: Vitreous MPs derived from photoreceptors, microglia, and macrophages were significantly increased in patients with traumatic PVR in comparison with control and patients with RRD (PVR), whereas no significance was identified between the two control groups. M2 macrophages were present in epiretinal membranes, and their signature cytokines were markedly elevated in the vitreous of patients with traumatic PVR. Moreover, MPs from M2 macrophages were increased in the vitreous of patients with traumatic PVR. In vitro analyses showed that M2-MPs promoted the proliferation and migration of RPE cells via activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. However, M2-MPs did not induce the expression of fibrotic proteins, including fibronectin, α-smooth muscle actin, and N-cadherin in RPE cells. Conclusions: This study demonstrated increased MP shedding in the vitreous of patients with traumatic PVR; specifically, MPs derived from M2 polarized macrophages may contribute to PVR progression by stimulating RPE cell proliferation and migration.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Ferimentos Oculares Penetrantes/metabolismo , Macrófagos/metabolismo , Epitélio Pigmentado da Retina/citologia , Vitreorretinopatia Proliferativa/metabolismo , Corpo Vítreo/citologia , Adulto , Idoso , Western Blotting , Células Cultivadas , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Membrana Epirretiniana/metabolismo , Feminino , Citometria de Fluxo , Humanos , Masculino , Microcorpos/metabolismo , Microscopia de Fluorescência , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Descolamento Retiniano/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
17.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166181, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082068

RESUMO

Idiopathic epiretinal membranes (ERMs) are fibrocellular membranes containing extracellular matrix proteins and epiretinal cells of retinal and extraretinal origin. iERMs lead to decreased visual acuity and their pathogenesis has not been completely defined. Macroglial Müller cells appear to play a pivotal role in the pathogenesis of iERM where they may undergo glial-to-mesenchymal transition (GMT), a transdifferentiation process characterized by the downregulation of Müller cell markers, paralleled by the upregulation of pro-fibrotic myofibroblast markers. Previous observations from our laboratory allowed the molecular identification of two major clusters of iERM patients (named iERM-A and iERM-B), iERM-A patients being characterized by less severe clinical features and a more "quiescent" iERM gene expression profile when compared to iERM-B patients. In the present work, Müller MIO-M1 cells were exposed to vitreous samples obtained before membrane peeling from the same cohort of iERM-A and iERM-B patients. The results demonstrate that iERM vitreous induces proliferation, migration, and GMT in MIO-M1 cells, a phenotype consistent with Müller cell behavior during iERM progression. However, even though the vitreous samples obtained from iERM-A patients were able to induce a complete GMT in MIO-M1 cells, iERM-B samples caused only a partial GMT, characterized by the downregulation of Müller cell markers in the absence of upregulation of pro-fibrotic myofibroblast markers. Together, the results indicate that a relationship may exist among the ability of iERM vitreous to modulate GMT in Müller cells, the molecular profile of the corresponding iERMs, and the clinical features of iERM patients.


Assuntos
Células Ependimogliais/patologia , Membrana Epirretiniana/patologia , Transição Epitelial-Mesenquimal/fisiologia , Neuroglia/patologia , Idoso , Biomarcadores/metabolismo , Transdiferenciação Celular/fisiologia , Células Cultivadas , Regulação para Baixo/fisiologia , Células Ependimogliais/metabolismo , Membrana Epirretiniana/metabolismo , Feminino , Fibrose/metabolismo , Fibrose/patologia , Humanos , Masculino , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Neuroglia/metabolismo , Retina/metabolismo , Retina/patologia , Regulação para Cima/fisiologia
18.
Exp Eye Res ; 207: 108601, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910035

RESUMO

Electrical stimulation (ES) of the eye represents a therapeutic approach in various clinical applications ranging from retinal dystrophies, age-related macular degeneration, retinal artery occlusion and nonarteritic ischemic optic neuropathy. In clinical practice, ES of the eye is mainly performed with a transcorneal or transpalpebral approach. These procedures are non-invasive and well-tolerated by the patients, reporting only minimal and transient adverse events, while serious adverse effects were not observed. Despite the growing literature on animal models, only clinical parameters have been investigated in humans and few data are available about biochemical changes induced by ES of the eye. The purpose of this study is to investigate the possible mechanism that regulates the beneficial effects of ES on retinal cells function and survival in humans. 28 patients undergoing pars plana vitrectomy (PPV) for idiopathic epiretinal membrane (iERM) were randomly divided in two groups: 13 patients were treated with transpalpebral ES before surgery and 15 underwent surgery with no prior treatment. Vitreous samples were collected for biochemical analysis during PPV. ES treatment leads to a reduction in the vitreous expression of both proinflammatory cytokines, namely IL-6 and IL-8, and proinflammatory lipid mediators, such as lysophosphatidylcholine. Indeed, we observed a 70% decrease of lysophosphatidylcholine 18:0, which has been proven to exert the greatest proinflammatory activities among the lysophosphatidylcholine class. The content of triglycerides is also affected and significantly decreased following ES application. The vitreous composition of patients undergoing PPV for iERM displays significant changes following ES treatment. Proinflammatory cytokines and bioactive lipid mediators expression decreases, suggesting an overall anti-inflammatory potential of ES. The investigation of the mechanism by which this treatment alters the retinal neurons leading to good outcomes is essential for supporting ES therapeutic application in various types of retinal diseases.


