Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 429: 152328, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712135

RESUMO

We have previously shown that daily exposure to the environmental pollutant 3-methylcholanthrene (3MC) alters the ovarian function by affecting follicle growth and ovulation. To extend our findings, the aims of this work were to study the effects of daily and non-daily exposure to 3MC on oocyte morphology and integrity and the meiosis process. To this end, immature female rats were daily (0.1-1.0 mg/kg) and non-daily (0.1 mg/kg, three times a week) exposed to 3MC and/or α-naphthoflavone (αNF) (80 mg/kg) for 19 and 20 days, respectively. The latter was used to study its ability to prevent the 3MC action. Follicular growth was examined by histology, apoptosis by in situ cell death detection, oocyte integrity by morphological parameters and fluorescent dyes, and the meiotic spindle by immunostaining. Compared with controls (C), and in a dose-dependent manner, all 3MC-treated rats showed i) increased presence of apoptotic cells in antral follicles and decreased percentage of healthy oocytes, ii) increased oocyte area, perimeter and perivitelline space and decreased thickness of the zona pellucida, and ii) increased percentage of oocytes with abnormal meiotic spindle. In addition, the non-daily dose of 3MC caused DNA damage in oocytes, but not in blood or bone marrow cells. All 3MC-induced changes were prevented with the co-treatment with αNF. These results suggest that low doses of 3MC severely disrupt the ovarian function and that germ cells seem to be more sensitive to this environmental pollutant than other cells such as peripheral blood and bone marrow cells.


Assuntos
Benzoflavonas/toxicidade , Metilcolantreno/toxicidade , Oócitos/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Benzoflavonas/administração & dosagem , Células da Medula Óssea/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/toxicidade , Feminino , Meiose/efeitos dos fármacos , Metilcolantreno/administração & dosagem , Oócitos/citologia , Ratos , Ratos Sprague-Dawley
2.
Arch Toxicol ; 92(2): 907-919, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29094188

RESUMO

Daily exposure to low doses of 3-methylcholanthrene (3MC) during the pubertal period in rats disrupts both follicular growth and ovulation. Thus, to provide new insights into the toxicity mechanism of 3MC in the ovary, here we investigated the effect of daily exposure to 3MC on selected ovarian genes, the role of the aryl hydrocarbon receptor (AhR) and the level of epigenetic remodeling of histone post-transcriptional modifications. Immature rats were daily injected with 3MC (0.1 or 1 mg/kg) and mRNA expression of genes involved in different ovarian processes were evaluated. Of the 29 genes studied, 18 were up-regulated, five were down-regulated and six were not altered. To assess whether AhR was involved in these changes, we used the chromatin immunoprecipitation assay. 3MC increased AhR binding to promoter regions of genes involved in Notch signaling (Hes1, Jag1), activation of primordial follicles (Cdk2), cell adhesion (Icam1), stress and tumor progression (Dnajb6), apoptosis (Bax, Caspase-9) and expression of growth and transcription factors (Igf2, Sp1). Studying the trimethylation and acetylation of histone 3 (H3K4me3 and H3K9Ac, respectively) of these genes, we found that 3MC increased H3K4me3 in Cyp1a1, Jag1, Dnajb6, Igf2, Notch2, Adamts1, Bax and Caspase-9, and H3K9Ac in Cyp1a1, Jag1, Cdk2, Dnajb6, Igf2, Icam1, and Sp1. Co-treatment with α-naphthoflavone (αNF), a specific antagonist of AhR, prevented almost every 3MC-induced changes. Despite the low dose used in these experiments, daily exposure to 3MC induced changes in both gene expression and epigenomic remodeling, which may lead to premature ovarian failure.


Assuntos
Benzoflavonas/farmacologia , Metilcolantreno/toxicidade , Folículo Ovariano/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Acetilação , Animais , Imunoprecipitação da Cromatina , Regulação para Baixo , Epigênese Genética , Feminino , Histonas/química , Metilação , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Regulação para Cima
3.
Toxicology ; 353-354: 58-69, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27163632

RESUMO

In the present study, we investigated the effect of 3-methylcholanthrene (3MC) on sexual maturity and the ability of α-naphthoflavone (αNF) to prevent this action. To this end, immature rats were daily injected intraperitoneally with 3MC (0.1 or 1mg/kg) and/or αNF (80mg/kg). Body weight, vaginal opening and estrous cycle were recorded and ovaries were obtained on the day of estrus. Ovarian weight, ovulation rate (measured by the number of oocytes within oviducts), and follicular development (determined by histology) were studied. No differences were found in body weight, ovarian weight, day of vaginal opening, or the establishment of the estrous cycle among the different groups of rats. However, animals treated with 3MC, at both doses, exhibited a lower number of primordial, primary, preantral and antral follicles than controls. Also, 3MC inhibited the ovulation rate and induced an overexpression of both the Cyp1a1 and Cyp1b1 genes, measured by chromatin immunoprecipitation assay. The daily treatment with αNF alone increased the number of follicles in most of the stages analyzed when compared with controls. Moreover, the αNF treatment prevented completely not only the 3MC-induced decrease in all types of follicles but also the 3MC-induced overexpression of Cyp enzymes and the genetic damage in bone marrow cells and oocytes. These results suggest that (i) daily exposure to 3MC during the pubertal period destroys the follicle reserve and alters the ovulation rate; (ii) the 3MC action seems to be mediated by an aryl hydrocarbon receptor-dependent mechanism; (iii) daily administration of αNF has a clear stimulatory action on the ovarian function; and (iv) αNF may prevent both the systemic and gonadal 3MC-induced toxicity.


Assuntos
Benzoflavonas/administração & dosagem , Benzoflavonas/farmacologia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Metilcolantreno/toxicidade , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Imunoprecipitação da Cromatina , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/patologia , Folículo Ovariano/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Hidrocarboneto Arílico/metabolismo
4.
Aquat Toxicol ; 124-125: 106-13, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22940225

RESUMO

In fish there are four cytochrome P450 (CYP1) subfamilies: CYP1A, CYP1B, CYP1C, and CYP1D. Here we cloned Poecilia vivipara CYP1A, with an inferred amino acid sequence 91% identical to CYP1A from the killifish Fundulus heteroclitus, another member of the Cypriniformes, and an important model in ecotoxicology. In addition, we examined the expression of CYP1A, CYP1B1, and CYP1C1 by qPCR in liver, gill, and intestine of adult P. vivipara injected with 3-methylcholanthrene (3-MC) or held in clean water (control group) for 24h. All three tissues examined showed basal expression of the three CYP1 genes. CYP1A was most strongly expressed in the liver, while CYP1B1, and CYP1C1 were most strongly expressed in the gill and intestine respectively. 3-MC induced CYP1A, CYP1B1, and CYP1C1 significantly (20-120-fold) in the three organs, consistent with the regulation of CYP1A, CYP1B1 and CYP1C1 via the aryl hydrocarbon receptor. Validation of CYP1 gene biomarkers in fish collected from a contaminated urban mangrove environment was confirmed with significant induction of CYP1A and CYP1C1 in gills (10-15-fold) and CYP1B1 in liver (23-fold), relative to fish from a control site. The responsiveness of these CYP1 genes indicates P. vivipara is suitable as a model for environmental toxicology studies and environmental assessment in Brazil.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metilcolantreno/toxicidade , Poecilia/genética , Poecilia/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Brasil , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA