Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.030
Filtrar
1.
Small Methods ; 7(2): e2201243, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543363

RESUMO

The combination of expansion microscopy and single-molecule localization microscopy has the potential to approach the molecular resolution. However, this combination meets challenges due to the hydrogel shrinkage in the presence of imaging buffer. Here, a method of ultrastructure expansion single-molecule localization microscopy (U-ExSMLM) based on skillfully adhering the gel onto poly-l-lysine (pLL)-coated coverslip is developed to prevent lateral shrinkage of the hydrogel. U-ExSMLM is then applied to dissect the membrane cytoskeleton organization of human erythrocytes at molecular resolution. The resolved nanoscale spatial distributions of cytoskeleton proteins, including the N/C-termini of ß-spectrin, protein 4.1, and tropomodulin, show good agreement with the acknowledged model of erythrocyte cytoskeleton structure, demonstrating the reliability of U-ExSMLM. Furthermore, the concentration of pLL is adjusted to preserve the physiological biconcave morphology of erythrocytes, and it is found that the spectrin cytoskeleton in the dimple regions has lower density and larger length than that in the rim regions, which provides the direct evidence for cytoskeleton asymmetry in human erythrocytes. Therefore, the integrated method offers future opportunities to study the ultrastructure of membrane cytoskeleton at molecular resolution.


Assuntos
Membrana Eritrocítica , Microscopia , Humanos , Membrana Eritrocítica/ultraestrutura , Reprodutibilidade dos Testes , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Hidrogéis
2.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502472

RESUMO

Aß(1-42) peptide is a neurotoxic agent strongly associated with the etiology of Alzheimer's disease (AD). Current treatments are still of very low effectiveness, and deaths from AD are increasing worldwide. Huprine-derived molecules have a high affinity towards the enzyme acetylcholinesterase (AChE), act as potent Aß(1-42) peptide aggregation inhibitors, and improve the behavior of experimental animals. AVCRI104P4 is a multitarget donepezil-huprine hybrid that improves short-term memory in a mouse model of AD and exerts protective effects in transgenic Caenorhabditis elegans that express Aß(1-42) peptide. At present, there is no information about the effects of this compound on human erythrocytes. Thus, we considered it important to study its effects on the cell membrane and erythrocyte models, and to examine its protective effect against the toxic insult induced by Aß(1-42) peptide in this cell and models. This research was developed using X-ray diffraction and differential scanning calorimetry (DSC) on molecular models of the human erythrocyte membrane constituted by lipid bilayers built of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). They correspond to phospholipids representative of those present in the external and internal monolayers, respectively, of most plasma and neuronal membranes. The effect of AVCRI104P4 on human erythrocyte morphology was studied by scanning electron microscopy (SEM). The experimental results showed a protective effect of AVCRI104P4 against the toxicity induced by Aß(1-42) peptide in human erythrocytes and molecular models.


Assuntos
Peptídeos beta-Amiloides , Membrana Eritrocítica , Compostos Heterocíclicos de 4 ou mais Anéis , Modelos Moleculares , Fragmentos de Peptídeos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestrutura , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade
3.
Blood ; 137(3): 398-409, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33036023

RESUMO

The final stages of mammalian erythropoiesis involve enucleation, membrane and proteome remodeling, and organelle clearance. Concomitantly, the erythroid membrane skeleton establishes a unique pseudohexagonal spectrin meshwork that is connected to the membrane through junctional complexes. The mechanism and signaling pathways involved in the coordination of these processes are unclear. The results of our study revealed an unexpected role of the membrane skeleton in the modulation of proteome remodeling and organelle clearance during the final stages of erythropoiesis. We found that diaphanous-related formin mDia2 is a master regulator of the integrity of the membrane skeleton through polymerization of actin protofilament in the junctional complex. The mDia2-deficient terminal erythroid cell contained a disorganized and rigid membrane skeleton that was ineffective in detaching the extruded nucleus. In addition, the disrupted skeleton failed to activate the endosomal sorting complex required for transport-III (ESCRT-III) complex, which led to a global defect in proteome remodeling, endolysosomal trafficking, and autophagic organelle clearance. Chmp5, a component of the ESCRT-III complex, is regulated by mDia2-dependent activation of the serum response factor and is essential for membrane remodeling and autophagosome-lysosome fusion. Mice with loss of Chmp5 in hematopoietic cells in vivo resembled the phenotypes in mDia2-knockout mice. Furthermore, overexpression of Chmp5 in mDia2-deficient hematopoietic stem and progenitor cells significantly restored terminal erythropoiesis in vivo. These findings reveal a formin-regulated signaling pathway that connects the membrane skeleton to proteome remodeling, enucleation, and organelle clearance during terminal erythropoiesis.


Assuntos
Eritroblastos/metabolismo , Membrana Eritrocítica/metabolismo , Organelas/metabolismo , Proteoma/metabolismo , Animais , Autofagossomos/metabolismo , Sequência de Bases , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Eritroblastos/ultraestrutura , Membrana Eritrocítica/ultraestrutura , Eritropoese , Lisossomos/metabolismo , Fusão de Membrana , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/deficiência , NADPH Desidrogenase/metabolismo , Organelas/ultraestrutura , Reticulócitos/metabolismo , Reticulócitos/ultraestrutura
4.
PLoS One ; 15(12): e0244796, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382808

RESUMO

Tiny membrane-enclosed cellular fragments that can mediate interactions between cells and organisms have recently become a subject of increasing attention. In this work the mechanism of formation of cell membrane nanovesicles (CNVs) was studied experimentally and theoretically. CNVs were isolated by centrifugation and washing of blood cells and observed by optical microscopy and scanning electron microscopy. The shape of the biological membrane in the budding process, as observed in phospholipid vesicles, in erythrocytes and in CNVs, was described by an unifying model. Taking the mean curvature h and the curvature deviator d of the membrane surface as the relevant parameters, the shape and the distribution of membrane constituents were determined theoretically by minimization of membrane free energy. Considering these results and previous results on vesiculation of red blood cells it was interpreted that the budding processes may lead to formation of different types of CNVs as regards the compartment (exo/endovesicles), shape (spherical/tubular/torocytic) and composition (enriched/depleted in particular kinds of molecules). It was concluded that the specificity of pinched off nanovesicles derives from the shape of the membrane constituents and not primarily from their chemical identity, which explains evidences on great heterogeneity of isolated extracellular vesicles with respect to composition.


Assuntos
Membrana Celular/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Animais , Apoptose/fisiologia , Linhagem Celular , Cães , Membrana Eritrocítica/ultraestrutura , Rim/citologia , Rim/ultraestrutura , Microscopia Eletrônica de Varredura , Modelos Biológicos
5.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32501470

RESUMO

Erythrocyte membrane is crucial to maintain the stability of erythrocyte structure. The membrane protein on the surface of erythrocyte membrane enables erythrocyte to have plasticity and pass through the microcirculation without being blocked or destroyed. Decreased deformability of erythrocyte membrane protein will lead to a series of pathological and physiological changes such as tissue and organ ischemia and hypoxia. Therefore, this research collected 30 cases of healthy blood donors, and explored erythrocyte stored at different times relating indicators including effective oxygen uptake (Q), P50, 2,3-DPG, Na+-k+-ATP. Erythrocyte morphology was observed by electron microscopy. Western blot and immunofluorescence assay were used to detect membrane protein EPB41, S1P, GLTP, SPPL2A expression changes of erythrocyte. To explore the effective carry oxygen capacity of erythrocyte at different storage time resulting in the expression change of erythrocyte surface membrane protein.


Assuntos
Doadores de Sangue , Preservação de Sangue , Membrana Eritrocítica/metabolismo , Oxigênio/sangue , 2,3-Difosfoglicerato/sangue , Ácido Aspártico Endopeptidases/sangue , Proteínas de Transporte/sangue , Proteínas do Citoesqueleto/sangue , Membrana Eritrocítica/ultraestrutura , Humanos , Proteínas de Membrana/sangue , ATPase Trocadora de Sódio-Potássio/sangue , Receptores de Esfingosina-1-Fosfato/sangue , Fatores de Tempo
6.
Biochim Biophys Acta Biomembr ; 1862(7): 183309, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298678

