Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Parkinsons Dis ; 14(2): 227-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427502

RESUMO

Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/patologia , Membrana Externa Bacteriana/patologia , Inflamação/complicações , Microbioma Gastrointestinal/fisiologia , Mamíferos
2.
Exp Biol Med (Maywood) ; 247(3): 282-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713732

RESUMO

Acinetobacter baumannii is a Gram-negative bacterium responsible for many hospital-acquired infections including ventilator-associated pneumonia and sepsis. We have previously identified A. baumannii thioredoxin A protein (TrxA) as a virulence factor with a multitude of functions including reduction of protein disulfides. TrxA plays an important role in resistance to oxidative stress facilitating host immune evasion in part by alteration of type IV pili and cell surface hydrophobicity. Other virulence factors such as outer membrane vesicles (OMV) shed by bacteria have been shown to mediate bacterial intercellular communication and modulate host immune response. To investigate whether OMVs can be modulated by TrxA, we isolated OMVs from wild type (WT) and TrxA-deficient (ΔtrxA) A. baumannii clinical isolate Ci79 and carried out a functional and proteomic comparison. Despite attenuation of ΔtrxA in a mouse challenge model, pulmonary inoculation of ΔtrxA OMVs resulted in increased lung permeability compared to WT OMVs. Furthermore, ΔtrxA OMVs induced more J774 macrophage-like cell death than WT OMVs. This ΔtrxA OMV-mediated cell death was abrogated when cells were incubated with protease-K-treated OMVs suggesting OMV proteins were responsible for cytotoxicity. We therefore compared WT and mutant OMV proteins using proteomic analysis. We observed that up-regulated and unique ΔtrxA OMV proteins consisted of many membrane bound proteins involved in small molecule transport as well as proteolytic activity. Bacterial OmpA, metalloprotease, and fimbrial protein have been shown to enhance mammalian cell apoptosis through various mechanisms. Differential packaging of these proteins in ΔtrxA OMVs may contribute to the increased cytotoxicity observed in this study.


Assuntos
Acinetobacter baumannii/patogenicidade , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/patologia , Tiorredoxinas/metabolismo , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/isolamento & purificação , Animais , Membrana Externa Bacteriana/metabolismo , Vesículas Extracelulares/patologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Tiorredoxinas/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Microbiol Spectr ; 9(2): e0029921, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34643411

RESUMO

Bovine mastitis infection in dairy cattle is a significant economic burden for the dairy industry globally. To reduce the use of antibiotics in treatment of clinical mastitis, new alternative treatment options are needed. Antimicrobial peptides from bacteria, also known as bacteriocins, are potential alternatives for combating mastitis pathogens. In search of novel bacteriocins against mastitis pathogens, we screened samples of Norwegian bovine raw milk and found a Streptococcus uberis strain with potent antimicrobial activity toward Enterococcus, Streptococcus, Listeria, and Lactococcus. Whole-genome sequencing of the strain revealed a multibacteriocin gene cluster encoding one class IIb bacteriocin, two class IId bacteriocins, in addition to a three-component regulatory system and a dedicated ABC transporter. Isolation and purification of the antimicrobial activity from culture supernatants resulted in the detection of a 6.3-kDa mass peak by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, a mass corresponding to the predicted size of one of the class IId bacteriocins. The identification of this bacteriocin, called ubericin K, was further confirmed by in vitro protein synthesis, which showed the same inhibitory spectrum as the purified antimicrobial compound. Ubericin K shows highest sequence similarity to the class IId bacteriocins bovicin 255, lactococcin A, and garvieacin Q. We found that ubericin K uses the sugar transporter mannose phosphotransferase (PTS) as a target receptor. Further, by using the pHlourin sensor system to detect intracellular pH changes due to leakage across the membrane, ubericin K was shown to be a pore former, killing target cells by membrane disruption. IMPORTANCE Bacterial infections in dairy cows are a major burden to farmers worldwide because infected cows require expensive treatments and produce less milk. Today, infected cows are treated with antibiotics, a practice that is becoming less effective due to antibiotic resistance. Compounds other than antibiotics also exist that kill bacteria causing infections in cows; these compounds, known as bacteriocins, are natural products produced by other bacteria in the environment. In this work, we discover a new bacteriocin that we call ubericin K, which kills several species of bacteria known to cause infections in dairy cows. We also use in vitro synthesis as a novel method for rapidly characterizing bacteriocins directly from genomic data, which could be useful for other researchers. We believe that ubericin K and the methods described in this work will aid in the transition away from antibiotics in the dairy industry.


Assuntos
Antibacterianos/uso terapêutico , Bacteriocinas/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Mastite Bovina/tratamento farmacológico , Streptococcus/metabolismo , Animais , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/patologia , Bacteriocinas/genética , Bovinos , Doenças dos Bovinos/microbiologia , Enterococcus/efeitos dos fármacos , Enterococcus/crescimento & desenvolvimento , Feminino , Lactococcus/efeitos dos fármacos , Lactococcus/crescimento & desenvolvimento , Listeria/efeitos dos fármacos , Listeria/crescimento & desenvolvimento , Mastite Bovina/microbiologia , Testes de Sensibilidade Microbiana , Fosfotransferases/metabolismo , Percepção de Quorum , Streptococcus/genética
4.
Microbiol Spectr ; 9(2): e0000621, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34468186

RESUMO

Avian pathogenic Escherichia coli (APEC), a subgroup of extraintestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens and is reportedly implicated in urinary tract infections and meningitis in humans. A major limitation for the current ExPEC antibiotic therapy is the development of resistance, and antibacterial drugs that can circumvent this problem are critically needed. Here, we evaluated eight novel membrane-affecting anti-APEC small molecule growth inhibitors (GIs), identified in our previous study, against APEC infection in chickens. Among the GIs tested, GI-7 (the most effective), when administered orally (1 mg/kg of body weight), reduced the mortality (41.7%), severity of lesions (62.9%), and APEC load (2.6 log) in chickens. Furthermore, GI-7 administration at an optimized dose (60 mg/liter) in drinking water also reduced the mortality (14.7%), severity of lesions (29.5%), and APEC load (2.2 log) in chickens. The abundances of Lactobacillus and oleate were increased in the cecum and serum, respectively, of GI-7-treated chickens. Pharmacokinetic analysis revealed that GI-7 was readily absorbed with minimal accumulation in the tissues. Earlier, we showed that GI-7 induced membrane blebbing and increased membrane permeability in APEC, suggesting an effect on the APEC membrane. Consistent with this finding, the expression of genes essential for maintaining outer membrane (OM) integrity was downregulated in GI-7-treated APEC. Furthermore, decreased levels of lipopolysaccharide (LPS) transport (Lpt) proteins and LPS were observed in GI-7-treated APEC. However, the mechanism of action of GI-7 currently remains unknown and needs further investigation. Our studies suggest that GI-7 represents a promising novel lead compound that can be developed to treat APEC infection in chickens and related human ExPEC infections. IMPORTANCE APEC is a subgroup of ExPEC, and genetic similarities of APEC with human ExPECs, including uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC), have been reported. Our study identified a novel small molecule growth inhibitor, GI-7, effective in reducing APEC infection in chickens with an efficacy similar to that of the currently used antibiotic sulfadimethoxine, notably with an 8-times-lower dose. GI-7 affects the OM integrity and decreases the Lpt protein and LPS levels in APEC, an antibacterial mechanism that can overcome the antibiotic resistance problem. Overall, GI-7 represents a promising lead molecule/scaffold for the development of novel antibacterial therapies that could have profound implications for treating APEC infections in chickens, as well as human infections caused by ExPECs and other related Gram-negative bacteria. Further elucidation of the mechanism of action of GI-7 and identification of its target(s) in APEC will benefit future novel antibacterial development efforts.


Assuntos
Antibacterianos/farmacologia , Membrana Externa Bacteriana/patologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Animais , Carga Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/efeitos dos fármacos , Galinhas/microbiologia , Modelos Animais de Doenças , Escherichia coli Extraintestinal Patogênica/crescimento & desenvolvimento , Humanos , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
5.
mSphere ; 6(1)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627508

RESUMO

Neutrophils, the first line of defense against pathogens, are critical in the host response to acute and chronic infections. In Gram-negative pathogens, the bacterial outer membrane (OM) is a key mediator of pathogen detection; nonetheless, the effects of variations in its molecular structure on the neutrophil migratory response to bacteria remain largely unknown. Here, we developed a quantitative microfluidic assay that precludes physical contact between bacteria and neutrophils while maintaining chemical communication, thus allowing investigation of both transient and steady-state responses of neutrophils to a library of Salmonella enterica serovar Typhimurium OM-related mutants at single-cell resolution. Using single-cell quantitative metrics, we found that transient neutrophil chemokinesis is highly gradated based upon OM structure, while transient and steady-state chemotaxis responses differ little between mutants. Based on our finding of a lack of correlation between chemokinesis and chemotaxis, we define "stimulation score" as a metric that comprehensively describes the neutrophil response to pathogens. Complemented with a killing assay, our results provide insight into how OM modifications affect neutrophil recruitment and pathogen survival. Altogether, our platform enables the discovery of transient and steady-state migratory responses and provides a new path for quantitative interrogation of cell decision-making processes in a variety of host-pathogen interactions.IMPORTANCE Our findings provide insights into the previously unexplored effects of Salmonella envelope defects on fundamental innate immune cell behavior, which advance the knowledge in pathogen-host cell biology and potentially inspire the rational design of attenuated strains for vaccines or immunotherapeutic strains for cancer therapy. Furthermore, the microfluidic assay platform and analytical tools reported herein enable high-throughput, sensitive, and quantitative screening of microbial strains' immunogenicity in vitro This approach could be particularly beneficial for rapid in vitro screening of engineered microbial strains (e.g., vaccine candidates) as the quantitative ranking of the overall strength of the neutrophil response, reported by "stimulation score," agrees with in vivo cytokine response trends reported in the literature.


Assuntos
Membrana Externa Bacteriana/química , Quimiotaxia , Interações Hospedeiro-Patógeno/imunologia , Infiltração de Neutrófilos , Neutrófilos/fisiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/metabolismo , Membrana Externa Bacteriana/imunologia , Membrana Externa Bacteriana/patologia , Técnicas Analíticas Microfluídicas , Neutrófilos/imunologia , Salmonella typhimurium/química , Salmonella typhimurium/genética , Sorogrupo , Virulência
6.
Appl Microbiol Biotechnol ; 104(9): 3757-3770, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32170388

RESUMO

Plant growth-promoting bacteria show great potential for use in agriculture although efficient application remains challenging to achieve. Cells often lose viability during inoculant production and application, jeopardizing the efficacy of the inoculant. Since desiccation has been documented to be the primary stress factor affecting the decrease in survival, obtaining xerotolerance in plant growth-promoting bacteria is appealing. The molecular damage that occurs by drying bacteria has been broadly investigated, although a complete view is still lacking due to the complex nature of the process. Mechanic, structural, and metabolic changes that occur as a result of water depletion may potentially afflict lethal damage to membranes, DNA, and proteins. Bacteria respond to these harsh conditions by increasing production of exopolysaccharides, changing composition of the membrane, improving the stability of proteins, reducing oxidative stress, and repairing DNA damage. This review provides insight into the complex nature of desiccation stress in bacteria in order to facilitate strategic choices to improve survival and shelf life of newly developed inoculants. KEY POINTS: Desiccation-induced damage affects most major macromolecules in bacteria. Most bacteria are not xerotolerant despite multiple endogenous adaption mechanisms. Sensitivity to drying severely hampers inoculant quality.


Assuntos
Inoculantes Agrícolas/metabolismo , Bactérias/metabolismo , Dessecação , Estresse Fisiológico , Temperatura , Adaptação Fisiológica , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/patologia
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165731, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088316

RESUMO

Outer membrane vesicles (OMVs) are nanosized particles derived from the outer membrane of gram-negative bacteria. Oral bacterium Porphyromonas gingivalis (Pg) is known to be a major pathogen of periodontitis that contributes to the progression of periodontal disease by releasing OMVs. The effect of Pg OMVs on systemic diseases is still unknown. To verify whether Pg OMVs affect the progress of diabetes mellitus, we analyzed the cargo proteins of vesicles and evaluated their effect on hepatic glucose metabolism. Here, we show that Pg OMVs were equipped with Pg-derived proteases gingipains and translocated to the liver in mice. In these mice, the hepatic glycogen synthesis in response to insulin was decreased, and thus high blood glucose levels were maintained. Pg OMVs also attenuated the insulin-induced Akt/glycogen synthase kinase-3 ß (GSK-3ß) signaling in a gingipain-dependent fashion in hepatic HepG2 cells. These results suggest that the delivery of gingipains mediated by Pg OMV elicits changes in glucose metabolisms in the liver and contributes to the progression of diabetes mellitus.


Assuntos
Membrana Externa Bacteriana/metabolismo , Cisteína Endopeptidases Gingipaínas/genética , Periodontite/genética , Porphyromonas gingivalis/genética , Animais , Membrana Externa Bacteriana/patologia , Modelos Animais de Doenças , Cisteína Endopeptidases Gingipaínas/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Resistência à Insulina/genética , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-32015038

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that is inherently resistant to many antibiotics and represents an increasing threat due to the emergence of drug-resistant strains. There is a pressing need to develop innovative antimicrobials against this pathogen. In this study, we identified the O-specific antigen (OSA) of P. aeruginosa serotype O6 as a novel target for therapeutic intervention. Binding of monoclonal antibodies and antigen-binding fragments therefrom to O6 OSA leads to rapid outer membrane destabilization and inhibition of cell growth. The antimicrobial effect correlated directly with antibody affinity. Antibody binding to the O antigen of a second lipopolysaccharide (LPS) type present in P. aeruginosa or to the LPS core did not affect cell viability. Atomic force microscopy showed that antibody binding to OSA resulted in early flagellum loss, formation of membrane blebs, and eventually complete outer membrane loss. We hypothesize that antibody binding to OSA disrupts a key interaction in the P. aeruginosa outer membrane.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Membrana Externa Bacteriana/patologia , Antígenos O/imunologia , Pseudomonas aeruginosa/imunologia , Afinidade de Anticorpos/imunologia , Flagelos/fisiologia , Lipopolissacarídeos/imunologia , Microscopia de Força Atômica , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...