Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.779
Filtrar
1.
Bull Environ Contam Toxicol ; 112(6): 82, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822880

RESUMO

Mercury contamination has been aggravated by emerging environmental issues, such as climate change. Top predators present concerning Hg concentrations once this metal bioaccumulates and biomagnifies. This study evaluated total mercury (THg) concentrations in tissues of 43 franciscanas (Pontoporia blainvillei) from two populations: the Franciscana Management Area (FMA) IIb and FMA IIIa. Animals from FMA IIIa showed mean concentration 5-times and 2.5-times higher in the liver and kidney (4.73 ± 6.84 and 0.52 ± 0.51 µg.g-1, w.w., respectively) than individuals from FMA IIb (0.89 ± 1.04 and 0.22 ± 0.15 µg.g-1, w.w., respectively). This might be due to: (I) individuals sampled from FMA IIIa being larger and older, and/or (II) the area near FMA IIIa presents environmental features leading to higher THg availability. Coastal contamination can affect franciscanas' health and population maintenance at different levels depending on their life history and, therefore, it should be considered to guide specific conservation actions.


Assuntos
Golfinhos , Espécies em Perigo de Extinção , Monitoramento Ambiental , Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Mercúrio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Oceano Atlântico , Golfinhos/metabolismo , Fígado/metabolismo , Rim/metabolismo
2.
Environ Health ; 23(1): 50, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822381

RESUMO

BACKGROUND: Since the 1960's, mercury (Hg) contamination of the aquatic environment of Asubpeeschoseewagong Anishinabek (Grassy Narrows First Nation) territories has impacted the community members' traditions, culture, livelihood, diet and health. Despite decreasing Hg exposure over time, a recent study suggested that long-term exposure contributed to later-life symptom clusters of nervous system dysfunction. Here, the objective was to evaluate, 5 years later, the prevalence and progression of these symptoms and examine the contribution of long-term, past Hg exposure. METHODS: The symptom questionnaire, applied in the 2016/17 Grassy Narrows Community Health Assessment (GN-CHA) (Time 1), was re-administered in the 2021/22 Niibin study (Time 2). A total of 85 adults (median age: 47y; range: 29-75y) responded at both times. Paired statistics were used to test the differences (Time 2 - Time 1) in self-reported symptom frequencies. The symptom clustering algorithm, derived from the entire study group of the GN-CHA (n = 391), which had yielded 6 clusters, was applied at Time 1 and 2. Equivalent hair Hg measurements (HHg) between 1970 and 1997 were used in Longitudinal Mixed Effects Models (LMEM), with a sub-group with ≥ 10 repeated HHg mesurements (age > 40y), to examine its associations with symptom cluster scores and their progression. RESULTS: For most symptoms, paired analyses (Time 2 - Time 1) showed a significant increase in persons reporting " very often" or "all the time", and in the mean Likert scores for younger and older participants (< and ≥ 50y). The increase in cluster scores was not associated with age or sex, except for sensory impairment where a greater increase in symptom frequency was observed for younger persons. LMEM showed that, for the sub-group, long-term past Hg exposure was associated with most cluster scores at both times, and importantly, for all clusters, with their rate of increase over time (Time 2 - Time 1). CONCLUSIONS: The persistence of reported symptoms and their increase in frequency over the short 5-year period underline the need for adequate health care services. Results of the sub-group of persons > 40y, whose HHg reflects exposure over the 28-year sampling period, suggest that there may be a progressive impact of Hg on nervous system dysfunction.