RESUMO

The decrease in cellular deformability shows strong correlation with erythrocyte aging. Cell deformation can be divided into passive deformation and active deformation; however, the active deformation has been ignored in previous studies. In this work, Young's moduli of age-related erythrocytes were tested by atomic force microscopy. Furthermore, the deformation and passive and active deformation values were calculated by respective areas. Our results showed that erythrocytes in the densest fraction had the highest values of the Young's modulus, deformation, and active deformation, but the lowest values of passive deformation. Moreover, values of the deformation and active deformation both increased gradually with erythrocyte aging. The present data indicate that the elastic hysteresis loop between the approach and the retract curve could be regarded as erythrocyte deformability, and cellular deformability could be characterized by energy states. In addition, active deformation might be a crucial mechanical factor for clearing aged erythrocytes. This could provide an important information on erythrocyte biomechanics in the removal of aged cell.


Assuntos
Envelhecimento Eritrocítico/fisiologia , Deformação Eritrocítica/fisiologia , Membrana Eritrocítica/ultraestrutura , Eritrócitos/ultraestrutura , Membrana Eritrocítica/química , Eritrócitos/fisiologia , Humanos , Microscopia de Força Atômica
7.
Sci Rep ; 9(1): 14062, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575952

RESUMO

The optimal functionality of red blood cells is closely associated with the surrounding environment. This study was undertaken to analyze the changes in membrane profile, mean corpuscular hemoglobin (MCH), and cell membrane fluctuations (CMF) of healthy red blood cells (RBC) at varying temperatures. The temperature was elevated from 17 °C to 41 °C within a duration of less than one hour, and the holograms were recorded by an off-axis configuration. After hologram reconstruction, we extracted single RBCs and evaluated their morphologically related features (projected surface area and sphericity coefficient), MCH, and CMF. We observed that elevating the temperature results in changes in the three-dimensional (3D) profile. Since CMF amplitude is highly correlated to the bending curvature of RBC membrane, temperature-induced shape changes can alter CMF's map and amplitude; mainly larger fluctuations appear on dimple area at a higher temperature. Regardless of the shape changes, no alterations in MCH were seen with temperature variation.


Assuntos
Membrana Eritrocítica/fisiologia , Eritrócitos/fisiologia , Índices de Eritrócitos , Membrana Eritrocítica/ultraestrutura , Eritrócitos/química , Eritrócitos/ultraestrutura , Holografia , Temperatura Alta , Humanos , Imageamento Tridimensional , Masculino , Modelos Estatísticos
8.
Scanning ; 2019: 8218912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198487

RESUMO

The spectrin matrix is a structural element of red blood cells (RBCs). As such, it affects RBC morphology, membrane deformability, nanostructure, stiffness, and, ultimately, the rheological properties of blood. However, little is known about how temperature affects the spectrin matrix. In this study, the nanostructure of the spectrin network was recorded by atomic force microscopy. We describe how the nanostructure of the RBC spectrin matrix changes from a regular network to a chaotic pattern following an increase in temperature from 20 to 50°C. At 20-37°Ð¡, the spectrin network formed a regular structure with dimensions of typically 150 ± 60 nm. At 42-43°Ð¡, 83% of the spectrin network assumed an irregular structure. Finally, at 49-50°Ð¡ the chaotic pattern was observed, and no quantitative estimates of the spectrin structure's parameters could be made. These results can be useful for biophysical studies on the destruction of the spectrin network under pathological conditions, as well as for investigating cell morphology and blood rheology in different diseases.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Membrana Eritrocítica/ultraestrutura , Espectrina/ultraestrutura , Citoesqueleto de Actina/química , Adulto , Membrana Eritrocítica/química , Feminino , Voluntários Saudáveis , Humanos , Masculino , Microscopia de Força Atômica , Reologia , Espectrina/química , Temperatura
9.
PLoS One ; 14(5): e0216467, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31083675

