Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
Appl Environ Microbiol ; 90(9): e0043424, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39189727

RESUMO

Gene transfer agents (GTAs) are phage-like entities that package and transfer random host genome fragments between prokaryotes. RcGTA, produced by Rhodobacter capsulatus, is hypothesized to originate from a prophage ancestor. Most of the evidence supporting this hypothesis came from the finding of RcGTA-like genes in phages. More than 75% of the RcGTA genes have a phage homolog. However, only a few RcGTA homologs have been identified in a (pro)phage genome, leaving the hypothesis that GTAs evolved from prophages through gene loss with only weak evidence. We herein report the discovery of an inducible prophage (vB_MseS-P1) from a Mesorhizobium sediminum strain that contains the largest number (12) of RcGTA homologs found in a phage genome to date. We also identified three putative prophages and two prophage remnants harboring 12-14 RcGTA homologs in a Methylobacterium nodulans strain. The protein remote homology detection also revealed more RcGTA homologs from other phages than we previously thought. Moreover, the head-tail gene architecture of these newly discovered prophage-related elements closely resembles that of RcGTA. Furthermore, vB_MseS-P1 virions have structural proteins similar to RcGTA particles. Close phylogenetic relationships between certain prophage genes and RcGTA-like genes in Alphaproteobacteria further support the shared ancestry between RcGTA and prophages. Our findings provide new relatively direct evidence of the origin of RcGTA from a prophage progenitor.IMPORTANCEGTAs are important genetic elements in certain groups of bacteria and contribute to the genetic diversification, evolution, and ecological adaptation of bacteria. RcGTA, a common type of GTA, is known to package and transfer random fragments of the bacterial genome to recipient cells. However, the origin of RcGTA is still elusive. It has been hypothesized that RcGTA evolved from a prophage ancestor through gene loss. However, the few RcGTA homologs identified in a (pro)phage genome leave the hypothesis lacking direct evidence. This study uncovers the presence of a large number of RcGTA homologs in an inducible prophage and several putative prophages. The similar head-tail gene architecture and structural protein compositions of these newly discovered prophage-related elements and RcGTA further demonstrate an unprecedentedly observed close evolutionary relationship between prophages and RcGTA. Together, our findings provide more direct evidence supporting the origin of RcGTA from prophage.


Assuntos
Prófagos , Prófagos/genética , Rhodobacter capsulatus/virologia , Rhodobacter capsulatus/genética , Transferência Genética Horizontal , Genoma Viral , Filogenia , Evolução Molecular , Methylobacterium/virologia , Methylobacterium/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-39008351

RESUMO

Two pink-pigmented bacteria, designated strains NEAU-140T and NEAU-KT, were isolated from field soil collected from Linyi, Shandong Province, PR China. Both isolates were aerobic, Gram-stain-negative, rod-shaped, and facultatively methylotrophic. 16S rRNA gene sequences analysis showed that these two strains belong to the genus Methylobacterium. Strain NEAU-140T exhibited high 16S rRNA gene sequence similarities to Methylobacterium radiotolerans NBRC 15690T (97.43 %) and Methylobacterium phyllostachyos NBRC 105206T (97.36 %). Strain NEAU-KT exhibited high 16S rRNA gene sequence similarities to M. phyllostachyos NBRC 105206T (99.00 %) and Methylobacterium longum DSM 23933T (98.72 %). A phylogenetic tree based on 16S rRNA gene sequences showed that strain NEAU-140T formed a clade with Methylobacterium aerolatum (95.94 %), Methylobacterium persicinum (95.66 %) and Methylobacterium komagatae (96.87 %), and strain NEAU-KT formed a cluster with M. phyllostachyos and M. longum. The predominant fatty acid in both strains was C18 : 1 ω7c. Both strains contained ubiquinone Q-10 as the only respiratory quinone. The polar lipid profiles of both strains contained diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. Whole-genome phylogeny showed that strains NEAU-140T and NEAU-KT formed a phyletic line with M. aerolatum, M. persicinum, Methylobacterium radiotolerans, Methylobacterium fujisawaense, Methylobacterium oryzae, Methylobacterium tardum, M. longum and M. phyllostachyos. The orthologous average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain NEAU-140T and its closely related strains were lower than 82.62 and 25.90  %, respectively. The ANI and dDDH values between strain NEAU-KT and its closely related strains were lower than 86.29 and 31.7 %, respectively. The genomic DNA G+C contents were 71.63 mol% for strain NEAU-140T and 69.08 mol% for strain NEAU-KT. On the basis of their phenotypic and phylogenetic distinctiveness and the results of dDDH and ANI hybridization, these two isolates represent two novel species within the genus Methylobacterium, for which the names Methylobacterium amylolyticum sp. nov. (type strain NEAU-140T=MCCC 1K08801T=DSM 110568T) and Methylobacterium ligniniphilum sp. nov. (type strain NEAU-KT=MCCC 1K08800T=DSM 110567T) are proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Methylobacterium , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , RNA Ribossômico 16S/genética , Methylobacterium/genética , Methylobacterium/classificação , Methylobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , China , Ubiquinona , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
3.
Nat Commun ; 15(1): 5969, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013920

RESUMO

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.


Assuntos
Metanol , Methylobacterium , Methylobacterium/metabolismo , Methylobacterium/genética , Methylobacterium/enzimologia , Methylobacterium/crescimento & desenvolvimento , Metanol/metabolismo , Simbiose , Mutação , Aldeído Liases/metabolismo , Aldeído Liases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/crescimento & desenvolvimento , Methylobacterium extorquens/enzimologia , Desenvolvimento Vegetal , Microbiota/genética , Biomassa
4.
Antonie Van Leeuwenhoek ; 117(1): 83, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806744

RESUMO

An aerobic, Gram-stain-negative, motile rod bacterium, designated as SYSU BS000021T, was isolated from a black soil sample in Harbin, Heilongjiang province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Methylobacterium, and showed the highest sequence similarity to Methylobacterium segetis KCTC 62267 T (98.51%) and Methylobacterium oxalidis DSM 24028 T (97.79%). Growth occurred at 20-37℃ (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 7.0) and in the presence of 0% (w/v) NaCl. Polar lipids comprised of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid and one unidentified polar lipid. The major cellular fatty acids (> 5%) were C18:0 and C18:1 ω7c and/or C18:1 ω6c. The predominant respiratory quinone was Q-10. The genomic G + C content was 68.36% based on the whole genome analysis. The average nucleotide identity (≤ 83.5%) and digital DNA-DNA hybridization (≤ 27.3%) values between strain SYSU BS000021T and other members of the genus Methylobacterium were all lower than the threshold values recommended for distinguishing novel prokaryotic species. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain SYSU BS000021T represents a novel species of the genus Methylobacterium, for which the name Methylobacterium nigriterrae sp. nov. is proposed. The type strain of the proposed novel species is SYSU BS000021T (= GDMCC 1.3814 T = KCTC 8051 T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Methylobacterium , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/química , Methylobacterium/genética , Methylobacterium/classificação , Methylobacterium/isolamento & purificação , China , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Fosfolipídeos/análise
5.
J Hazard Mater ; 471: 134352, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677120

RESUMO

Microcystis typically forms colonies under natural conditions, which contributes to occurrence and prevalence of algal blooms. The colonies consist of Microcystis and associated bacteria (AB), embedded in extracellular polymeric substances (EPS). Previous studies indicate that AB can induce Microcystis to form colonies, however the efficiency is generally low and results in a uniform morphotype. In this study, by using filtrated natural water, several AB strains induced unicellular M. aeruginosa to form colonies resembling several Microcystis morphotypes. The mechanisms were investigated with Methylobacterium sp. Z5. Ca2+ was necessary for Z5 to induce Microcystis to form colonies, while dissolved organic matters (DOM) facilitated AB to agglomerate Microcystis to form large colonies. EPS of living Z5, mainly the aromatic protein components, played a key role in colony induction. Z5 initially aggregated Microcystis via the bridging effects of Ca2+ and DOM, followed by the induction of EPS synthesis and secretion in Microcystis. In this process, the colony forming mode shifted from cell adhesion to a combination of cell adhesion and cell division. Intriguingly, Z5 drove the genomic rearrangement of Microcystis by upregulating some transposase genes. This study unveiled a novel mechanism about Microcystis colony formation and identified a new driver of Microcystis genomic evolution.


Assuntos
Cálcio , Matriz Extracelular de Substâncias Poliméricas , Microcystis , Microcystis/metabolismo , Cálcio/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Methylobacterium/metabolismo , Methylobacterium/genética
6.
Chemosphere ; 352: 141467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387667

RESUMO

The increasing concern for environmental remediation has led to a search for effective methods to remove eutrophic nutrients. In this study, Methylobacterium gregans DC-1 was utilized to improve nitrogen removal in a sequencing batch biofilm reactor (SBBR) via aerobic denitrification. This bacterium has the extraordinary characteristics of strong auto-aggregation and a high ability to remove nitrogen efficiently, making it an ideal candidate for enhanced treatment of nitrogen-rich wastewater. This strain was used for the bioassessment of a test reactor (SBBRbio), which showed a shorter biofilm formation time compared to a control reactor (SBBRcon) without this strain inoculation. Moreover, the enhanced biofilm was enriched in TB-EPS and had a wider variety of protein secondary structures than SBBRcon. During the stabilization phase of SBBRbio, the EPS molecules showed the highest proportion of intermolecular hydrogen bonding. It is possible that bioaugmentation with this strain positively affects the structural stability of biofilm. At influent ammonia loadings of 100 and 150 mg. L-1, the average reduction of ammonia and nitrate-nitrogen was higher in the experimental system compared to the control system. Additionally, nitrite-N accumulation was lower and N2O production decreased compared to the control. Analysis of the microbial community structure demonstrated successful colonization in the bioreactor by a highly nitrogen-tolerant strain that efficiently removed inorganic nitrogen. These results illustrate the great potential of this type of denitrifying bacteria in the application of bioaugmentation systems.


Assuntos
Methylobacterium , Purificação da Água , Desnitrificação , Amônia , Nitrogênio , Biofilmes , Reatores Biológicos/microbiologia , Nitrificação
7.
mBio ; 15(1): e0199923, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38085021

RESUMO

IMPORTANCE: Bacteria known as pink-pigmented facultative methylotrophs colonize many diverse environments on earth, play an important role in the carbon cycle, and in some cases promote plant growth. However, little is known about how these organisms interact with each other and their environment. In this work, we identify one of the chemical signals commonly used by these bacteria and discover that this signal controls swarming motility in the pink-pigmented facultative methylotroph Methylobacterium fujisawaense DSM5686. This work provides new molecular details about interactions between these important bacteria and will help scientists predict these interactions and the group behaviors they regulate from genomic sequencing information.


Assuntos
Methylobacterium , Percepção de Quorum , Acil-Butirolactonas , Methylobacterium/genética
8.
Sci Total Environ ; 912: 169010, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040348

RESUMO

Airborne microorganisms are important parts of the Moutai-flavor Baijiu brewing microbial community, which directly affects the quality of Baijiu. However, environmental factors usually shape airborne microbiomes in different distilleries, even in the different production areas of the same distillery. Unfortunately, current understanding of environmental factors shaping airborne microbiomes in distilleries is very limited. To bridge this gap, we compared airborne microbiomes in the Moutai-flavor Baijiu core production areas of different distilleries in the Chishui River Basin and systematically investigated the key environmental factors that shape the airborne microbiomes. The top abundant bacterial communities are mainly affiliated to the phyla Actinobacteriota, Firmicutes, and Proteobacteri, whereas Ascomycota and Basidiomycota are the predominant fungal communities. The Random Forest analysis indicated that the biomarkers in three distilleries are Saccharomonospora and Bacillus, Thermoactinomyces, Oceanobacillus, and Methylobacterium, which are the core functional flora contributing to the production of Daqu. The correlation and network analyses showed that the distillery age and environmental temperature have a strong regulatory effect on airborne microbiomes, suggesting that the fermentation environment has a domesticating effect on air microbiomes. Our findings will greatly help us understand the relationship between airborne microbiomes and environmental factors in distilleries and support the production of the high-quality Moutai-flavor Baijiu.


Assuntos
Bacillaceae , Bacillus , Methylobacterium , Fermentação , Firmicutes
9.
Bioresour Technol ; 393: 130104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008225

RESUMO

This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.


Assuntos
Ácido Láctico/análogos & derivados , Methylobacterium , Methylobacterium/genética , Methylobacterium/metabolismo , Fermentação , Metanol/metabolismo , Trifosfato de Adenosina/metabolismo , Engenharia Metabólica/métodos
10.
Folia Microbiol (Praha) ; 69(1): 121-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37526803

RESUMO

The effectiveness of Methylobacterium symbioticum in maize and strawberry plants was measured under different doses of nitrogen fertilisation. The biostimulant effect of the bacteria was observed in maize and strawberry plants treated with the biological inoculant under different doses of nitrogen fertiliser compared to untreated plants (control). It was found that bacteria allowed a 50 and 25% decrease in the amount of nitrogen applied in maize and strawberry crops, respectively, and the photosynthetic capacity increased compared with the control plant under all nutritional conditions. A decrease in nitrate reductase activity in inoculated maize plants indicated that the bacteria affects the metabolism of the plant. In addition, inoculated strawberry plants grown with a 25% reduction in nitrogen had a higher concentration of nitrogen in leaves than control plants under optimal nutritional conditions. Again, this indicates that Methylobacterium symbioticum provide an additional supply of nitrogen.


Assuntos
Fragaria , Methylobacterium , Zea mays/microbiologia , Fragaria/metabolismo , Methylobacterium/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA