Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
Arch Biochem Biophys ; 758: 110062, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880320

RESUMO

Carvacrol (CV) is an organic compound found in the essential oils of many aromatic herbs. It is nearly unfeasible to analyze all the current human proteins for a query ligand using in vitro and in vivo methods. This study aimed to clarify whether CV possesses an anti-diabetic feature via Docking-based inverse docking and molecular dynamic (MD) simulation and in vitro characterization against a set of novel human protein targets. Herein, the best poses of CV docking simulations according to binding energy ranged from -7.9 to -3.5 (kcal/mol). After pathway analysis of the protein list through GeneMANIA and WebGestalt, eight interacting proteins (DPP4, FBP1, GCK, HSD11ß1, INSR, PYGL, PPARA, and PPARG) with CV were determined, and these proteins exhibited stable structures during the MD process with CV. In vitro application, statistically significant results were achieved only in combined doses with CV or metformin. Considering all these findings, PPARG and INSR, among these target proteins of CV, are FDA-approved targets for treating diabetes. Therefore, CV may be on its way to becoming a promising therapeutic compound for treating Diabetes Mellitus (DM). Our outcomes expose formerly unexplored potential target human proteins, whose association with diabetic disorders might guide new potential treatments for DM.


Assuntos
Cimenos , Hipoglicemiantes , Metformina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monoterpenos , Humanos , Cimenos/farmacologia , Cimenos/química , Metformina/farmacologia , Metformina/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Monoterpenos/farmacologia , Monoterpenos/química , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Receptor de Insulina/metabolismo , PPAR gama/metabolismo , PPAR gama/química , Ligação Proteica , Simulação por Computador , Antígenos CD
2.
Int J Biol Macromol ; 272(Pt 1): 132860, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834117

RESUMO

To explore the adjuvant therapy drugs of low-dose metformin, one homogeneous polysaccharide named APS-D1 was purified from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Its chemical structure was characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-D1 (7.36 kDa) consisted of glucose, galactose, and arabinose (97.51 %:1.56 %:0.93 %). It consisted of →4)-α-D-Glcp-(1→ residue backbone with →3)-ß-D-Galp-(1→ residue and terminal-α/ß-D-Glcp-(1→ side chains. APS-D1 could significantly improve inflammation (TNF-α, LPS, and IL-10) in vivo. Moreover, APS-D1 improved the curative effect of low-dose metformin without adverse events. APS-D1 combined with low-dose metformin regulated several gut bacteria, in which APS-D1 enriched Staphylococcus lentus to produce l-carnitine (one of 136 metabolites of S. lentus). S. lentus and l-carnitine could improve diabetes, and reduction of S. lentusl-carnitine production impaired diabetes improvement. The combination, S. lentus, and l-carnitine could promote fatty acid oxidation (CPT1) and inhibit gluconeogenesis (PCK and G6Pase). The results indicated that APS-D1 enhanced the curative effect of low-dose metformin to improve diabetes by enriching S. lentus, in which the effect of S. lentus was mediated by l-carnitine. Collectively, these findings support that low-dose metformin supplemented with APS-D1 may be a favorable therapeutic strategy for type 2 diabetes.


Assuntos
Metformina , Polissacarídeos , Staphylococcus , Metformina/farmacologia , Metformina/química , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Staphylococcus/efeitos dos fármacos , Camundongos , Astrágalo/química , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Peso Molecular
3.
Sci Rep ; 14(1): 13910, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886399

RESUMO

N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA), group 2A carcinogens, were detected in finished drug products, including metformin, ranitidine, sartans and other drugs which caused multiple recalls in the USA and Europe. Important studies also reported the formation of NDMA when ranitidine and nitrite were added to simulated gastric fluid. Our objective was to screen finished drug products from Europe and USA for nitrosamine impurities and investigate the formation of NDMA in metformin finished drug products when added to simulated gastric fluid. One dosage unit of 30 different commercially available drugs, including metformin, sartans, and ranitidine were tested for NDMA, NDEA, and dimethylformamide (DMF) impurities, using a liquid chromatography-mass spectrometry (LC-MS) method. Then, 6 metformin finished drug products were tested in stomach conditions for 2 h at 37 °C in a 100 mL solution with a pH of 2.5 and different nitrite concentrations (40, 10, 1, 0.1 mM) and tested for NDMA, and DMF using LC-MS. We measured NDMA, NDEA, and DMF in 30 finished drug products. NDMA and DMF were quantified for metformin drug products in simulated gastric fluid with different nitrite concentrations. None of the 30 drugs showed concerning levels of NDMA, NDEA, or DMF when tested as single tablets. However, when metformin tablets are added to simulated gastric fluid solutions with high nitrite concentrations (40 mM and 10 mM), NDMA can reach amounts of thousands of nanograms per tablet. At the closest concentration to physiologic conditions we used, 1 mM, NDMA is still present in the hundreds of nanograms in some metformin products. In this in vitro study, nitrite concentration had a very important effect on NDMA quantification in metformin tablets added to simulated gastric fluid. 1 mM nitrite caused an increase above the acceptable daily intake set by the U.S. Food and Drug Administration (FDA) for some of the metformin drugs. 10 mM, 40 mM nitrite solutions generated NDMA amounts exceeding by more than a hundred times the acceptable daily intake set by the FDA of 96 nanograms. These findings suggest that metformin can react with nitrite in gastric-like conditions and generate NDMA. Thus, patients taking metformin could be exposed to NDMA when high nitrite levels are present in their stomach, and we recommend including a statement within the Patient Package Inserts/Instructions for use.


Assuntos
Dimetilnitrosamina , Metformina , Nitritos , Metformina/análise , Metformina/química , Dimetilnitrosamina/análise , Dimetilnitrosamina/química , Nitritos/análise , Contaminação de Medicamentos , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Suco Gástrico/química
4.
Int J Biol Macromol ; 271(Pt 1): 132568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782329

RESUMO

The aim of this research is to prepare and identify functionalized carboxymethylcellulose/mesoporous silica nanohydrogels (CMC/NH2-MCM-41) for obtaining a pH-sensitive system for the controlled release of drugs. The beads of CMC/NH2-MCM-41 nanocomposites were prepared by dispersing NH2-MCM-41 in a CMC polymer matrix and crosslinking with ferric ions (Fe3+). The SEM analysis of samples revealed enhancement in surface porosity of the functionalized nanohydrogel beads compared to the conventional beads. Swelling of the prepared functionalized nanohydrogels was evaluated at various pH values including pH = 7.35-7.45 (simulated body fluid or healthy cells), pH = 6 (simulated intestinal fluid), and pH = 1.5-3.5 (simulated gastric fluid). The swelling of CMC/MCM-41 and CMC/NH2-MCM-41 nanohydrogels at the pH values of simulated body fluid and simulated intestinal fluid is much higher than that of simulated gastric fluid, indicating successful synthesis of pH-sensitive nanohydrogels for drug delivery. The drug loading results showed that drug release in the CMC/NH2-MCM-41 system is much slower than that in the CMC/MCM-41 system. The results of the survival studies for the manufactured systems showed a very good biocompatibility of the designed drug delivery systems for biological applications. By coating the surface of functionalized mesopores with CMC hydrogel, we were able to develop a pH-sensitive intelligent drug delivery system.


Assuntos
Carboximetilcelulose Sódica , Doxorrubicina , Portadores de Fármacos , Liberação Controlada de Fármacos , Hidrogéis , Metformina , Naproxeno , Hidrogéis/química , Carboximetilcelulose Sódica/química , Concentração de Íons de Hidrogênio , Metformina/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Naproxeno/química , Portadores de Fármacos/química , Dióxido de Silício/química , Sistemas de Liberação de Medicamentos , Humanos , Desenho de Fármacos , Porosidade
5.
Int J Pharm ; 659: 124265, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795935

RESUMO

Metformin (MET) can be an alternative therapeutic strategy for managing ocular burn primarily because of its pleiotropic mechanism. Longer retention on the ocular surface and sustained release are necessary to ensure the efficacy of MET for ocular application. Although the high aqueous solubility of MET is good for formulation and biocompatibility, it makes MET prone to high nasolacrimal drainage. This limits ocular residence and may be a challenge in its application. To address this, polymers approved for ophthalmic application with natural origin were analyzed through in silico methods to determine their ability to bind to mucin and interact with MET. An ocular insert of MET (3 mg/6 mm) was developed using a scalable solvent casting method without using preservatives. The relative composition of the insert was 58 ± 2.06 %w/w MET with approximately 14 %w/w tamarind seed polysaccharide (TSP), and 28 %w/w propylene glycol (PG). Its stability was demonstrated as per the ICH Q1A (R2) guidelines. Compatibility, ocular retention, drug release, and other functional parameters were evaluated. In rabbits, efficacy was demonstrated in the 'corneal alkali burn preclinical model'. TSP showed potential for mucoadhesion and interaction with MET. With adequate stability and sterility, the insert contributed to adequate retention of MET (10-12 h) in vivo and slow release (30 h) in vitro. This resulted in significant efficacy in vivo.


Assuntos
Preparações de Ação Retardada , Liberação Controlada de Fármacos , Queimaduras Oculares , Metformina , Polissacarídeos , Sementes , Tamarindus , Animais , Metformina/química , Metformina/administração & dosagem , Coelhos , Tamarindus/química , Polissacarídeos/química , Sementes/química , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Administração Oftálmica , Implantes de Medicamento , Masculino , Queimaduras Químicas/tratamento farmacológico , Estabilidade de Medicamentos , Lesões da Córnea/tratamento farmacológico , Córnea/metabolismo , Córnea/efeitos dos fármacos , Propilenoglicol/química , Solubilidade
6.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792167

RESUMO

Methylglyoxal-induced ROS elevation is the primary cause of neuronal damage. Metformin is a traditional hypoglycemic drug that has been reported to be beneficial to the nervous system. In this study, flavonoids were found to enhance the protective effect of metformin when added at a molar concentration of 0.5%. The structure-activity relationship (SAR) analysis indicated that ortho- substitution in the B ring, and the absence of double bonds between the 2 and 3 position combined with the gallate substitution with R configuration at the 3 position in the C ring played crucial roles in the synergistic effects, which could be beneficial for designing a combination of the compounds. Additionally, the mechanism study revealed that a typical flavonoid, EGCG, enhanced ROS scavenging and anti-apoptotic ability via the BCL2/Bax/Cyto C/Caspase-3 pathway, and synergistically inhibited the expression of GSK-3ß, BACE-1, and APP in PC-12 cells when used in combination with metformin. The dose of metformin used in the combination was only 1/4 of the conventional dose when used alone. These results suggested that ROS-mediated apoptosis and the pathways related to amyloid plaques (Aß) formation can be the targets for the synergistic neuroprotective effects of flavonoids and metformin.


Assuntos
Apoptose , Sinergismo Farmacológico , Flavonoides , Metformina , Aldeído Pirúvico , Espécies Reativas de Oxigênio , Metformina/farmacologia , Metformina/química , Ratos , Flavonoides/farmacologia , Flavonoides/química , Células PC12 , Animais , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Transdução de Sinais/efeitos dos fármacos
7.
Clin Toxicol (Phila) ; 62(4): 237-241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646866

RESUMO

INTRODUCTION: Metformin is a biguanide used to manage patients with type 2 diabetes mellitus. However, metabolic acidosis with an elevated lactate concentration and death caused by metformin overdoses are toxicological concerns. Although activated charcoal has been widely used for gastrointestinal decontamination in cases of acute poisoning, there is no evidence regarding its efficacy in treating metformin overdoses. We therefore evaluated the adsorptive capacity of activated charcoal for metformin in vitro. METHODS: Activated charcoal (specific surface area: 1,080 m2/g) mixed with various concentrations of metformin solution was dissolved in simulated gastric and intestinal fluids at 37° Celsius. The suspension was then filtered and the metformin concentration in the filtrate was determined using high-performance liquid chromatography. The maximum adsorptive capacity for metformin was calculated using the Langmuir adsorption isotherm equation. RESULTS: The amount of metformin adsorbed per gram of activated charcoal ranged from 0.7 to 8.1 mg/g at pH 1.2, and from 8.4 to 48.2 mg/g at pH 6.8. The corresponding maximum adsorptive capacities were 10.6 mg/g and 55.9 mg/g respectively. DISCUSSION: The maximum adsorptive capacity of activated charcoal for metformin was similar to that of its capacity for other poorly adsorbed substances. This is likely because metformin is water-soluble and has high polarity-factors that correlate with poor adsorption on activated charcoal. CONCLUSIONS: The maximum adsorption of metformin by activated charcoal was low. Therefore, activated charcoal may not be effective for treating patients with metformin overdose.


Assuntos
Carvão Vegetal , Metformina , Carvão Vegetal/química , Carvão Vegetal/uso terapêutico , Metformina/química , Metformina/toxicidade , Adsorção , Hipoglicemiantes/química , Hipoglicemiantes/toxicidade , Overdose de Drogas/tratamento farmacológico , Humanos
8.
Sci Rep ; 14(1): 9410, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658742

RESUMO

Diabetes mellitus (DM) is a persistent, progressive, and multifaceted disease characterized by elevated blood glucose levels. Type 2 diabetes mellitus is associated with a relative deficit in insulin mainly due to beta cell dysfunction and peripheral insulin resistance. Metformin has been widely prescribed as a primary treatment option to address this condition. On the other hand, an emerging glucose-reducing agent known as imeglimin has garnered attention due to its similarity to metformin in terms of chemical structure. In this study, an innovative series of imeglimin derivatives, labeled 3(a-j), were synthesized through a one-step reaction involving an aldehyde and metformin. The chemical structures of these derivatives were thoroughly characterized using ESI-MS, 1H, and 13C NMR spectroscopy. In vivo tests on a zebrafish diabetic model were used to evaluate the efficacy of the synthesized compounds. All compounds 3(a-j) showed significant antidiabetic effects. It is worth mentioning that compounds 3b (FBS = 72.3 ± 7.2 mg/dL) and 3g (FBS = 72.7 ± 4.3 mg/dL) have antidiabetic effects comparable to those of the standard drugs metformin (FBS = 74.0 ± 5.1 mg/dL) and imeglimin (82.3 ± 5.2 mg/dL). In addition, a docking study was performed to predict the possible interactions between the synthesized compounds and both SIRT1 and GSK-3ß targets. The docking results were in good agreement with the experimental assay results.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Simulação de Acoplamento Molecular , Triazinas , Peixe-Zebra , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Metformina/farmacologia , Metformina/química , Metformina/síntese química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicemia/metabolismo , Modelos Animais de Doenças
9.
Int J Pharm ; 657: 124126, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626845

RESUMO

As the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method. The structures of these crystals were confirmed by single crystal and powder X-ray diffraction, Hirshfeld surface, Fourier transform infrared spectroscopy and thermal analysis. Both MET-IBU and MET-NAP showed significantly improved solubility and intrinsic dissolution rate than the pure IBU or NAP. The stability test indicated that MET-IBU and MET-NAP have excellent physical stability under stressing test (10 days) and accelerated conditions (3 months). Moreover, isobolographic analysis suggested that MET-IBU and MET-NAP exerted potent and synergistic antinociceptive effects in λ-Carrageenan-induced inflammatory pain in mice, and both of them had an advantage in rapid pain relief. These results demonstrated the potential of MET-IBU and MET-NAP to achieve synergistic antinociceptive effects by developing drug-drug salt crystals.


Assuntos
Analgésicos , Cristalização , Sinergismo Farmacológico , Ibuprofeno , Metformina , Naproxeno , Solubilidade , Metformina/química , Metformina/administração & dosagem , Metformina/farmacologia , Animais , Naproxeno/química , Naproxeno/administração & dosagem , Ibuprofeno/química , Ibuprofeno/administração & dosagem , Ibuprofeno/farmacologia , Analgésicos/química , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Camundongos , Masculino , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Dor/tratamento farmacológico , Estabilidade de Medicamentos , Carragenina , Liberação Controlada de Fármacos , Sais/química
10.
Sci Total Environ ; 921: 171108, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395159

RESUMO

Accumulation of metformin and its biotransformation product "guanylurea" are posing an increasing concern due to their low biodegradability under natural attenuated conditions. Therefore, in this study, we reviewed the unavoidable function of metformin in human body and the route of its release in different water ecosystems. In addition, metformin and its biotransformation product guanylurea in aquatic environments caused certain toxic effects on aquatic organisms which include neurotoxicity, endocrine disruption, production of ROS, and acetylcholinesterase disturbance in aquatic organisms. Moreover, microorganisms are the first to expose and deal with the release of these contaminants, therefore, the mechanisms of biodegradation pathways of metformin and guanylurea under aerobic and anaerobic environments were studied. It has been reported that certain microbes, such as Aminobacter sp. and Pseudomonas putida can carry potential enzymatic pathways to degrade the dead-end product "guanylurea", and hence guanylurea is no longer the dead-end product of metformin. However, these microbes can easily be affected by certain geochemical cycles, therefore, we proposed certain strategies that can be helpful in the enhanced biodegradation of metformin and its biotransformation product guanylurea. A better understanding of the biodegradation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of the emerging contaminants of concern, metformin and guanylurea in the near future.


Assuntos
Guanidina/análogos & derivados , Metformina , Ureia/análogos & derivados , Poluentes Químicos da Água , Humanos , Metformina/química , Ecossistema , Acetilcolinesterase/metabolismo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Biotransformação
11.
Biotechnol Prog ; 40(2): e3418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173126

RESUMO

In the present study, a hybrid chitosan-alginate superabsorbent is prepared using maleic acid as a cross-linker and acrylamide as a grafting agent using the free radical mechanism. The composite hydrogel shows good swelling capacity along with hemocompatibility and biocompatibility and hence it is utilized as a drug delivery device. The characterization techniques including x-ray diffraction, Fourier transform infrared, x-ray photoelectron spectroscopy, and thermal analysis indicate the successful synthesis of stable hydrogel with rich functionalities. Metformin hydrochloride is used as a model drug which is used to treat diabetes. The drug encapsulation is done using the swelling diffusion method after the synthesis of hydrogel. The release of metformin from the drug-loaded hydrogel at physiological pH highlights the role of non-covalent interactions between the drug and hydrogel. In vitro release studies of Metformin from the drug-loaded hydrogel show higher release profiles at intestinal pH (7.4) compared to stomach pH (1.2). The observed cumulative release is 82.71% at pH 7.4 and 45.67% at pH 1.2 after 10 h. Brunauer-Emmett-Teller analysis reveals the effect of surface area, pore size, and pore volume of hydrogel on the drug release. The drug release from the hybrid chitosan-alginate hydrogel is found to be more sustained in comparison to the pure chitosan hydrogel. For the present drug delivery system, the swelling-controlled release is found to be more dominating than the pH-controlled release. The synthesized hydrogel can be successfully employed as a potential drug delivery system for controlled drug delivery.


Assuntos
Quitosana , Metformina , Quitosana/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Metformina/química , Alginatos/química , Concentração de Íons de Hidrogênio
12.
Daru ; 32(1): 133-144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168007

RESUMO

PURPOSE: Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS: Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS: Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 µM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 µM and 78.3 µM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION: The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.


Assuntos
Apoptose , Artemisininas , Neoplasias Pulmonares , Metformina , Nanopartículas , Humanos , Artemisininas/farmacologia , Artemisininas/química , Artemisininas/administração & dosagem , Metformina/farmacologia , Metformina/química , Metformina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Apoptose/efeitos dos fármacos , Nanopartículas/química , Níquel/química , Polietilenoglicóis/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Lipossomos/química , Proliferação de Células/efeitos dos fármacos
13.
Drug Des Devel Ther ; 17: 3661-3684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084128

RESUMO

Background: Metformin hydrochloride (HCl) microspheres and nanoparticles were formulated to enhance bioavailability and minimize side effects through sustained action and optimized drug-release characteristics. Initially, the same formulation design with different ratios of metformin HCl and Eudragit RSPO was used to formulate four batches of microspheres and nanoparticles using solvent evaporation and nanoprecipitation methods, respectively. Methods: The produced formulations were evaluated based on particle size and shape (particle size distribution (PSD), scanning electron microscope (SEM)), incompatibility (differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR)), drug release pattern, permeation behavior, in vivo hypoglycemic effects, and in vitro anticancer potential. Results: Compatibility studies concluded that there was minimal interaction between metformin HCl and the polymer, whereas SEM images revealed smoother, more spherical nanoparticles than microspheres. Drug release from the formulations was primarily controlled by the non-Fickian diffusion process, except for A1 and A4 by Fickian, and B3 by Super case II. Korsmeyer-Peppas was the best-fit model for the maximum formulations. The best formulations of microspheres and nanoparticles, based on greater drug release, drug entrapment, and compatibility characteristics, were attributed to the study of drug permeation by non-everted intestinal sacs, in vivo anti-hyperglycemic activity, and in vitro anticancer activity. Conclusion: This study suggests that the proposed metformin HCl formulation can dramatically reduce hyperglycemic conditions and may also have anticancer potential.


Assuntos
Metformina , Nanopartículas , Metformina/farmacologia , Metformina/química , Química Farmacêutica/métodos , Preparações de Ação Retardada , Microesferas , Projetos de Pesquisa , Hipoglicemiantes/farmacologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria
14.
Drug Deliv ; 30(1): 2251720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649375

RESUMO

Herein we designed, optimized, and characterized the Metformin Hydrochloride Transethosomes (MTF-TES) and incorporate them into Chitosan gel to develop Metformin Hydrochloride loaded Transethosomal gel (MTF-TES gel) that provides a sustained release, improved transdermal flux and improved antidiabetic response of MTF. Design Expert® software (Ver. 12, Stat-Ease, USA) was applied for the statistical optimization of MTF-TES. The formulation with Mean Particle Size Distribution (MPSD) of 165.4 ± 2.3 nm, Zeta Potential (ZP) of -21.2 ± 1.9 mV, Polydispersity Index (PDI) of 0.169 ± 0.033, and MTF percent Entrapment Efficiency (%EE) of 89.76 ± 4.12 was considered to be optimized. To check the chemical incompatibility among the MTF and other formulation components, Fourier Transform Infrared (FTIR) spectroscopy was performed and demonstrated with no chemical interaction. Surface morphology, uniformity, and segregation were evaluated through Transmission Electron Microscopy (TEM). It was revealed that the nanoparticles were spherical and round in form with intact borders. The fabricated MTF-TES has shown sustained release followed by a more pronounced effect in MTF-TES gel as compared to the plain MTF solution (MTFS) at a pH of 7.4. The MTF-TES has shown enhanced permeation followed by MTF-TES gel as compared to the MTFS at a pH of 7.4. In vivo antidiabetic assay was performed and results have shown improved antidiabetic potential of the MTF-TES gel, in contrast to MTF-gel. Conclusively, MTF-TES is a promising anti-diabetic candidate for transdermal drug delivery that can provide sustained MTF release and enhanced antidiabetic effect.


Assuntos
Diabetes Mellitus , Animais , Camundongos , Ratos , Metformina/química , Metformina/farmacologia , Metformina/uso terapêutico , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Géis , Espectroscopia de Infravermelho com Transformada de Fourier , Software , Diabetes Mellitus/tratamento farmacológico , Preparações de Ação Retardada
15.
J Pharm Sci ; 112(12): 3120-3130, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37451318

RESUMO

Though ferulic acid presents great hypoglycemic potential, it possesses limited aqueous solubility, and low oral bioavailability. When associated with metformin, the first-choice drug in Type 2 diabetes treatment, FA demonstrates synergistic hypoglycemic effects, however, it also causes certain undesirable dose-related effects. This study aimed to develop a new ferulic acid - metformin multicomponent system, and incorporate it into a solid dosage form with improved biopharmaceutical parameters. A novel metformin: ferulate (1:1) salt (MFS) was produced, which was properly characterized using differing analytical techniques, including single crystal analysis. Also during the course of the study, a new polymorph of the metformin free base was observed. The MFS was obtained using solvent evaporation methods, which achieved high yields in reproducible process, as well as a 740-fold increase in ferulic acid aqueous solubility. The MFS tablets developed met quality control requirements for this dosage form, as well as revealing excellent performance in vitro dissolution tests, presenting dissolution efficiency values of 95.4 ± 0.5%. Additionally, physicochemical instability was not observed in a study at 40 °C for 3 months for both MFS powder and its tablet form. The MFS product developed is a promising candidate for further Type 2 diabetes clinical study.


Assuntos
Produtos Biológicos , Ácidos Cumáricos , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/química , Solubilidade , Comprimidos , Cloreto de Sódio
16.
Environ Toxicol Chem ; 42(8): 1709-1720, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37283207

RESUMO

Metformin, used to treat Type 2 diabetes, is the active ingredient of one of the most prescribed drugs in the world, with over 120 million yearly prescriptions globally. In wastewater-treatment plants (WWTPs), metformin can undergo microbial transformation to form the product guanylurea, which could have toxicological relevance in the environment. Surface water samples from 2018 to 2020 and sediment samples from 2020 were collected from six mixed-use watersheds in Quebec and Ontario, Canada, and analyzed to determine the metformin and guanylurea concentrations at each site. Metformin and guanylurea were present above their limits of quantification in 51.0% and 50.7% of all water samples and in 64% and 21% of all sediment samples, respectively. In surface water, guanylurea was often present at higher concentrations than metformin, while the inverse was true in sediment, with metformin frequently detected at higher concentrations than guanylurea. In addition, at all sites influenced solely by agriculture, concentrations of metformin and guanylurea were <1 µg/L in surface water, suggesting that agriculture is not a significant source of these compounds in the investigated watersheds. These data suggest that WWTPs and potentially septic system leaks are the most likely sources of the compounds in the environment. Guanylurea was detected at many of these sites above environmental concentrations of concern, where critical processes in fish may be affected. Due to the scarcity of available ecotoxicological data and the prominence of guanylurea across all sample sites, there is a need to perform more toxicological investigations of this transformation product and revisit regulations. The present study will help provide toxicologists with environmentally relevant concentration ranges in Canada. Environ Toxicol Chem 2023;42:1709-1720. © 2023 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Poluentes Químicos da Água , Animais , Metformina/química , Hipoglicemiantes/análise , Quebeque , Água , Ontário , Poluentes Químicos da Água/análise
17.
AAPS PharmSciTech ; 24(1): 31, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36577873

RESUMO

Metformin hydrochloride enteric-coated capsule (MH-EC) is a commonly used clinical drug for the treatment of type 2 diabetes. In this study, we described a metformin hydrochloride mucosal nanoparticles enteric-coated capsule (MH-MNPs-EC) based on metformin hydrochloride chitosan mucosal nanoparticles (MH-CS MNPs) and its preparation method to improve the bioavailability and hypoglycemic effect duration of MH-EC. In intestinal adhesion study, the residue rates of free drugs and mucosal nanoparticles were 10.52% and 67.27%, respectively after cleaned with PBS buffer. MH-CS MNPs could significantly improve the efficacy of MH and promote the rehabilitation of diabetes rats. In vitro release test of MH-MNPs-EC showed continuous release over 12 h, while commercial MH-EC released completely within about 1 h in intestinal environment (pH 6.8). Pharmacokinetic study was performed in beagle dogs compared to the commercial MH-EC. The durations of blood MH concentration above 2 µg/mL were 9 h for MH-MNPs-EC versus 2 h for commercial MH-EC. The relative bioavailability of MH-MNPs-EC was determined as 185.28%, compared with commercial MH-EC. In conclusion, MH-CS MNPs have good intestinal adhesion and can significantly prolong the residence time of MH in the intestine. MH-MNPs-EC has better treatment effect compared with MH-EC, and it is expected to be a potential drug product for the treatment of diabetes because of its desired characteristics.


Assuntos
Quitosana , Diabetes Mellitus Tipo 2 , Metformina , Nanopartículas , Animais , Ratos , Cães , Hipoglicemiantes/química , Metformina/química , Disponibilidade Biológica , Intestinos , Nanopartículas/química , Quitosana/química
18.
Molecules ; 27(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684409

RESUMO

A drug-drug multicomponent crystal consisting of metformin (MET) and dobesilate (DBS) was prospectively connected by solvent cooling and evaporating co-crystallization using the multicomponent crystal strategy, not only to optimize the physicochemical properties of single drugs, but also to play a role in the cooperative effect of DBS with the potential vascular protective effects of MET against diabetic retinopathy (DR). The crystal structure analysis demonstrated that MET and DBS were coupled in a 3D supramolecular structure connected by hydrogen-bonding interactions with a molar ratio of 1:1. Almost all hydrogen bond donors and receptors of MET and DBS participated in the bonding, which hindered the combination of remaining potential hydrogen bond sites and water molecules, resulting in a lower hygroscopicity property than MET alone.


Assuntos
Metformina , Cristalização , Ligação de Hidrogênio , Metformina/química , Água/química , Molhabilidade
19.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630608

RESUMO

A rapid and reproducible hydrophilic liquid chromatography (HILIC) process was established for concomitant determination of remogliflozin etabonate (RE), vildagliptin (VD), and metformin (MF) in a formulation. A face-centered central composite experimental design was employed to optimize and predict the chromatographic condition by statistically studying the surface response model and design space with desirability close to one. A HILIC column with a simple mobile phase of acetonitrile (65% v/v) and 20 mM phosphate buffer (35% v/v, pH 6, controlled with orthophosphoric acid) was used to separate RE, VD, and MF. RE, VD, and MF were separated in 3.6 min using an isocratic mode mobile phase flow at a flow rate of 1.4 mL at room temperature, and the analytes were examined by recording the absorption at 210 nm. The developed HILIC method was thoroughly validated for all parameters recommended by ICH, and linearity was observed in the ranges 20−150 µg/mL, 10−75 µg/mL, and 50−750 µg/mL for RE, VD, and MF, respectively, along with excellent regression coefficients (r2 > 0.999). The calculated percentage relative deviation and relative error ascertained the precision and accuracy of the method. The selectivity and accuracy were further confirmed by the high percentage recovery of added standard drugs to the formulation using the standard addition technique. The robustness of the HILIC processes was confirmed by developing a half-normal probability plot and Pareto chart, as the slight variation of a single factor had no significant influence on the assay outcomes. Utilization of the optimized HILIC procedure for concurrent quantification of RE, VD, and MF in solid dosage forms showed accurate and reproducible results. Hence, the fast HILIC method can be regularly employed for the quality assurance of pharmaceutical preparations comprising RE, VD, and MF.


Assuntos
Hipoglicemiantes , Metformina , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Metformina/química , Controle de Qualidade , Projetos de Pesquisa
20.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456961

RESUMO

Due to its high efficiency, good safety profile, and potential cardio-protective properties, metformin, a dimethyl biguanide, is the first-line medication in antihyperglycemic treatment for type 2 diabetic patients. The aim of our present study was to assess the effects of eight new sulfonamide-based derivatives of metformin on selected plasma parameters and vascular hemostasis, as well as on endothelial and smooth muscle cell function. The compounds with an alkyl chain (1-3), trifluoromethyl substituent (4), or acetyl group (5) significantly elevated glucose utilization in human umbilical endothelial cells (HUVECs), similarly to metformin. Our novel findings showed that metformin analogues 1-3 presented the most beneficial properties because of their greatest safety profile in the WST-1 cell viability assay, which was also proved in the further HUVEC integrity studies using RTCA DP. Compounds 1-3 did not affect either HUVEC or aortal smooth muscle cell (AoSMC) viability up to 3.0 mM. Importantly, these compounds beneficially affected some of the coagulation parameters, including factor X and antithrombin III activity. In contrast to the above-mentioned metformin analogues, derivatives 4 and 5 exerted more profound anticoagulation effects; however, they were also more cytotoxic towards HUVECs, as IC50 values were 1.0-1.5 mM. In conclusion, the chemical modification of a metformin scaffold into sulfonamides possessing alkyl substituents results in the formation of novel derivatives with potential bi-directional activity including anti-hyperglycemic properties and highly desirable anti-coagulant activity.


Assuntos
Metformina , Coagulação Sanguínea , Células Endoteliais , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Metformina/química , Sulfonamidas/química , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...