RESUMO

Abnormal red blood cell (RBC) adhesion to endothelial αvß3 plays a crucial role in triggering vaso-occlusive episodes in sickle cell disease (SCD). It is known that epinephrine, a ß-adrenergic receptor (ß-AR) stimulator, increases the RBC surface density of active intercellular adhesion molecule-4 (ICAM-4) which binds to the endothelial αvß3. It has also been demonstrated that in human embryonic kidney 293 cells, mouse cardiomyocytes, and COS-7 cell lines, the ß-adrenergic and renin-angiotensin systems are interrelated and that there is a direct interaction and cross-regulation between ß-AR and angiotensin II type 1 receptor (AT1R). Selective blockade of AT1R reciprocally inhibits the downstream signaling of ß-ARs, similar to the inhibition observed in the presence of a ß-AR-blocker. However, it is not known if this mechanism is active in human RBCs. Here, we studied the effect of valsartan, an AT1R blocker, on the surface density of active ICAM-4 receptors in normal, sickle cell trait, and homozygous sickle RBCs. We applied single molecule force spectroscopy to detect active ICAM-4 receptors on the RBC plasma membrane with and without the presence of valsartan and epinephrine. We found that epinephrine significantly increased whereas valsartan decreased their surface density. Importantly, we found that pretreatment of RBCs with valsartan significantly impeded the activation of ICAM-4 receptors induced by epinephrine. The observed reduced expression of active ICAM-4 receptors on the RBC plasma membrane leads us to conjecture that valsartan may be used as a supporting remedy for the prevention and treatment of vaso-occlusive crisis in SCD.


Assuntos
Moléculas de Adesão Celular/metabolismo , Epinefrina/farmacologia , Membrana Eritrocítica/metabolismo , Eritrócitos Anormais/metabolismo , Traço Falciforme/metabolismo , Valsartana/farmacologia , Adolescente , Adulto , Animais , Células COS , Chlorocebus aethiops , Membrana Eritrocítica/ultraestrutura , Eritrócitos Anormais/ultraestrutura , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Microscopia de Força Atômica , Receptor Tipo 1 de Angiotensina/metabolismo , Traço Falciforme/patologia
10.
PLoS One ; 14(4): e0215447, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002688

RESUMO

An improved red blood cell (RBC) membrane model is developed based on the bilayer coupling model (BCM) to accurately predict the complete sequence of stomatocyte-discocyte-echinocyte (SDE) transformation of a RBC. The coarse-grained (CG)-RBC membrane model is proposed to predict the minimum energy configuration of the RBC from the competition between lipid-bilayer bending resistance and cytoskeletal shear resistance under given reference constraints. In addition to the conventional membrane surface area, cell volume and bilayer-leaflet-area-difference constraints, a new constraint: total-membrane-curvature is proposed in the model to better predict RBC shapes in agreement with experimental observations. A quantitative evaluation of several cellular measurements including length, thickness and shape factor, is performed for the first time, between CG-RBC model predicted and three-dimensional (3D) confocal microscopy imaging generated RBC shapes at equivalent reference constraints. The validated CG-RBC membrane model is then employed to investigate the effect of reduced cell volume and elastic length scale on SDE transformation, to evaluate the RBC deformability during SDE transformation, and to identify the most probable RBC cytoskeletal reference state. The CG-RBC membrane model can predict the SDE shape behaviour under diverse shape-transforming scenarios, in-vitro RBC storage, microvascular circulation and flow through microfluidic devices.


Assuntos
Algoritmos , Deformação Eritrocítica , Membrana Eritrocítica/metabolismo , Eritrócitos Anormais/metabolismo , Eritrócitos/metabolismo , Modelos Biológicos , Fenômenos Biomecânicos , Tamanho Celular , Membrana Eritrocítica/ultraestrutura , Eritrócitos/ultraestrutura , Eritrócitos Anormais/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura
11.
Cell Microbiol ; 21(5): e13005, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30634201