Assuntos
Exposição Ambiental , Mercúrio , Humanos , Adulto , Pessoa de Meia-Idade , Estudos Longitudinais , Feminino , Masculino , Mercúrio/análise , Idoso , Exposição Ambiental/efeitos adversos , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/epidemiologia , Prevalência
3.
Environ Microbiol ; 26(5): e16629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695111

RESUMO

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Assuntos
Arsênio , Extremófilos , Transferência Genética Horizontal , Rodófitas , Rodófitas/genética , Extremófilos/genética , Arsênio/metabolismo , Mercúrio/metabolismo , Estresse Fisiológico/genética , Inativação Metabólica/genética , Evolução Molecular
4.
Biomed Environ Sci ; 37(4): 354-366, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727158

RESUMO

Objective: This study investigated the impact of occupational mercury (Hg) exposure on human gene transcription and expression, and its potential biological mechanisms. Methods: Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA. Results: Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model (25 and 10 µmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression. Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels. Conclusion: This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.


Assuntos
Regulação para Baixo , Inflamação , Mercúrio , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mercúrio/toxicidade , Transdução de Sinais/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Células HEK293 , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/sangue
5.
Environ Monit Assess ; 196(6): 519, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713313

RESUMO

Mercury cycling in coastal metropolitan areas on the west coast of India becomes complex due to the combined effects of both intensive domestic anthropogenic emissions and marine air masses. The present study is based on yearlong data of continuous measurements of gaseous elemental mercury (GEM) concentration concurrent with meteorological parameters and some air pollutants at a coastal urban site in Mumbai, on the west coast of India, for the first time. The concentration of GEM was found in a range between 2.2 and 12.3 ng/m3, with a mean of 3.1 ± 1.1 ng/m3, which was significantly higher than the continental background values in the Northern Hemisphere (~ 1.5 ng/m3). Unlike particulates, GEM starts increasing post-winter to peak during the monsoon and decrease towards winter. July had the highest concentration of GEM followed by October, and a minimum in January. GEM exhibited a distinct diurnal cycle, mainly with a broad peak in the early morning, a narrow one by nightfall, and a minimum in the afternoon. The peaks and their timing suggest the origin of urban mobility and the start of local activities. A positive correlation between SO2, PM2.5, temperature, relative humidity, and GEM indicates that emissions from local industrial plants in the Mumbai coastal area. Principal component analysis (PCA) and cluster analysis (CA) confirm this fact. Monthly back trajectory analysis showed that air mass flows are predominantly from the Arabian Sea and local human activities. Assessment of human health risks by USEPA model reveals that the hazardous quotient, HQ < 1, implies negligible carcinogenic risk. GEM observations in Mumbai during the study period are below the World Health Organization's (WHO) safe limit (200 ng/m3) for long-term inhalation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Mercúrio , Índia , Poluentes Atmosféricos/análise , Mercúrio/análise , Medição de Risco , Humanos , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Material Particulado/análise , Cidades
6.
Anal Chim Acta ; 1309: 342685, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772667

RESUMO

The monitoring of heavy metal ions in ocean is crucial for environment protection and assessment of seawater quality. However, the detection of heavy metal ions in seawater with electrochemical sensors, especially for long-term monitoring, always faces challenges due to marine biofouling caused by the nonspecific adsorption of microbial and biomolecules. Herein, an electrochemical aptasensor, integrating both antifouling and antibacterial properties, was developed for the detection of Hg2+ in the ocean. In this electrochemical aptasensor, eco-friendly peptides with superior hydrophilicity served as anti-biofouling materials, preventing nonspecific adsorption on the sensing interface, while silver nanoparticles were employed to eliminate bacteria. Subsequently, a ferrocene-modified aptamer was employed for the specific recognition of Hg2+, leveraging the aptamer's ability to fold into a thymine-Hg2+-thymine (T-Hg2+-T) structure upon interaction, and bringing ferrocene nearer to the sensor surface, significantly amplifying the electrochemical response. The prepared electrochemical aptasensor significantly reduced the nonspecific adsorption in seawater while maintaining sensitive electrochemical response. Furthermore, the biosensor exhibited a linear response range of 0.01-100 nM with a detection limit of 2.30 pM, and realized the accurate monitoring of mercury ions in real marine environment. The research results offer new insights into the preparation of marine antifouling sensing devices, and it is expected that sensors with antifouling and antimicrobial capabilities will find broad applications in the monitoring of marine pollutants.