Assuntos
Citocinas/metabolismo , Terapia por Estimulação Elétrica , Membrana Epirretiniana/terapia , Lisofosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo , Corpo Vítreo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Membrana Epirretiniana/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização por Electrospray , Vitrectomia
19.
PLoS One ; 16(2): e0229189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33566851

RESUMO

INTRODUCTION: Retinal implants have now been approved and commercially available for certain clinical populations for over 5 years, with hundreds of individuals implanted, scores of them closely followed in research trials. Despite these numbers, however, few data are available that would help us answer basic questions regarding the nature and outcomes of artificial vision: what do recipients see when the device is turned on for the first time, and how does that change over time? METHODS: Semi-structured interviews and observations were undertaken at two sites in France and the UK with 16 recipients who had received either the Argus II or IRIS II devices. Data were collected at various time points in the process that implant recipients went through in receiving and learning to use the device, including initial evaluation, implantation, initial activation and systems fitting, re-education and finally post-education. These data were supplemented with data from interviews conducted with vision rehabilitation specialists at the clinical sites and clinical researchers at the device manufacturers (Second Sight and Pixium Vision). Observational and interview data were transcribed, coded and analyzed using an approach guided by Interpretative Phenomenological Analysis (IPA). RESULTS: Implant recipients described the perceptual experience produced by their epiretinal implants as fundamentally, qualitatively different than natural vision. All used terms that invoked electrical stimuli to describe the appearance of their percepts, yet the characteristics used to describe the percepts varied significantly between recipients. Artificial vision for these recipients was a highly specific, learned skill-set that combined particular bodily techniques, associative learning and deductive reasoning in order to build a "lexicon of flashes"-a distinct perceptual vocabulary that they then used to decompose, recompose and interpret their surroundings. The percept did not transform over time; rather, the recipient became better at interpreting the signals they received, using cognitive techniques. The process of using the device never ceased to be cognitively fatiguing, and did not come without risk or cost to the recipient. In exchange, recipients received hope and purpose through participation, as well as a new kind of sensory signal that may not have afforded practical or functional use in daily life but, for some, provided a kind of "contemplative perception" that recipients tailored to individualized activities. CONCLUSION: Attending to the qualitative reports of implant recipients regarding the experience of artificial vision provides valuable information not captured by extant clinical outcome measures.


Assuntos
Retina/fisiologia , Percepção Visual/fisiologia , Pessoas com Deficiência Visual/psicologia , Adulto , Inglaterra , Membrana Epirretiniana/metabolismo , Feminino , França , Humanos , Masculino , Pessoa de Meia-Idade , Implantação de Prótese/métodos , Visão Ocular/fisiologia , Próteses Visuais/tendências
20.
Asia Pac J Ophthalmol (Phila) ; 10(1): 26-38, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33252365

RESUMO

ABSTRACT: Chromovitrectomy, the intraocular application of dyes to assist visualization of preretinal tissues during vitreoretinal surgery, was introduced to avoid ocular complications related to internal limiting membrane peeling, inadequate removal of the vitreous, and incomplete removal of epiretinal membranes. Since 2000, chromovitrectomy has become a popular approach among vitreoretinal specialists. The first vital dye used in chromovitrectomy, indocyanine green, facilitated identification of the fine and transparent internal limiting membrane. Following indocyanine green, trypan blue was introduced to identify epiretinal membranes, and triamcinolone acetonide stained the vitreous well. Recently, additional natural dyes such as lutein and anthocyanin from the açaí fruit have been proposed for intraocular application during vitrectomy. The main goal of this review was to study the role of vital stains in chromovitrectomy and report the latest findings in the literature.


Assuntos
Corantes/administração & dosagem , Vitrectomia/métodos , Cirurgia Vitreorretiniana/métodos , Corpo Vítreo/cirurgia , Membrana Epirretiniana/metabolismo , Humanos , Verde de Indocianina/administração & dosagem , Procedimentos Cirúrgicos Oftalmológicos , Coloração e Rotulagem/métodos , Azul Tripano/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...