Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Anal Bioanal Chem ; 415(29-30): 7269-7279, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857739

RESUMO

Gangliosides are specialized glycosphingolipids most abundant in the central nervous system. Their complex amphiphilic structure is essential to the formation of membrane lipid rafts and for molecular recognition. Dysfunction of lipid rafts and ganglioside metabolism has been linked to cancer, metabolic disorders, and neurodegenerative disorders. Changes in ganglioside concentration and diversity during the progression of disease have made them potential biomarkers for early detection and shed light on disease mechanisms. Chemical derivatization facilitates whole ion analysis of gangliosides while improving ionization, providing rich fragmentation spectra, and enabling multiplexed analysis schemes such as stable isotope labeling. In this work, we report improvement to our previously reported isobaric labeling methodology for ganglioside analysis by increasing buffer concentration and removing solid-phase extraction desalting for a more complete and quantitative reaction. Identification and quantification of gangliosides are automated through MS-DIAL with an in-house ganglioside derivatives library. We have applied the updated methodology to relative quantification of gangliosides in six mouse brain regions (cerebellum, pons/medulla, midbrain, thalamus/hypothalamus, cortex, and basal ganglia) with 2 mg tissue per sample, and region-specific distributions of 88 ganglioside molecular species are described with ceramide isomers resolved. This method is promising for application to comparative analysis of gangliosides in biological samples.


Assuntos
Encéfalo , Gangliosídeos , Camundongos , Animais , Gangliosídeos/química , Encéfalo/metabolismo , Mesencéfalo/química , Cerebelo
2.
J Neurosci ; 42(5): 749-761, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34887319

RESUMO

Neuronal remodeling after brain injury is essential for functional recovery. After unilateral cortical lesion, axons from the intact cortex ectopically project to the denervated midbrain, but the molecular mechanisms remain largely unknown. To address this issue, we examined gene expression profiles in denervated and intact mouse midbrains after hemispherectomy at early developmental stages using mice of either sex, when ectopic contralateral projection occurs robustly. The analysis showed that various axon growth-related genes were upregulated in the denervated midbrain, and most of these genes are reportedly expressed by glial cells. To identify the underlying molecules, the receptors for candidate upregulated molecules were knocked out in layer 5 projection neurons in the intact cortex, using the CRISPR/Cas9-mediated method, and axonal projection from the knocked-out cortical neurons was examined after hemispherectomy. We found that the ectopic projection was significantly reduced when integrin subunit ß three or neurotrophic receptor tyrosine kinase 2 (also known as TrkB) was knocked out. Overall, the present study suggests that denervated midbrain-derived glial factors contribute to lesion-induced remodeling of the cortico-mesencephalic projection via these receptors.SIGNIFICANCE STATEMENT After brain injury, compensatory neural circuits are established that contribute to functional recovery. However, little is known about the intrinsic mechanism that underlies the injury-induced remodeling. We found that after unilateral cortical ablation expression of axon-growth promoting factors is elevated in the denervated midbrain and is involved in the formation of ectopic axonal projection from the intact cortex. Evidence further demonstrated that these factors are expressed by astrocytes and microglia, which are activated in the denervated midbrain. Thus, our present study provides a new insight into the mechanism of lesion-induced axonal remodeling and further therapeutic strategies after brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Córtex Cerebral/metabolismo , Hemisferectomia/tendências , Mesencéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Córtex Cerebral/química , Córtex Cerebral/citologia , Denervação/tendências , Técnicas de Inativação de Genes/métodos , Mesencéfalo/química , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos ICR , Regeneração Nervosa/fisiologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Cultura de Órgãos , Receptor trkB/análise , Receptor trkB/genética , Receptor trkB/metabolismo
3.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884468