Assuntos
Antibacterianos , Incrustação Biológica , Técnicas Biossensoriais , Técnicas Eletroquímicas , Mercúrio , Água do Mar , Mercúrio/análise , Água do Mar/química , Água do Mar/microbiologia , Técnicas Eletroquímicas/métodos , Antibacterianos/análise , Antibacterianos/farmacologia , Técnicas Biossensoriais/métodos , Incrustação Biológica/prevenção & controle , Aptâmeros de Nucleotídeos/química , Prata/química , Poluentes Químicos da Água/análise , Nanopartículas Metálicas/química , Limite de Detecção , Compostos Ferrosos/química , Metalocenos
7.
Sci Total Environ ; 931: 172846, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703858

RESUMO

The development of low-cost, highly efficient adsorbent materials is of significant importance for environmental remediation. In this study, a novel material, sulfurized nano zero-valent iron loaded biomass carbon (S-nZVI/BC), was successfully synthesized by a simple manufacturing process. The preparation of S-nZVI/BC does not require the use of expensive and hazardous chemicals. Instead, residual sludge, a solid waste product, is used as feedstock. The sludge is rich in Sulfate-Reducing Bacteria (SRB), which can provide carbon and sulfur sources for the synthesis of S-nZVI/BC. It was observed that S-nZVI particles formed in situ were dispersed within BC and covered by it. Additionally, S-nZVI/BC inherited the large specific surface area and porosity of BC. The adsorption capacity of S-nZVI/BC can reach 857.55 mg g-1 Hg (II) during the remediation of mercury-polluted water. This research offers new perspectives for developing composites in terms of the low cost and harmlessness of raw materials.


Assuntos
Biomassa , Ferro , Mercúrio , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Adsorção , Enxofre/química , Recuperação e Remediação Ambiental/métodos , Bactérias Redutoras de Enxofre/metabolismo , Sulfatos/química
8.
J Environ Manage ; 359: 121076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710148

RESUMO

Cellulose-based adsorbents have been extensively developed in heavy metal capture and wastewater treatment. However, most of the reported powder adsorbents suffer from the difficulties in recycling due to their small sizes and limitations in detecting the targets for the lack of sensitive sensor moieties in the structure. Accordingly, carbon dots (CDs) were proposed to be encapsulated in cellulosic hydrogel beads to realize the simultaneous detection and adsorption of Hg (II) in water due to their excellent fluorescence sensing performance. Besides, the molding of cellulose was beneficial to its recycling and further reduced the potential environmental risk generated by secondary pollution caused by adsorbent decomposition. In addition, the detection limit of the hydrogel beads towards Hg (II) reached as low as 8.8 × 10-8 M, which was below the mercury effluent standard declared by WHO, exhibiting excellent practicability in Hg (II) detection and water treatment. The maximum adsorption capacity of CB-50 % for Hg (II) was 290.70 mg/g. Moreover, the adsorbent materials also had preeminent stability that the hydrogel beads could maintain sensitive and selective sensing performance towards Hg (II) after 2 months of storage. Additionally, only 3.3% of the CDs leaked out after 2 weeks of immersion in water, ensuring the accuracy of Hg (II) evaluation. Notably, the adsorbent retained over 80% of its original adsorption capacity after five consecutive regeneration cycles, underscoring its robustness and potential for sustainable environmental applications.


Assuntos
Carbono , Celulose , Hidrogéis , Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Celulose/química , Adsorção , Hidrogéis/química , Carbono/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Pontos Quânticos/química
9.
Anal Chem ; 96(19): 7577-7584, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696338

RESUMO

Owing to the separation of field-effect transistor (FET) devices from sensing environments, extended-gate FET (EGFET) biosensor features high stability and low cost. Herein, a highly sensitive EGFET biosensor based on a GaN micropillar array and polycrystalline layer (GMP) was fabricated, which was prepared by using simple one-step low-temperature MOCVD growth. In order to improve the sensitivity and detection limit of EGFET biosensor, the surface area and the electrical conductivity of extended-gate electrode can be increased by the micropillar array and the polycrystalline layer, respectively. The designed GMP-EGFET biosensor was modified with l-cysteine and applied for Hg2+ detection with a low limit of detection (LOD) of 1 ng/L, a high sensitivity of -16.3 mV/lg(µg/L) and a wide linear range (1 ng/L-24.5 µg/L). In addition, the detection of Hg2+ in human urine was realized with an LOD of 10 ng/L, which was more than 30 times lower than that of reported sensors. To our knowledge, it is the first time that GMP was used as extended-gate of EGFET biosensor.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Mercúrio , Humanos , Mercúrio/urina , Mercúrio/análise , Transistores Eletrônicos , Gálio/química , Eletrodos
10.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792066

RESUMO

The objective of this study is to develop a remediation technology for composited heavy metal-contaminated soil. Biochars (BC300, BC400, and BC500) derived from corn were combined with potassium dihydrogen phosphate (KH2PO4) to immobilize and remove heavy metal ions, including mercury (Hg2+), cadmium (Cd2+), and lead (Pb2+). The adsorption kinetics of metal ions in aqueous solutions with different concentrations was tested, and the fitting effects of the two models were compared. The findings demonstrate that the joint application of biochar and KH2PO4 could markedly enhance the immobilization efficacy of Pb2+, whereas the utilization of KH2PO4 on its own exhibited a more pronounced immobilization impact on Cd2+. Furthermore, the present study underscores the shortcomings of various remediation techniques that must be taken into account when addressing heavy metal-contaminated soils. It also emphasizes the value of comprehensive remediation techniques that integrate multiple remediation agents. This study offers a novel approach and methodology for addressing the intricate and evolving challenges posed by heavy metal contamination in soil. Its practical value and potential for application are significant.


Assuntos
Cádmio , Carvão Vegetal , Chumbo , Mercúrio , Fosfatos , Compostos de Potássio , Poluentes do Solo , Carvão Vegetal/química , Poluentes do Solo/química , Cádmio/química , Chumbo/química , Adsorção , Mercúrio/química , Fosfatos/química , Compostos de Potássio/química , Recuperação e Remediação Ambiental/métodos , Medição de Risco , Solo/química , Metais Pesados/química , Cinética
11.
PLoS One ; 19(5): e0303418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776301

RESUMO

OBJECTIVE: Accumulating evidence showed that exposure to heavy metals was harmful to human health. Little is known regarding the mixing effects of multiple metal exposures on vertebral compression fracture (VCF) and femoral neck bone mineral density (BMD). This study aimed to explore the individual and joint effects of four heavy metals [manganese (Mn), lead (Pb), cadmium (Cd) and mercury (Hg)] on VCF risk and femoral neck BMD. METHODS: This cross-sectional study included 1,007 eligible individuals with vertebral fractures from National Health and Nutrition Examination Survey 2013-2014. The outcome was the risk of VCF and femoral neck BMD. Weighted multivariate logistic regression was used to explore the individual effect of four heavy metals on the VCF risk, separately. Weighted multivariate linear regression was used to explore the individual effect of four heavy metals on the femoral neck BMD, separately. Adopted bayesian kernel machine regression (BKMR) model and quantile-based g computation (qgcomp) to examine the joint effects of four heavy metals on the VCF risk and femoral neck BMD. RESULTS: Among the population, 57 individuals developed VCF. After adjusting covariates, we found no statistical differences regarding the individual effects of four heavy metals on the risk of VCF. BKMR model and qgcomp indicated that there were no statistical differences regarding the joint effects between four heavy metals on the VCF risk. In addition, we found that Cd was associated with femoral neck BMD, and an increase in the mixture of heavy metal exposures was associated with a decreased risk of femoral neck BMD. CONCLUSION: No significant correlation was observed between co-exposure to Mn, Pb, Cd and Hg and VCF risk. But co-exposure to Mn, Pb, Cd and Hg may be associated with femoral neck BMD.