RESUMO

The simian parasite Plasmodium knowlesi causes severe and fatal malaria infections in humans, but the process of host cell remodelling that underpins the pathology of this zoonotic parasite is only poorly understood. We have used serial block-face scanning electron microscopy to explore the topography of P. knowlesi-infected red blood cells (RBCs) at different stages of asexual development. The parasite elaborates large flattened cisternae (Sinton Mulligan's clefts) and tubular vesicles in the host cell cytoplasm, as well as parasitophorous vacuole membrane bulges and blebs, and caveolar structures at the RBC membrane. Large invaginations of host RBC cytoplasm are formed early in development, both from classical cytostomal structures and from larger stabilised pores. Although degradation of haemoglobin is observed in multiple disconnected digestive vacuoles, the persistence of large invaginations during development suggests inefficient consumption of the host cell cytoplasm. The parasite eventually occupies ~40% of the host RBC volume, inducing a 20% increase in volume of the host RBC and an 11% decrease in the surface area to volume ratio, which collectively decreases the ability of the P. knowlesi-infected RBCs to enter small capillaries of a human erythrocyte microchannel analyser. Ektacytometry reveals a markedly decreased deformability, whereas correlative light microscopy/scanning electron microscopy and python-based skeleton analysis (Skan) reveal modifications to the surface of infected RBCs that underpin these physical changes. We show that P. knowlesi-infected RBCs are refractory to treatment with sorbitol lysis but are hypersensitive to hypotonic lysis. The observed physical changes in the host RBCs may underpin the pathology observed in patients infected with P. knowlesi.


Assuntos
Membrana Eritrocítica/metabolismo , Eritrócitos/parasitologia , Plasmodium knowlesi/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Membrana Eritrocítica/ultraestrutura , Eritrócitos/citologia , Eritrócitos/ultraestrutura , Hemoglobinas/metabolismo , Interações Hospedeiro-Parasita , Humanos , Merozoítos/ultraestrutura , Microscopia Eletrônica de Varredura , Pressão Osmótica , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Plasmodium knowlesi/crescimento & desenvolvimento , Plasmodium knowlesi/patogenicidade , Esquizontes/ultraestrutura , Trofozoítos/ultraestrutura , Vacúolos/metabolismo , Vacúolos/ultraestrutura
12.
Scanning ; 2018: 1810585, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581527

RESUMO

The ability of membranes of native human red blood cells (RBCs) to bend into the cell to a depth comparable in size with physiological deformations was evaluated. For this, the methods of atomic force microscopy and atomic force spectroscopy were used. Nonlinear patterns of deep deformation (up to 600 nm) of RBC membranes were studied in normal state and under the action of modifiers: fixator (glutaraldehyde), natural oxidant (hemin), and exogenous intoxicator (zinc ions), in vitro. The experimental dependences of membrane bending for control RBC (normal) were approximated by the Hertz model to a depth up to 600 nm. The glutaraldehyde fixator and modifiers increased the absolute value of Young's modulus of membranes and changed the experimental dependences of probe indentation into the cells. Up to some depth h Hz, the force curves were approximated by the Hertz model, and for deeper indentations h > h Hz, the degree of the polynomial function was changed, the membrane stiffness increased, and the pattern of indentation became another and did not obey the Hertz model. Quantitative characteristics of nonlinear experimental dependences were calculated for deep bending of RBC membranes by approximating them by the degree polynomial function.


Assuntos
Membrana Eritrocítica/efeitos dos fármacos , Glutaral/farmacologia , Hemina/farmacologia , Zinco/farmacologia , Fenômenos Biomecânicos , Soluções Tampão , Cátions Bivalentes , Módulo de Elasticidade , Membrana Eritrocítica/química , Membrana Eritrocítica/ultraestrutura , Humanos , Microscopia de Força Atômica , Propriedades de Superfície
13.
Cell Physiol Biochem ; 51(4): 1544-1565, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30497064

RESUMO

BACKGROUND/AIMS: Red blood cells (RBC) have been shown to exhibit stable submicrometric lipid domains enriched in cholesterol (chol), sphingomyelin (SM), phosphatidylcholine (PC) or ganglioside GM1, which represent the four main lipid classes of their outer plasma membrane leaflet. However, whether those lipid domains co-exist at the RBC surface or are spatially related and whether and how they are subjected to reorganization upon RBC deformation are not known. METHODS: Using fluorescence and/or confocal microscopy and well-validated probes, we compared these four lipid-enriched domains for their abundance, curvature association, lipid order, temperature dependence, spatial dissociation and sensitivity to RBC mechanical stimulation. RESULTS: Our data suggest that three populations of lipid domains with decreasing abundance coexist at the RBC surface: (i) chol-enriched ones, associated with RBC high curvature areas; (ii) GM1/PC/chol-enriched ones, present in low curvature areas; and (iii) SM/PC/chol-enriched ones, also found in low curvature areas. Whereas chol-enriched domains gather in increased curvature areas upon RBC deformation, low curvature-associated lipid domains increase in abundance either upon calcium influx during RBC deformation (GM1/PC/chol-enriched domains) or upon secondary calcium efflux during RBC shape restoration (SM/PC/chol-enriched domains). Hence, abrogation of these two domain populations is accompanied by a strong impairment of the intracellular calcium balance. CONCLUSION: Lipid domains could contribute to calcium influx and efflux by controlling the membrane distribution and/or the activity of the mechano-activated ion channel Piezo1 and the calcium pump PMCA. Whether this results from lipid domain biophysical properties, the strength of their anchorage to the underlying cytoskeleton and/or their correspondence with inner plasma membrane leaflet lipids remains to be demonstrated.


Assuntos
Colesterol/análise , Membrana Eritrocítica/metabolismo , Eritrócitos/citologia , Gangliosídeo G(M1)/análise , Microdomínios da Membrana/metabolismo , Fosfatidilcolinas/análise , Fenômenos Biomecânicos , Forma Celular , Colesterol/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/ultraestrutura , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Gangliosídeo G(M1)/metabolismo , Humanos , Canais Iônicos/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/ultraestrutura , Fosfatidilcolinas/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
14.
Sci Rep ; 8(1): 15705, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356059

RESUMO

Distortions of the normal bi-concave disc shape for red blood cells (RBCs) appear in a number of pathologies resulting from defects in cell membrane skeletal architecture, erythrocyte ageing, and mechanical damage. We present here the potential of acoustic cytometry for developing new approaches to light-scattering based evaluation of red blood cell disorders and of the effects of storage and ageing on changes or damage to RBCs membranes. These approaches could be used to immediately evaluate the quality of erythrocytes prior to blood donation and following transfusion. They could also be applied to studying RBC health in diseases and other pathologies, such as artificial heart valve hemolysis, thermal damage or osmotic fragility. Abnormal distributions of erythrocytes can typically be detected after just 30 to 45 seconds of acquisition time using 1-2 µL starting blood volumes.


Assuntos
Eritrócitos , Citometria de Fluxo/métodos , Som , Anexina A5 , Preservação de Sangue/métodos , Envelhecimento Eritrocítico , Deformação Eritrocítica , Índices de Eritrócitos , Membrana Eritrocítica/ultraestrutura , Transfusão de Eritrócitos , Eritrócitos/ultraestrutura , Citometria de Fluxo/instrumentação , Corantes Fluorescentes , Hemólise , Humanos , Hidrodinâmica , Luz , Lipídeos de Membrana/sangue , Fosfatidilserinas/sangue , Espalhamento de Radiação , Esferócitos/ultraestrutura , Esferocitose Hereditária/sangue
15.
Int J Nanomedicine ; 13: 5347-5359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254439

RESUMO

BACKGROUND: There is currently much interest in cancer cell targeting and tumor penetrating for research and therapeutic purposes. PURPOSE: To improve targeting delivery of antitumor drugs to gastric cancer, in this study, a tumor-targeting biocompatible drug delivery system derived from erythrocyte membrane for delivering paclitaxel (PTX) was constructed. METHODS: Erythrocyte membrane of human red blood cells (RBCs) were used for preparing of erythrocyte membrane-derived vesicles. 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(maleimide[polyethylene glycol]-3400) (DSPE-PEG-MAL), a phospholipid derivative, was used to insert tumor-targeting molecular into erythrocyte membrane-derived vesicles. A lipid insertion method was used to functionalize these vesicles without the need for direct chemical conjugation. Furthermore, a tumor-penetrating bispecific recombinant protein named anti-EGFR-iRGD was used for the first time in this work to enable nanosystem to target and penetrate efficiently into the tumor site. RESULTS: Paclitaxel (PTX)-loaded anti-EGFR-iRGD-modified erythrocyte membrane nano-system (anti-EGFR-iRGD-RBCm-PTX, abbreviated to PRP) were manufactured. PRP was spheroid, uniformly size, about 171.7±4.7 nm in average, could be stable in vitro for 8 days, and released PTX in a biphasic pattern. PRP showed comparable cytotoxicity toward human gastric cancer cells in vitro. In vivo studies showed that, PRP accumulated in tumor site within 2 h of administration, lasted longer than 48 h, and the tumor volume was reduced 61% by PRP treatment in Balb/c nude mice, without causing severe side effects. CONCLUSION: PRP has potential applications in cancer treatment and as an adjunct for other anticancer strategies.


Assuntos
Membrana Eritrocítica/metabolismo , Lipídeos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Receptores ErbB/metabolismo , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/ultraestrutura , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Fluorescência , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Oligopeptídeos/metabolismo , Paclitaxel/química , Paclitaxel/uso terapêutico , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Distribuição Tecidual/efeitos dos fármacos
16.
Invest Ophthalmol Vis Sci ; 59(11): 4464-4470, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193321

RESUMO

Purpose: To confirm whether choroideremia (CHM) is a systemic disease characterized by blood lipid abnormalities and crystals found in, or associated with, circulating peripheral blood cells of patients. Methods: Peripheral blood samples obtained from three subjects with confirmed mutations in the CHM gene and three age-matched normal controls were processed for transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Fatty acids from plasma of nine male CHM subjects were analyzed and compared to reference values for a sample from a Canadian population. Results: Intracellular crystals were not observed in the cells from choroideremia-affected males. No crystals were found adherent to the external plasma membrane of red blood cells. Fatty acid profiles of patients were similar to reference values, with the exception of lower levels of nervonic acid. Conclusions: This investigation failed to observe crystals previously reported in peripheral circulating blood cells derived from CHM subjects, and showed no significant fatty acid abnormalities, not supporting the view of CHM as a systemic disease.


Assuntos
Coroideremia/sangue , Inclusões Eritrocíticas/ultraestrutura , Membrana Eritrocítica/ultraestrutura , Fosfolipídeos/sangue , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Criança , Coroideremia/genética , Coroideremia/patologia , Cristalização , Humanos , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Mutação , Adulto Jovem
17.
Virulence ; 9(1): 1112-1125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067143

RESUMO

Trueperella pyogenes (T. pyogenes) is an important opportunistic pathogen. Pyolysin (PLO) importantly contributes to the pathogenicity of T. pyogenes. However, the relationship between the structure and function and the virulence of PLO is not well documented. In the current study, recombinant PLO (rPLO) and three rPLO mutants were prepared. rPLO D238R, a mutant with the 238th aspartic acid replaced with an arginine, showed impairment in oligomerization activity on cholesterol-containing liposome and pore-forming activity on sheep red blood cell membrane. Further study employing the prepared mutants confirmed that the pore-forming activity of PLO is essential for inducing excessive inflammation responses in mice by upregulating the expression levels of IL-1ß, TNF-α, and IL-6. By contrast, rPLO P499F, another mutant with impaired cell membrane binding capacity, elicited an inflammation response that was dependent on pathogen-associated molecular pattern (PAMP) activity, given that the mutant significantly upregulated the expression of IL-10 in macrophages and in mice, whereas rPLO did not. Results indicated that domain 1 of the PLO molecule plays an important role in maintaining pore-forming activity. Moreover, the PLO pore-forming activity and not PAMP activity is responsible for the inflammation-inducing effect of PLO. The results of this study provided new information for research field on the structure, function, and virulence of PLO. ABBREVIATIONS: T. pyogenes: Trueperella pyogenes; PLO: Pyolysin; rPLO: recombinant PLO; PAMP: pathogen-associated molecular pattern; CDCs: cholesterol-dependent cytolysins; PLY: pneumolysin; NLRP3: NLR family pyrin domain containing protein 3; PRRs: pattern recognition receptors; Asp: aspartic acid; TLR4: Toll-like receptor 4; Arg: arginine; Asn: asparagine; IPTG: Isopropyl-ß-d-thiogalactoside; PBS: phosphate-buffered saline; sRBCs: sheep red blood cells; TEM: Transmission electron microscopy; RBCM: red blood cell membrane; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; NC membrane: nitrocellulose membrane; SDS-AGE: dodecyl sulfate agarose gel electrophoresis; MDBK cells: Madin-Darby bovine kidney cells; RPMI-1640 medium: Roswell Park Memorial Institute-1640 medium; FBS: fetal bovine serum; BMDMs: bone marrow-derived macrophages; TNF-α: tumor necrosis factor α; IL-1ß: interleukin-1ß; IFN-γ: interferon-γ; TGF-ß: transforming growth factor-ß; ELISA: enzyme-linked immunosorbent assay.


Assuntos
Actinomycetaceae/genética , Arginina/genética , Ácido Aspártico/genética , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Proteínas Hemolisinas/química , Inflamação/induzido quimicamente , Actinomycetaceae/química , Actinomycetaceae/patogenicidade , Substituição de Aminoácidos , Animais , Arginina/química , Ácido Aspártico/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Bovinos , Linhagem Celular , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/ultraestrutura , Feminino , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Hemólise , Interleucina-10/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Distribuição Aleatória , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Ovinos , Fator de Necrose Tumoral alfa/genética , Virulência
18.
Biochem Biophys Res Commun ; 503(1): 209-214, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29879427

RESUMO

Labetalol is one of the most used drugs for the treatment of hypertension. This molecule is able to bind to both alpha-1 (α1) and beta (ß) adrenergic receptors present in vascular smooth muscle among other tissues. It has been determined that human erythrocytes possess both alpha receptors and beta-adrenergic receptors expressed on their surface. The objective of this work was to study the effect of labetalol on the morphology of human erythrocytes. To accomplish this goal, human erythrocytes and model membranes built of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. These lipid species are present in the outer and inner monolayers of the red blood cell membrane, respectively. Our findings obtained by X-ray diffraction and differential scanning calorimetry (DSC) indicate that labetalol interacted with both lipids in a process dependent on concentration. In fact, at low concentrations labetalol preferentially interacted with DMPE. On the other hand, results obtained by scanning electron microscopy (SEM) showed that labetalol alters the normal biconcave form of erythrocytes to stomatocytes and knizocytes (cells with one or more cavities, respectively). According to the bilayers couple hypothesis, this result implied that the drug inserted in the inner monolayer of the human erythrocyte membrane.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Eritrócitos/efeitos dos fármacos , Labetalol/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/química , Antagonistas Adrenérgicos beta/química , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/química , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestrutura , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Humanos , Técnicas In Vitro , Labetalol/química , Lipossomos/química , Membranas Artificiais , Microscopia Eletrônica de Varredura , Fosfatidiletanolaminas/química , Difração de Raios X
19.
Sci Rep ; 8(1): 3543, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476099

RESUMO

Malaria parasites alternate between intracellular and extracellular stages and successful egress from the host cell is crucial for continuation of the life cycle. We investigated egress of Plasmodium berghei gametocytes, an essential process taking place within a few minutes after uptake of a blood meal by the mosquito. Egress entails the rupture of two membranes surrounding the parasite: the parasitophorous vacuole membrane (PVM), and the red blood cell membrane (RBCM). High-speed video microscopy of 56 events revealed that egress in both genders comprises four well-defined phases, although each event is slightly different. The first phase is swelling of the host cell, followed by rupture and immediate vesiculation of the PVM. These vesicles are extruded through a single stabilized pore of the RBCM, and the latter is subsequently vesiculated releasing the free gametes. The time from PVM vesiculation to completion of egress varies between events. These observations were supported by immunofluorescence microscopy using antibodies against proteins of the RBCM and PVM. The combined results reveal dynamic re-organization of the membranes and the cortical cytoskeleton of the erythrocyte during egress.


Assuntos
Membrana Eritrocítica/ultraestrutura , Malária/parasitologia , Plasmodium berghei/genética , Vacúolos/ultraestrutura , Animais , Culicidae/parasitologia , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Membrana Eritrocítica/parasitologia , Eritrócitos/parasitologia , Eritrócitos/ultraestrutura , Células Germinativas/metabolismo , Células Germinativas/ultraestrutura , Humanos , Estágios do Ciclo de Vida/genética , Malária/transmissão , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Vacúolos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...