Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 28(20): 3288-3295.e5, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30318349

RESUMO

The emergence of multicellular animals was associated with an increase in phenotypic complexity and with the acquisition of spatial cell differentiation and embryonic development. Paradoxically, this phenotypic transition was not paralleled by major changes in the underlying developmental toolkit and regulatory networks. In fact, most of these systems are ancient, established already in the unicellular ancestors of animals [1-5]. In contrast, the Microprocessor protein machinery, which is essential for microRNA (miRNA) biogenesis in animals, as well as the miRNA genes themselves produced by this Microprocessor, have not been identified outside of the animal kingdom [6]. Hence, the Microprocessor, with the key proteins Pasha and Drosha, is regarded as an animal innovation [7-9]. Here, we challenge this evolutionary scenario by investigating unicellular sister lineages of animals through genomic and transcriptomic analyses. We identify in Ichthyosporea both Drosha and Pasha (DGCR8 in vertebrates), indicating that the Microprocessor complex evolved long before the last common ancestor of animals, consistent with a pre-metazoan origin of most of the animal developmental gene elements. Through small RNA sequencing, we also discovered expressed bona fide miRNA genes in several species of the ichthyosporeans harboring the Microprocessor. A deep, pre-metazoan origin of the Microprocessor and miRNAs comply with a view that the origin of multicellular animals was not directly linked to the innovation of these key regulatory components.


Assuntos
Evolução Molecular , Mesomycetozoea/genética , MicroRNAs/genética , Animais , Sequência de Bases , Mesomycetozoea/metabolismo , MicroRNAs/metabolismo , Filogenia
2.
Open Biol ; 6(7)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383626

RESUMO

Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion-via a novel pathway-of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages.


Assuntos
Fungos/metabolismo , Redes Reguladoras de Genes , Mesomycetozoea/crescimento & desenvolvimento , Esteróis/metabolismo , Animais , Colesterol/metabolismo , Ergosterol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida , Mesomycetozoea/genética , Mesomycetozoea/metabolismo , Filogenia
3.
Lipids ; 48(3): 263-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23239113

RESUMO

Sphaeroforma arctica is a unique, recently discovered marine protist belonging to a group falling close to the yeast/animal border. S. arctica is found in cold environments, and accordingly has a fatty acid composition containing a high proportion of very long chain polyunsaturated fatty acids, including the ω3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). Two elongases and five desaturases, representing the complete set of enzymes necessary for the synthesis of DHA from oleic acid, were isolated from this species and characterized in yeast. One elongase showed high conversion rates on a wide range of 18 and 20 carbon substrates, and was capable of sequential elongation reactions. The second elongase had a strong preference for the 20-carbon fatty acids EPA and arachidonic acid, with over 80 % of EPA converted to docosapentaenoic acid (DPA) in the heterologous yeast host. The isolation of a Δ8-desaturase, along with the detection of eicosadienoic acid in S. arctica cultures indicated that this species uses the alternate Δ8-pathway for the synthesis of long-chain polyunsaturated fatty acids. S. arctica also carried a Δ4-desaturase that proved to be very active in the production of DHA from DPA. Finally, a long chain acyl-CoA synthetase from S. arctica improved DHA uptake in the heterologous yeast host and led to an improvement in desaturation and elongation efficiencies.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Mesomycetozoea/enzimologia , Mesomycetozoea/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/genética , Mesomycetozoea/genética , Filogenia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...