Assuntos
Densidade Óssea , Colo do Fêmur , Fraturas por Compressão , Metais Pesados , Inquéritos Nutricionais , Fraturas da Coluna Vertebral , Humanos , Densidade Óssea/efeitos dos fármacos , Feminino , Masculino , Estudos Transversais , Pessoa de Meia-Idade , Metais Pesados/efeitos adversos , Fraturas da Coluna Vertebral/epidemiologia , Fraturas da Coluna Vertebral/fisiopatologia , Idoso , Cádmio/efeitos adversos , Adulto , Exposição Ambiental/efeitos adversos , Mercúrio/efeitos adversos
12.
Environ Sci Pollut Res Int ; 31(24): 35800-35810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38740686

RESUMO

The number of atmospheric mercury (Hg) monitoring stations is growing globally. However, there are still many regions and locations where Hg monitoring is limited or non-existent. Expansion of the atmospheric Hg monitoring network could be facilitated by the use of cost-effective monitoring methods. As such, biomonitoring and passive monitoring offer a unique alternative to well-established monitoring by active measurements, since they do not require a power supply and require minimal workload to operate. The use of biomonitoring (lichens and mosses) and passive air samplers (PASs) (various designs with synthetic materials) has been reported in the literature, and comparisons with active measurement methods have also been made. However, these studies compared either biomonitoring or PASs (not both) to only one type of active measurement. In our work, we used transplanted (7 sampling sites) and in situ lichens (8 sampling sites) for biomonitoring, two PASs from different producers (3 sampling sites), and two different active measurement types (continuous and discontinuous active measurements, 1 and 8 sampling sites, respectively) to evaluate their effectiveness as monitoring methods. In the 9-month sampling campaign, 3 sampling locations with different characteristics (unpolluted, vicinity of a cement plant, and vicinity of a former Hg mine) were used. The results obtained with lichens and PASs clearly distinguished between sampling locations with different Hg concentrations; using both PASs and lichens together increased the confidence of our observations. The present work shows that biomonitoring and passive sampling can be effectively used to identify areas with elevated atmospheric Hg concentrations. The same can be said for discontinuous active measurements; however, the discrepancy between atmospheric Hg concentrations derived from PASs and discontinuous active measurements should be further investigated in the future.


Assuntos
Poluentes Atmosféricos , Monitoramento Biológico , Monitoramento Ambiental , Líquens , Mercúrio , Líquens/química , Mercúrio/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Atmosfera/química
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124530, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805990

RESUMO

Mercury ion (Hg2+) is one of the most threatening substances to human health, and the mercury poisoning can damage physiological homeostasis severely in human, even cause death. Intriguingly, Sulfur dioxide (SO2), a gas signal molecule in human, can specifically interact with Hg2+ for relieving mercury poisoning. However, the dynamic interaction of Hg2+ with SO2 at the tempospatial level and the correlation between Hg2+ and SO2 in the pathological process of mercury poisoning are still elusive. Herein, we rationally designed a reversible and dual color fluorescent probe (CCS) for dynamically visualizing Hg2+ and SO2 and deciphering their interrelationship in mercury poisoning. CCS held good sensitivity, selectivity and reversibility to Hg2+ and SO2, that enabled CCS to specifically detect SO2 and Hg2+ via cyan fluorescence channel (centered around 485 nm) and red fluorescence channel (centered around 679 nm), respectively. Notably, the separate fluorescence signal changes of CCS realized the dynamic tracing of Hg2+ and SO2 in living cells, and presented the potential for exploring the correlation between SO2 and Hg2+ in mercury poisoning.


Assuntos
Corantes Fluorescentes , Mercúrio , Espectrometria de Fluorescência , Dióxido de Enxofre , Mercúrio/análise , Humanos , Dióxido de Enxofre/análise , Dióxido de Enxofre/metabolismo , Corantes Fluorescentes/química , Células HeLa , Cor , Fluorescência
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124514, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805991

RESUMO

Mercury ions (Hg2+) and sulfur ions (S2-), have caused serious harm to the ecological environment and human health as two kinds of highly toxic pollutants widely used. Therefore, the visual quantitative determination of Hg2+ and S2- is of great significance in the field of environmental monitoring and medical therapy. In this study, a novel fluorescent "on-off-on" peptide-based probe DNC was designed and synthesized using dipeptide (Asn-Cys-NH2) as the raw material via solid phase peptide synthesis (SPPS) technology with Fmoc chemistry. DNC displayed high selectivity in the recognition of Hg2+, and formed non-fluorescence complex (DNC-Hg2+) through 2:1 binding mode. Notably, DNC-Hg2+ complex generated in situ was used as relay response probe for highly selective sequential detection of S2- through reversible formation-separation. DNC achieved highly sensitive detection of Hg2+ and S2- with the detection limits (LODs) of 8.4 nM and 5.5 nM, respectively. Meanwhile, DNC demonstrated feasibility for Hg2+ and S2- detections in two water samples, and the considerable recovery rate was obtained. More importantly, DNC showed excellent water solubility and low toxicity, and was successfully used for consecutive discerning Hg2+ and S2- in test strips, living cells and zebrafish larvae. As an effective visual analysis method in the field, smartphone RGB Color Picker APP realized semi-quantitative detections of Hg2+ and S2- without the need for complicated device.


Assuntos
Corantes Fluorescentes , Mercúrio , Peptídeos , Peixe-Zebra , Mercúrio/análise , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Peptídeos/química , Peptídeos/análise , Espectrometria de Fluorescência , Limite de Detecção , Enxofre/química , Enxofre/análise , Poluentes Químicos da Água/análise , Imagem Óptica , Células HeLa , Íons/análise
15.
Mikrochim Acta ; 191(6): 352, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806756

RESUMO

Developing convenient and reliable methods for Hg2+ monitoring is highly important. Some precious metal nanomaterials with intriguing peroxidase-like activity have been used for highly sensitive Hg2+ detection. However, H2O2 must be added during these detections, which impedes practical applications of Hg2+ sensors due to its susceptible decomposition by environmental factors. Herein, we discovered that the combination of Hg2+ and palladium metal-organic framework@graphene (Pd-MOF@GNs) exhibits oxidase-like activity (OXD). In the absence of H2O2, this activity not only catalyzes the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) or o-phenylenediamine (OPD) to produce a color change but also enhances the electrical signals during OPD oxidation. Based on these properties, an effective and convenient dual-mode colorimetric and electrochemical sensor for Hg2+ has been developed. The colorimetric and amperometric linear relationships for Hg2+ were 0.045 µM-0.25 mM and 0.020 µM-2.0 mM, respectively. The proposed strategy shows good recovery in real sample tests, indicating promising prospects for multiple environmental sample detection of Hg2+ without relying on H2O2. The colorimetric and electrochemical dual-mode Hg2+ sensor is expected to hold great potentials in applications such as environmental monitoring, rapid field detection, and integration into smartphone detection of Hg2+.


Assuntos
Colorimetria , Técnicas Eletroquímicas , Grafite , Limite de Detecção , Mercúrio , Estruturas Metalorgânicas , Paládio , Grafite/química , Colorimetria/métodos , Mercúrio/análise , Mercúrio/química , Estruturas Metalorgânicas/química , Paládio/química , Técnicas Eletroquímicas/métodos , Benzidinas/química , Oxirredução , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Oxirredutases/química , Oxirredutases/metabolismo , Fenilenodiaminas/química
16.
Anal Methods ; 16(22): 3562-3576, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780406

RESUMO

In this study, we proposed a colorimetric probe as S, N-carbon dot-decorated Ce-MOF (S, N-CD@Ce-MOF) for the dual detection of mercury and thiophanate methyl (TM), which are simultaneously present pollutants in the environment and foodstuffs. These pollutants cause serious threats to human health, such as carcinogenicity and neurovirulence. Herein, we synthesized S, N-CD@Ce-MOF using the hydrothermal method and applied it to a "turn-off-on" probe to detect mercury and TM using the colorimetric method in water and food samples. S, N-CD@Ce-MOF shows excellent peroxidase activity by catalyzing the chromogenic substrate of 3,3',5,5'-tetramethylbenzidine (TMB), resulting in deep blue-colored oxidized TMB product (ox TMB) in the presence of H2O2 with a UV absorption wavelength at 654 nm. However, the addition of Hg(II) ions prohibits the oxidation of TMB by an electron transfer effect and easily binds with -S, -N-containing sites on the surface of carbon dots, obstructing the catalytic active sites and decreasing catalytic efficiency with weak UV absorption at 654 nm as a "turn-off". Subsequently, the addition of TM to the above sensing solution as a "turn-on" was triggered by the TM-Hg complex formation and permitted TMB oxidation with a strong absorption peak at 654 nm. Furthermore, this proposed sensor demonstrates a superior linear response to mercury ions and TM in the ranges from 0 to 15 µM and 0 to 14 µM, respectively. The developed colorimetric assay exhibits good sensitivity and selectivity against various possible interferences. Furthermore, we found that the limits of detection for Hg2+ and TM were as low as 0.01 µM and 0.03 µM, respectively. The developed sensor provides various benefits, such as cost-effectiveness, simplicity without a complex detection process, and naked-eye detection. Consequently, our proposed colorimetric technique worked well for the detection of Hg2+ in real water samples and TM in real apple and tomato juice.


Assuntos
Carbono , Cério , Colorimetria , Mercúrio , Pontos Quânticos , Colorimetria/métodos , Mercúrio/análise , Mercúrio/química , Carbono/química , Cério/química , Pontos Quânticos/química , Estruturas Metalorgânicas/química , Limite de Detecção , Peroxidase/química , Peroxidase/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Oxirredução
17.
Mar Pollut Bull ; 203: 116501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761681

RESUMO

Evaluating the ecological quality and pollution status of coastal mudflats is crucial for environmental protection and management, particularly when these areas serve as major shellfish production hotspots. In this study, we assessed the benthic ecological quality and heavy metals pollution in Geligang, located in the Northern Bohai Sea using the macrobenthos diversity index and the heavy metal pollution index. The Shannon-Wiener index (H'), AZTI marine biotic index (AMBI), multivariate AMBI (M-AMBI) showed that the benthic ecological quality in Geligang is either good or high. The potential ecological risk index and geoaccumulation index highlighted that cadmium (Cd) and mercury (Hg) as the primary heavy metal pollutants in Geligang. Surprisingly, the biomass of the two dominant species other than these indices serve as reliable indicators of heavy metal pollution. This suggests that the biomass of Mactra veneriformis and Potamocorbula laevis could be used to assess heavy metal pollution levels in Geligang.


Assuntos
Monitoramento Ambiental , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Poluentes Químicos da Água/análise , China , Animais , Estuários , Organismos Aquáticos , Mercúrio/análise , Sedimentos Geológicos/química , Biomassa , Cádmio/análise , Invertebrados , Biodiversidade , Ecossistema
18.
Environ Res ; 252(Pt 3): 118983, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692421

RESUMO

Environmental monitoring of mercury (Hg2+) ions has become increasingly important as a result of their detrimental effects on biological organisms at all levels. To recognize toxic metal ions, utmost effort has been devoted to developing new materials that are highly selective, ultra-sensitive, and provide rapid response. In this context, a new chemosensor, 2-imino [N - (N-amido phenyl)]-6-methoxy-3-carbethoxy quinoline (L), has been synthesized by combining 2-formyl-6-methoxy-3-carbethoxy quinoline and benzhydrazide and it has been extensively characterized by NMR, FTIR, ESI-Mass and SCXRD analysis. Probe L has excellent specificity and sensitivity toward Hg2+ ions in semi-aqueous solutions, with a detection limit of 0.185 µM, regardless of the presence of other interfering cations. Chromogenic behavior was demonstrated by the L when it changed the color of the solution from colorless to light yellow, a change that can be observed visually. The probe L forms a 1:1 stochiometric complex with an estimated association constant (Ka) of 6.74 × 104 M-1. The 1H NMR change and density functional theory calculations were analyzed to improve our understanding of the sensing mechanism. Also, an inexpensive and simple paper-based test kit has been developed for the on-site detection of mercury ions in water samples.


Assuntos
Mercúrio , Quinolinas , Bases de Schiff , Mercúrio/análise , Mercúrio/química , Bases de Schiff/química , Quinolinas/química , Quinolinas/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos
19.
Biosensors (Basel) ; 14(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785720

RESUMO

Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture's response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 µM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury-gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+-a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental , Mercúrio , Mercúrio/análise , Monitoramento Ambiental/métodos , Colorimetria , Poluentes Químicos da Água/análise , Limite de Detecção , Ouro/química
20.
Ecotoxicol Environ Saf ; 278: 116431, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718730

RESUMO

The issue of mercury (Hg) toxicity has recently been identified as a significant environmental concern, with the potential to impede plant growth in forested and agricultural areas. Conversely, recent reports have indicated that Fe, may play a role in alleviating HM toxicity in plants. Therefore, this study's objective is to examine the potential of iron nanoparticles (Fe NPs) and various sources of Fe, particularly iron sulfate (Fe SO4 or Fe S) and iron-ethylene diamine tetra acetic acid (Fe - EDTA or Fe C), either individually or in combination, to mitigate the toxic effects of Hg on Pleioblastus pygmaeus. Involved mechanisms in the reduction of Hg toxicity in one-year bamboo species by Fe NPs, and by various Fe sources were introduced by a controlled greenhouse experiment. While 80 mg/L Hg significantly reduced plant growth and biomass (shoot dry weight (36%), root dry weight (31%), and shoot length (31%) and plant tolerance (34%) in comparison with control treatments, 60 mg/L Fe NPs and conventional sources of Fe increased proline accumulation (32%), antioxidant metabolism (21%), polyamines (114%), photosynthetic pigments (59%), as well as root dry weight (25%), and shoot dry weight (22%), and shoot length (22%). Fe NPs, Fe S, and Fe C in plant systems substantially enhanced tolerance to Hg toxicity (23%). This improvement was attributed to increased leaf-relative water content (39%), enhanced nutrient availability (50%), improved antioxidant capacity (34%), and reduced Hg translocation (6%) and accumulation (31%) in plant organs. Applying Fe NPs alone or in conjunction with a mixture of Fe C and Fe S can most efficiently improve bamboo plants' tolerance to Hg toxicity. The highest efficiency in increasing biochemical and physiological indexes under Hg, was related to the treatments of Fe NPs as well as Fe NPs + FeS + FeC. Thus, Fe NPs and other Fe sources might be effective options to remove toxicity from plants and soil. The future perspective may help establish mechanisms to regulate environmental toxicity and human health progressions.


Assuntos
Ferro , Mercúrio , Nanopartículas Metálicas , Poluentes do Solo , Solo , Mercúrio/toxicidade , Poluentes do Solo/toxicidade , Nanopartículas Metálicas/toxicidade , Solo/química , Ácido Edético/química , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Recuperação e Remediação Ambiental/métodos , Nutrientes , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...