RESUMO

Nkx2.9 is a member of the NK homeobox family and resembles Nkx2.2 both in homology and expression pattern. However, while Nkx2.2 is required for development of serotonergic neurons, the role of Nkx2.9 in the mid-hindbrain region is still ill-defined. We have previously shown that Nkx2.9 expression is downregulated upon loss of En1 during development. Here, we determined whether mdDA neurons require Nkx2.9 during their development. We show that Nkx2.9 is strongly expressed in the IsO and in the VZ and SVZ of the embryonic midbrain, and the majority of mdDA neurons expressed Nkx2.9 during their development. Although the expression of Dat and Cck are slightly affected during development, the overall development and cytoarchitecture of TH-expressing neurons is not affected in the adult Nkx2.9-depleted midbrain. Transcriptome analysis at E14.5 indicated that genes involved in mid- and hindbrain development are affected by Nkx2.9-ablation, such as Wnt8b and Tph2. Although the expression of Tph2 extends more rostral into the isthmic area in the Nkx2.9 mutants, the establishment of the IsO is not affected. Taken together, these data point to a minor role for Nkx2.9 in mid-hindbrain patterning by repressing a hindbrain-specific cell-fate in the IsO and by subtle regulation of mdDA neuronal subset specification.


Assuntos
Neurônios Dopaminérgicos/química , Perfilação da Expressão Gênica/métodos , Proteínas de Homeodomínio/genética , Rombencéfalo/crescimento & desenvolvimento , Fatores de Transcrição/genética , Animais , Padronização Corporal , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo/química , Mesencéfalo/citologia , Camundongos , Rombencéfalo/química , Análise de Sequência de RNA
4.
J Chem Neuroanat ; 117: 102009, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329711

RESUMO

The pathogenesis of Perioperative neurocognitive disorders (PND) is a synergistic effect of many factors. Up to now, the exact mechanism remains unclear. The dopamine pathway in the brain is one of the paths involved in the means of cognitive function. Therefore, the purpose of this study was to investigate the relationship between changes in dopamine transporters in the ventral tegmental area (VTA) of the midbrain and postoperative cognitive dysfunction in elderly rats. In this study, a mental dysfunction model in elderly rats was established after splenectomy under general anesthesia. Eighty male SD rats, aged 18-20 months, with a body mass of 300-500 g. Randomly divided into eight groups: Normal group (Normal, N) and Sham group (sham, S), Model 3 day group(PND, P3), Model 7 day group(PND, P7), Virus 3 days AAV·DAT·RNAi (AAV3), Virus 7 days AAV·DAT·RNAi (AAV7), Virus control for three days AAV·NC(NC3), Virus control for seven days AAV·NC(NC7). The results show that knockdown of dopamine transporter in the VTA region can significantly improve the cognitive dysfunction of elderly rats after surgery. These results suggest that dopamine transporter in the VTA region is involved in cognitive dysfunction in elderly rats. The effect of DAT changes in the VTA region on postoperative cognitive function in elderly rats may be related to the regulation of α-syn and Aß1-42 protein aggregation in the hippocampus.


Assuntos
Envelhecimento/metabolismo , Cognição/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Mesencéfalo/metabolismo , Área Tegmentar Ventral/metabolismo , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/análise , Mesencéfalo/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , RNA Viral/administração & dosagem , RNA Viral/análise , RNA Viral/metabolismo , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/química , alfa-Sinucleína/análise , alfa-Sinucleína/metabolismo
5.
J Chem Neuroanat ; 116: 101992, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34166778

RESUMO

We present a robust, fresh-frozen approach to immunohistochemistry (IHC), without committing the tissue to IHC via fixation and cryopreservation while maintaining long-term storage, using LiCor-based infrared (IR) quantification for sensitive assessment of TH in immunoreacted midbrain sections for quantitative comparison across studies. In fresh-frozen tissue stored up to 1 year prior to IHC reaction, we found our method to be highly sensitive to rotenone treatment in 3-month-old Sprague-Dawley rats, and correlated with a significant decline in rotarod latency-to-fall measurement by approximately 2.5 fold. The measured midbrain region revealed a 31 % lower TH signal when compared to control (p < 0.01 by t test, n = 5). Bivariate analysis of integrated TH counts versus rotarod latency-to-fall indicates a positive slope and modest but significant correlation of R2 = 0.68 (p < 0.05, n = 10). These results indicate this rapid, instrument-based quantification method by IR detection successfully quantifies TH levels in rat brain tissue, while taking only 5 days from euthanasia to data output. This approach also allows for the identification of multiple targets by IHC with the simultaneous performance of downstream molecular analysis within the same animal tissue, allowing for the use of fewer animals per study.


Assuntos
Mesencéfalo/química , Mesencéfalo/enzimologia , Desempenho Psicomotor/fisiologia , Tirosina 3-Mono-Oxigenase/análise , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Inseticidas/toxicidade , Masculino , Mesencéfalo/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Rotenona/toxicidade , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Fatores de Tempo
6.
Mikrochim Acta ; 188(6): 203, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34043106

RESUMO

Molecularly imprinted polymer (MIP)-based electrochemical sensors for the protein α-synuclein (a marker for Parkinson's disease) were developed using a peptide epitope from the protein. MIPs doped with various concentrations and species of transition metal dichalcogenides (TMDs) to enhance conductivity were electropolymerized with and without template molecules. The current during the electropolymerization was compared with that associated with the electrochemical response (at 0.24~0.29 V vs. ref. electrode) to target peptide molecules in the finished sensor. We found that this relationship can aid in the rational design of conductive MIPs for the recognition of biomarkers in biological fluids. The sensing range and limit of detection of TMD-doped imprinted poly(AN-co-MSAN)-coated electrodes were 0.001-100 pg/mL and 0.5 fg/mL (SNR = 3), respectively. To show the potential applicability of the MIP electrochemical sensor, cell culture medium from PD patient-specific midbrain organoids generated from induced pluripotent stem cells was analyzed. α-Synuclein levels were found to be significantly reduced in the organoids from PD patients, compared to those generated from age-matched controls. The relative standard deviation and recovery are less than 5% and 95-115%, respectively. Preparation of TMD-doped α-synuclein (SNCA) peptide-imprinted poly(AN-co-MSAN)-coated electrodes.


Assuntos
Dissulfetos/química , Polímeros Molecularmente Impressos/química , Molibdênio/química , Sulfetos/química , Compostos de Tungstênio/química , alfa-Sinucleína/análise , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Mesencéfalo/química , Organoides/química , Doença de Parkinson/diagnóstico , Fragmentos de Peptídeos/química , alfa-Sinucleína/química
7.
J Comp Neurol ; 529(9): 2243-2264, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33340092

RESUMO

Eupnea is generated by neural circuits located in the ponto-medullary brainstem, but can be modulated by higher brain inputs which contribute to volitional control of breathing and the expression of orofacial behaviors, such as vocalization, sniffing, coughing, and swallowing. Surprisingly, the anatomical organization of descending inputs that connect the forebrain with the brainstem respiratory network remains poorly defined. We hypothesized that descending forebrain projections target multiple distributed respiratory control nuclei across the neuroaxis. To test our hypothesis, we made discrete unilateral microinjections of the retrograde tracer cholera toxin subunit B in the midbrain periaqueductal gray (PAG), the pontine Kölliker-Fuse nucleus (KFn), the medullary Bötzinger complex (BötC), pre-BötC, or caudal midline raphé nuclei. We quantified the regional distribution of retrogradely labeled neurons in the forebrain 12-14 days postinjection. Overall, our data reveal that descending inputs from cortical areas predominantly target the PAG and KFn. Differential forebrain regions innervating the PAG (prefrontal, cingulate cortices, and lateral septum) and KFn (rhinal, piriform, and somatosensory cortices) imply that volitional motor commands for vocalization are specifically relayed via the PAG, while the KFn may receive commands to coordinate breathing with other orofacial behaviors (e.g., sniffing, swallowing). Additionally, we observed that the limbic or autonomic (interoceptive) systems are connected to broadly distributed downstream bulbar respiratory networks. Collectively, these data provide a neural substrate to explain how volitional, state-dependent, and emotional modulation of breathing is regulated by the forebrain.


Assuntos
Bulbo/fisiologia , Mesencéfalo/fisiologia , Neurônios/fisiologia , Ponte/fisiologia , Prosencéfalo/fisiologia , Mecânica Respiratória/fisiologia , Animais , Feminino , Masculino , Bulbo/química , Mesencéfalo/química , Microinjeções/métodos , Vias Neurais/química , Vias Neurais/fisiologia , Neurônios/química , Ponte/química , Prosencéfalo/química , Traçadores Radioativos , Ratos , Ratos Sprague-Dawley
8.
Pharmacol Rep ; 73(1): 73-84, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32936422

RESUMO

BACKGROUND: Ceramides are lipid molecules determining cell integrity and intercellular signaling, and thus, involved in the pathogenesis of several psychiatric and neurodegenerative disorders. However, little is known about the role of particular enzymes of the ceramide metabolism in the mechanisms of normal behavioral plasticity. Here, we studied the contribution of neutral ceramidase (NC), one of the main enzymes mediating ceramide degradation, in the mechanisms of learning and memory in rats and non-human primates. METHODS: Naïve Wistar rats and black tufted-ear marmosets (Callithrix penicillata) were tested in several tests for short- and long-term memory and then divided into groups with various memory performance. The activities of NC and acid ceramidase (AC) were measured in these animals. Additionally, anxiety and depression-like behavior and brain levels of monoamines were assessed in the rats. RESULTS: We observed a predictive role of NC activity in the blood serum for superior performance of long-term object memory tasks in both species. A brain area analysis suggested that high NC activity in the ventral mesencephalon (VM) predicts better short-term memory performance in rats. High NC activity in the VM was also associated with worse long-term object memory, which might be mediated by an enhanced depression-like state and a monoaminergic imbalance. CONCLUSIONS: Altogether, these data suggest a role for NC in short- and long-term memory of various mammalian species. Serum activity of NC may possess a predictive role in the assessing the performance of certain types of memory.


Assuntos
Ceramidases/análise , Cognição/fisiologia , Animais , Ansiedade/psicologia , Monoaminas Biogênicas/metabolismo , Biomarcadores , Química Encefálica , Callithrix , Ceramidases/sangue , Ceramidases/fisiologia , Depressão/psicologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Mesencéfalo/química , Valor Preditivo dos Testes , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Wistar
9.
Biomolecules ; 10(9)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899172

RESUMO

Midbrain dopamine neurons have crucial functions in motor and emotional control and their degeneration leads to several neurological dysfunctions such as Parkinson's disease, addiction, depression, schizophrenia, and others. Despite advances in the understanding of specific altered proteins and coding genes, little is known about cumulative changes in the transcriptional landscape of noncoding genes in midbrain dopamine neurons. Noncoding RNAs-specifically microRNAs and long noncoding RNAs-are emerging as crucial post-transcriptional regulators of gene expression in the brain. The identification of noncoding RNA networks underlying all stages of dopamine neuron development and plasticity is an essential step to deeply understand their physiological role and also their involvement in the etiology of dopaminergic diseases. Here, we provide an update about noncoding RNAs involved in dopaminergic development and metabolism, and the related evidence of these biomolecules for applications in potential treatments for dopaminergic neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/química , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/química , Mesencéfalo/metabolismo , Doença de Parkinson/tratamento farmacológico , RNA não Traduzido/fisiologia , RNA não Traduzido/uso terapêutico , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Regulação da Expressão Gênica , Humanos , Doença de Parkinson/genética
10.
Anal Bioanal Chem ; 412(24): 6611-6624, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32666141

RESUMO

Glucose and lactate provide energy for cellular function in the brain and serve as an important carbon source in the synthesis of a variety of biomolecules. Thus, there is a critical need to quantitatively monitor these molecules in situ on a time scale commensurate with neuronal function. In this work, carbon-fiber microbiosensors were coupled with fast-scan cyclic voltammetry to monitor glucose and lactate fluctuations at a discrete site within rat striatum upon electrical stimulation of the midbrain projection to the region. Systematic variation of stimulation parameters revealed the distinct dynamics by which glucose and lactate responded to the metabolic demand of synaptic function. Immediately upon stimulation, extracellular glucose and lactate availability rapidly increased. If stimulation was sufficiently intense, concentrations then immediately fell below baseline in response to incurred metabolic demand. The dynamics were dependent on stimulation frequency, such that more robust fluctuations were observed when the same number of pulses was delivered at a higher frequency. The rates at which glucose was supplied to, and depleted from, the local recording region were dependent on stimulation intensity, and glucose dynamics led those of lactate in response to the most substantial stimulations. Glucose fluctuated over a larger concentration range than lactate as stimulation duration increased, and glucose fell further from baseline concentrations. These real-time measurements provide an unprecedented direct comparison of glucose and lactate dynamics in response to metabolic demand elicited by neuronal activation. Graphical abstract.


Assuntos
Corpo Estriado/metabolismo , Estimulação Elétrica , Glucose/metabolismo , Ácido Láctico/metabolismo , Mesencéfalo/metabolismo , Animais , Técnicas Biossensoriais , Corpo Estriado/química , Técnicas Eletroquímicas , Glucose/análise , Ácido Láctico/análise , Masculino , Mesencéfalo/química , Microeletrodos , Ratos , Ratos Sprague-Dawley
11.
Nat Neurosci ; 22(7): 1099-1109, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235907

RESUMO

Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Key neuropathological hallmarks are Lewy bodies and Lewy neurites: neuronal inclusions immunopositive for the protein α-synuclein. In-depth ultrastructural analysis of Lewy pathology is crucial to understanding pathogenesis of this disease. Using correlative light and electron microscopy and tomography on postmortem human brain tissue from Parkinson's disease brain donors, we identified α-synuclein immunopositive Lewy pathology and show a crowded environment of membranes therein, including vesicular structures and dysmorphic organelles. Filaments interspersed between the membranes and organelles were identifiable in many but not all α-synuclein inclusions. Crowding of organellar components was confirmed by stimulated emission depletion (STED)-based super-resolution microscopy, and high lipid content within α-synuclein immunopositive inclusions was corroborated by confocal imaging, Fourier-transform coherent anti-Stokes Raman scattering infrared imaging and lipidomics. Applying such correlative high-resolution imaging and biophysical approaches, we discovered an aggregated protein-lipid compartmentalization not previously described in the Parkinsons' disease brain.


Assuntos
Membranas Intracelulares/ultraestrutura , Corpos de Lewy/ultraestrutura , Doença por Corpos de Lewy/patologia , Lipídeos de Membrana/análise , Organelas/ultraestrutura , Doença de Parkinson/patologia , alfa-Sinucleína/análise , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/química , Hipocampo/ultraestrutura , Humanos , Imageamento Tridimensional , Corpos de Lewy/química , Doença por Corpos de Lewy/metabolismo , Mesencéfalo/química , Mesencéfalo/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica/métodos , Microscopia de Fluorescência , Doença de Parkinson/metabolismo , Substância Negra/química , Substância Negra/ultraestrutura , Sequenciamento do Exoma
12.
Sci Rep ; 9(1): 1534, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733491

RESUMO

Opioid abuse is now the most common cause of accidental death in the US. Although opioids and most other drugs of abuse acutely increase signaling mediated by midbrain dopamine (DA)-synthesizing neurons, little is known about long-lasting changes in DA cells that may contribute to continued opioid abuse, craving, and relapse. A better understanding of the molecular and cellular bases of opioid abuse could lead to advancements in therapeutics. This study comprises, to our knowledge, the first unbiased examination of genome-wide changes in midbrain gene expression associated with human opioid abuse. Our analyses identified differentially expressed genes and distinct gene networks associated with opioid abuse, specific genes with predictive capability for subject assignment to the opioid abuse cohort, and genes most similarly affected in chronic opioid and cocaine abusers. We also identified differentially expressed long noncoding RNAs capable of regulating known drug-responsive protein-coding genes. Opioid-regulated genes identified in this study warrant further investigation as potential biomarkers and/or therapeutic targets for human substance abuse.


Assuntos
Biomarcadores/metabolismo , Cocaína/farmacologia , Redes Reguladoras de Genes , Mesencéfalo/metabolismo , Transtornos Relacionados ao Uso de Opioides/patologia , RNA Longo não Codificante/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Área Sob a Curva , Estudos de Casos e Controles , Humanos , Concentração de Íons de Hidrogênio , Mesencéfalo/química , Mesencéfalo/efeitos dos fármacos , Pessoa de Meia-Idade , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/metabolismo , Curva ROC
13.
Front Neural Circuits ; 12: 70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210308

RESUMO

The dopaminergic neurons of the ventral tegmental area (VTA) have been identified with the ability to co-release dopamine and glutamate. This ability was first documented in the nucleus accumbens but showed to be absent in the dorsal striatum. Recently the ability to release glutamate from a subpopulation of the VTA dopaminergic neurons has been shown to control the prefrontal cortex (PFC) excitation through the exclusive innervation of GABAergic fast spiking interneurons. Here, using an optogenetic approach, we expand this view by presenting that the VTA dopaminergic neurons do not only innervate interneurons but also pyramidal PFC neurons. This finding opens the range of possibilities for the VTA dopaminergic neurons to modulate the activity of PFC.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Mesencéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Transdução de Sinais/fisiologia , Animais , Neurônios Dopaminérgicos/química , Feminino , Masculino , Mesencéfalo/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/química
14.
Neuron ; 98(1): 192-207.e10, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29621487

RESUMO

Maternal behaviors are essential for the survival of the young. Previous studies implicated the medial preoptic area (MPOA) as an important region for maternal behaviors, but details of the maternal circuit remain incompletely understood. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the MPOA as key mediators of pup approach and retrieval. Reversible inactivation of MPOAEsr1+ cells impairs those behaviors, whereas optogenetic activation induces immediate pup retrieval. In vivo recordings demonstrate preferential activation of MPOAEsr1+ cells during maternal behaviors and changes in MPOA cell responses across reproductive states. Furthermore, channelrhodopsin-assisted circuit mapping reveals a strong inhibitory projection from MPOAEsr1+ cells to ventral tegmental area (VTA) non-dopaminergic cells. Pathway-specific manipulations reveal that this projection is essential for driving pup approach and retrieval and that VTA dopaminergic cells are reliably activated during those behaviors. Altogether, this study provides new insight into the neural circuit that generates maternal behaviors.


Assuntos
Hipotálamo/metabolismo , Comportamento Materno/fisiologia , Mesencéfalo/metabolismo , Área Pré-Óptica/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Receptor alfa de Estrogênio/biossíntese , Feminino , Hipotálamo/química , Comportamento Materno/psicologia , Mesencéfalo/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/química , Vias Neurais/metabolismo , Técnicas de Cultura de Órgãos , Área Pré-Óptica/química , Área Tegmentar Ventral/química
15.
Cell Tissue Res ; 370(2): 211-225, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28799057

RESUMO

The temporal dynamic expression of Sonic Hedgehog (SHH) and signaling during early midbrain dopaminergic (mDA) neuron development is one of the key players in establishing mDA progenitor diversity. However, whether SHH signaling is also required during later developmental stages and in mature mDA neurons is less understood. We study the expression of SHH receptors Ptch1 and Gas1 (growth arrest-specific 1) and of the transcription factors Gli1, Gli2 and Gli3 in mouse midbrain during embryonic development [embryonic day (E) 12.5 onwards)], in newborn and adult mice using in situ hybridization and immunohistochemistry. Moreover, we examine the expression and regulation of dopaminergic neuronal progenitor markers, midbrain dopaminergic neuronal markers and markers of the SHH signaling pathway in undifferentiated and butyric acid-treated (differentiated) MN9D cells in the presence or absence of exogenous SHH in vitro by RT-PCR, immunoblotting and immunocytochemistry. Gli1 was expressed in the lateral mesencephalic domains, whereas Gli2 and Gli3 were expressed dorsolaterally and complemented by ventrolateral expression of Ptch1. Co-localization with tyrosine hydroxylase could not be observed. GAS1 was exclusively expressed in the dorsal mesencephalon at E11.5 and co-localized with Ki67. In contrast, MN9D cells expressed all the genes investigated and treatment of the cells with butyric acid significantly upregulated their expression. The results suggest that SHH is only indirectly involved in the differentiation and survival of mDA neurons and that the MN9D cell line is a valuable model for investigating early development but not the differentiation and survival of mDA neurons.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Mesencéfalo/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Proteínas Hedgehog/análise , Imuno-Histoquímica , Hibridização In Situ , Mesencéfalo/química , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
16.
J Neurosci ; 37(15): 4128-4144, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28283558

RESUMO

The mesolimbic dopamine pathway receives inputs from numerous regions of the brain as part of a neural system that detects rewarding stimuli and coordinates a behavioral response. The capacity to simultaneously map and molecularly define the components of this complex multisynaptic circuit would thus advance our understanding of the determinants of motivated behavior. To accomplish this, we have constructed pseudorabies virus (PRV) strains in which viral propagation and fluorophore expression are activated only after exposure to Cre recombinase. Once activated in Cre-expressing neurons, the virus serially labels chains of presynaptic neurons. Dual injection of GFP and mCherry tracing viruses simultaneously illuminates nigrostriatal and mesolimbic circuitry and shows no overlap, demonstrating that PRV transmission is confined to synaptically connected neurons. To molecularly profile mesolimbic dopamine neurons and their presynaptic inputs, we injected Cre-conditional GFP virus into the NAc of (anti-GFP) nanobody-L10 transgenic mice and immunoprecipitated translating ribosomes from neurons infected after retrograde tracing. Analysis of purified RNA revealed an enrichment of transcripts expressed in neurons of the dorsal raphe nuclei and lateral hypothalamus that project to the mesolimbic dopamine circuit. These studies identify important inputs to the mesolimbic dopamine pathway and further show that PRV circuit-directed translating ribosome affinity purification can be broadly applied to identify molecularly defined neurons comprising complex, multisynaptic circuits.SIGNIFICANCE STATEMENT The mesolimbic dopamine circuit integrates signals from key brain regions to detect and respond to rewarding stimuli. To further define this complex multisynaptic circuit, we constructed a panel of Cre recombinase-activated pseudorabies viruses (PRVs) that enabled retrograde tracing of neural inputs that terminate on Cre-expressing neurons. Using these viruses and Retro-TRAP (translating ribosome affinity purification), a previously reported molecular profiling method, we developed a novel technique that provides anatomic as well as molecular information about the neural components of polysynaptic circuits. We refer to this new method as PRV-Circuit-TRAP (PRV circuit-directed TRAP). Using it, we have identified major projections to the mesolimbic dopamine circuit from the lateral hypothalamus and dorsal raphe nucleus and defined a discrete subset of transcripts expressed in these projecting neurons, which will allow further characterization of this important pathway. Moreover, the method we report is general and can be applied to the study of other neural circuits.


Assuntos
Perfilação da Expressão Gênica/métodos , Integrases/análise , Mesencéfalo/química , Neurônios/química , Pseudorraiva , Recompensa , Animais , Feminino , Integrases/metabolismo , Masculino , Mesencéfalo/anatomia & histologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Pseudorraiva/metabolismo
17.
J Comp Neurol ; 524(12): 2479-91, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780193

RESUMO

In many vertebrates parallel processing in topographically ordered maps is essential for efficient sensory processing. In the active electrosensory pathway of mormyrids afferent input is processed in two parallel somatotopically ordered hindbrain maps of the electrosensory lateral line lobe (ELL), the dorsolateral zone (DLZ), and the medial zone (MZ). Here phase and amplitude modulations of the self-generated electric field were processed separately. Behavioral data indicates that this information must be merged for the sensory system to categorically distinguish capacitive and resistive properties of objects. While projections between both zones of the ELL have been found, the available physiological data suggests that this merging takes place in the midbrain torus semicircularis (TS). Previous anatomical data indicate that the detailed somatotopic representation present in the ELL is lost in the nucleus lateralis (NL) of the TS, while a rough rostrocaudal mapping is maintained. In our study we investigated the projections from the hindbrain to the midbrain in more detail, using tracer injections. Our data reveals that afferents from both maps of the ELL terminate in a detailed somatotopic manner within the midbrain NL. Furthermore, we provide data indicating that phase and amplitude information may indeed be processed jointly in the NL. J. Comp. Neurol. 524:2479-2491, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico/métodos , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Mesencéfalo/fisiologia , Sensação/fisiologia , Vias Aferentes/química , Vias Aferentes/fisiologia , Animais , Órgão Elétrico/química , Mesencéfalo/química , Núcleos Septais/química , Núcleos Septais/fisiologia
18.
Amino Acids ; 47(5): 1053-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691144

RESUMO

TFF3 is a member of the trefoil factor family (TFF) predominantly secreted by mucous epithelia. Minute amounts are also expressed in the immune system and the brain. In the latter, particularly the hypothalamo-pituitary axis has been investigated in detail in the past. Functionally, cerebral TFF3 has been reported to be involved in several processes such as fear, depression, learning and object recognition, and opiate addiction. Furthermore, TFF3 has been linked with neurodegenerative and neuropsychiatric disorders (e.g., Alzheimer's disease, schizophrenia, and alcoholism). Here, using immunohistochemistry, a systematic survey of the TFF3 localization in the adult human brain is presented focusing on extrahypothalamic brain areas. In addition, the distribution of TFF3 in the developing human brain is described. Taken together, neurons were identified as the predominant cell type to express TFF3, but to different extent; TFF3 was particularly enriched in various midbrain and brain stem nuclei. Besides, TFF3 immunostaining staining was observed in oligodendroglia and the choroid plexus epithelium. The wide cerebral distribution should help to explain its multiple effects in the CNS.


Assuntos
Plexo Corióideo/metabolismo , Mesencéfalo/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Peptídeos/genética , Aborto Espontâneo , Adulto , Tonsila do Cerebelo/química , Tonsila do Cerebelo/metabolismo , Mapeamento Encefálico , Cerebelo/química , Cerebelo/metabolismo , Córtex Cerebral/química , Córtex Cerebral/metabolismo , Plexo Corióideo/química , Feminino , Feto , Expressão Gênica , Hipocampo/química , Hipocampo/metabolismo , Humanos , Hipotálamo/química , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Mesencéfalo/química , Pessoa de Meia-Idade , Neurônios/química , Oligodendroglia/química , Especificidade de Órgãos , Peptídeos/metabolismo , Hipófise/química , Hipófise/metabolismo , Neuro-Hipófise/química , Neuro-Hipófise/metabolismo , Fator Trefoil-3 , Substância Branca/química , Substância Branca/metabolismo
19.
Metab Brain Dis ; 30(1): 205-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25123753

RESUMO

Parkinson's disease (PD) is a neurodegenerative movement disorder due to selective loss of dopaminergic neurons of mesencephalic substantia nigra pars compacta (SNC) with debilitating motor symptoms. Current treatments for PD afford symptomatic relief with no prevention of disease progression. Due to the antioxidant and neuroprotective potential of sinapic acid, this study was conducted to evaluate whether this agent could be of benefit in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were pretreated p.o. with sinapic acid at doses of 10 or 20 mg/kg. One week after surgery, apomorphine caused significant contralateral rotations, a significant reduction in the number of Nissl-stained and tyrosine hydroxylase (TH)-positive neurons and a significant increase of iron reactivity on the left side of SNC. Meanwhile, malondialdehyde (MDA) and nitrite levels in midbrain homogenate significantly increased and activity of superoxide dismutase (SOD) significantly reduced in the 6-OHDA-lesioned group. In addition, sinapic acid at a dose of 20 mg/kg significantly improved turning behavior, prevented loss of SNC dopaminergic neurons, lowered iron reactivity, and attenuated level of MDA and nitrite. These results indicate the neuroprotective potential of sinapic acid against 6-OHDA neurotoxicity that is partially due to the attenuation of oxidative stress and possibly lowering nigral iron level.


Assuntos
Antioxidantes/uso terapêutico , Ácidos Cumáricos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Apomorfina/toxicidade , Contagem de Células , Neurônios Dopaminérgicos/patologia , Ferro/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Mesencéfalo/química , Proteínas do Tecido Nervoso/análise , Nitritos/análise , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Fitoterapia , Distribuição Aleatória , Ratos , Ratos Wistar , Comportamento Estereotipado/efeitos dos fármacos , Superóxido Dismutase/análise , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Tirosina 3-Mono-Oxigenase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...