Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.154
Filtrar
1.
Angew Chem Int Ed Engl ; 63(26): e202401358, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38647177

RESUMO

The sulfolipid sulfoquinovosyl diacylglycerol (SQDG), produced by plants, algae, and cyanobacteria, constitutes a major sulfur reserve in the biosphere. Microbial breakdown of SQDG is critical for the biological utilization of its sulfur. This commences through release of the parent sugar, sulfoquinovose (SQ), catalyzed by sulfoquinovosidases (SQases). These vanguard enzymes are encoded in gene clusters that code for diverse SQ catabolic pathways. To identify, visualize and isolate glycoside hydrolase CAZY-family 31 (GH31) SQases in complex biological environments, we introduce SQ cyclophellitol-aziridine activity-based probes (ABPs). These ABPs label the active site nucleophile of this enzyme family, consistent with specific recognition of the SQ cyclophellitol-aziridine in the active site, as evidenced in the 3D structure of Bacillus megaterium SQase. A fluorescent Cy5-probe enables visualization of SQases in crude cell lysates from bacteria harbouring different SQ breakdown pathways, whilst a biotin-probe enables SQase capture and identification by proteomics. The Cy5-probe facilitates monitoring of active SQase levels during different stages of bacterial growth which show great contrast to more traditional mRNA analysis obtained by RT-qPCR. Given the importance of SQases in global sulfur cycling and in human microbiota, these SQase ABPs provide a new tool with which to study SQase occurrence, activity and stability.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Bacillus megaterium/enzimologia , Domínio Catalítico , Modelos Moleculares , Metilglucosídeos
2.
J Asian Nat Prod Res ; 26(2): 269-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38078645

RESUMO

Microbial transformation of dihydroresveratrol (DHRSV) using Beauveria bassiana has produced two new methylglucosylated derivatives of DHRSV (1 and 2), whose structures were characterized as 4'-O-(4″-O-methyl-ß-D-glucopyranosyl)-dihydroresveratrol (4'-O-MG DHRSV, 1) and 3-O-(4″-O-methyl-ß-D-glucopyranosyl)-dihydroresveratrol (3-O-MG DHRSV, 2) on the basis of spectroscopic methods. They showed moderate SIRT3 agonistic activity, and compound 2 exhibited the best deacetylation of 406.63% at 10 µM. The activity of 2 increased by 3.12-fold compared with that of DHRSV, since 2 performed better in molecular docking assay (GScore -8.445).


Assuntos
Bibenzilas , Sirtuína 3 , Estilbenos , Metilglucosídeos/química , Simulação de Acoplamento Molecular , Estrutura Molecular
3.
J Am Chem Soc ; 145(51): 28216-28223, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100472

RESUMO

The sulfosugar sulfoquinovose (SQ) is produced by photosynthetic plants, algae, and cyanobacteria on a scale of 10 billion tons per annum. Its degradation, which is essential to allow cycling of its constituent carbon and sulfur, involves specialized glycosidases termed sulfoquinovosidases (SQases), which release SQ from sulfolipid glycoconjugates, so SQ can enter catabolism pathways. However, many SQ catabolic gene clusters lack a gene encoding a classical SQase. Here, we report the discovery of a new family of SQases that use an atypical oxidoreductive mechanism involving NAD+ as a catalytic cofactor. Three-dimensional X-ray structures of complexes with SQ and NAD+ provide insight into the catalytic mechanism, which involves transient oxidation at C3. Bioinformatic survey reveals this new family of NAD+-dependent SQases occurs within sulfoglycolytic and sulfolytic gene clusters that lack classical SQases and is distributed widely including within Roseobacter clade bacteria, suggesting an important contribution to marine sulfur cycling.


Assuntos
Redes e Vias Metabólicas , NAD , NAD/metabolismo , Metilglucosídeos/química , Metilglucosídeos/metabolismo , Plantas , Enxofre/metabolismo
4.
Structure ; 31(3): 244-252.e4, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36805128

RESUMO

Sulfoquinovose (SQ) is a key component of plant sulfolipids (sulfoquinovosyl diacylglycerols) and a major environmental reservoir of biological sulfur. Breakdown of SQ is achieved by bacteria through the pathways of sulfoglycolysis. The sulfoglycolytic sulfofructose transaldolase (sulfo-SFT) pathway is used by gut-resident firmicutes and soil saprophytes. After isomerization of SQ to sulfofructose (SF), the namesake enzyme catalyzes the transaldol reaction of SF transferring dihydroxyacetone to 3C/4C acceptors to give sulfolactaldehyde and fructose-6-phosphate or sedoheptulose-7-phosphate. We report the 3D cryo-EM structure of SF transaldolase from Bacillus megaterium in apo and ligand bound forms, revealing a decameric structure formed from two pentameric rings of the protomer. We demonstrate a covalent "Schiff base" intermediate formed by reaction of SF with Lys89 within a conserved Asp-Lys-Glu catalytic triad and defined by an Arg-Trp-Arg sulfonate recognition triad. The structural characterization of the signature enzyme of the sulfo-SFT pathway provides key insights into molecular recognition of the sulfonate group of sulfosugars.


Assuntos
Frutose-Bifosfato Aldolase , Transaldolase , Transaldolase/química , Transaldolase/metabolismo , Frutose-Bifosfato Aldolase/química , Metilglucosídeos/química , Metilglucosídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074914

RESUMO

Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Redes e Vias Metabólicas , Metilglucosídeos/metabolismo , Estresse Oxidativo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Metabolismo dos Carboidratos , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Enxofre/metabolismo
6.
Chem Soc Rev ; 50(24): 13628-13645, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34816844

RESUMO

Sulfoquinovose (SQ), a derivative of glucose with a C6-sulfonate, is produced by photosynthetic organisms and is the headgroup of the sulfolipid sulfoquinovosyl diacylglycerol. The degradation of SQ allows recycling of its elemental constituents and is important in the global sulfur and carbon biogeochemical cycles. Degradation of SQ by bacteria is achieved through a range of pathways that fall into two main groups. One group involves scission of the 6-carbon skeleton of SQ into two fragments with metabolic utilization of carbons 1-3 and excretion of carbons 4-6 as dihydroxypropanesulfonate or sulfolactate that is biomineralized to sulfite/sulfate by other members of the microbial community. The other involves the complete metabolism of SQ by desulfonylation involving cleavage of the C-S bond to release sulfite and glucose, the latter of which can enter glycolysis. The discovery of sulfoglycolytic pathways has revealed a wide range of novel enzymes and SQ binding proteins. Biochemical and structural characterization of the proteins and enzymes in these pathways have illuminated how the sulfonate group is recognized by Nature's catalysts, supporting bioinformatic annotation of sulfoglycolytic enzymes, and has identified functional and structural relationships with the pathways of glycolysis.


Assuntos
Bactérias , Metilglucosídeos , Biologia Computacional , Fotossíntese
7.
ISME J ; 15(9): 2779-2791, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33790426

RESUMO

Responses of the microbiota to diet are highly personalized but mechanistically not well understood because many metabolic capabilities and interactions of human gut microorganisms are unknown. Here we show that sulfoquinovose (SQ), a sulfonated monosaccharide omnipresent in green vegetables, is a selective yet relevant substrate for few but ubiquitous bacteria in the human gut. In human feces and in defined co-culture, Eubacterium rectale and Bilophila wadsworthia used recently identified pathways to cooperatively catabolize SQ with 2,3-dihydroxypropane-1-sulfonate as a transient intermediate to hydrogen sulfide (H2S), a key intestinal metabolite with disparate effects on host health. SQ-degradation capability is encoded in almost half of E. rectale genomes but otherwise sparsely distributed among microbial species in the human intestine. However, re-analysis of fecal metatranscriptome datasets of four human cohorts showed that SQ degradation (mostly from E. rectale and Faecalibacterium prausnitzii) and H2S production (mostly from B. wadsworthia) pathways were expressed abundantly across various health states, demonstrating that these microbial functions are core attributes of the human gut. The discovery of green-diet-derived SQ as an exclusive microbial nutrient and an additional source of H2S in the human gut highlights the role of individual dietary compounds and organosulfur metabolism on microbial activity and has implications for precision editing of the gut microbiota by dietary and prebiotic interventions.


Assuntos
Sulfeto de Hidrogênio , Bactérias/genética , Fezes , Humanos , Metilglucosídeos , Nutrientes
8.
Int J Med Microbiol ; 311(3): 151494, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711649

RESUMO

The interplay between diet, intestinal microbiota and host is a major factor impacting health. A diet rich in unsaturated fatty acids has been reported to stimulate the growth of Bilophila wadsworthia by increasing the proportion of the sulfonated bile acid taurocholate (TC). The taurine-induced overgrowth of B. wadsworthia promoted the development of colitis in interleukin-10-deficient (IL-10-/-) mice. This study aimed to investigate whether intake of the sulfonates sulfoquinovosyl diacylglycerols (SQDG) with a dietary supplement or their degradation product sulfoquinovose (SQ), stimulate the growth of B. wadsworthia in a similar manner and, thereby, cause intestinal inflammation. Conventional IL-10-/- mice were fed a diet supplemented with the SQDG-rich cyanobacterium Arthrospira platensis (Spirulina). SQ or TC were orally applied to conventional IL-10-/- mice and gnotobiotic IL-10-/- mice harboring a simplified human intestinal microbiota with or without B. wadsworthia. Analyses of inflammatory parameters revealed that none of the sulfonates induced severe colitis, but both, Spirulina and TC, induced expression of pro-inflammatory cytokines in cecal mucosa. Cell numbers of B. wadsworthia decreased almost two orders of magnitude by Spirulina feeding but slightly increased in gnotobiotic SQ and conventional TC mice. Changes in microbiota composition were observed in feces as a result of Spirulina or TC feeding in conventional mice. In conclusion, the dietary sulfonates SQDG and their metabolite SQ did not elicit bacteria-induced intestinal inflammation in IL-10-/- mice and, thus, do not promote colitis.


Assuntos
Colite , Dieta , Microbioma Gastrointestinal , Metilglucosídeos , Animais , Colite/induzido quimicamente , Interleucina-10/genética , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Spirulina
9.
Biochem Biophys Res Commun ; 533(4): 1109-1114, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33036753

RESUMO

Sulfoquinovose (6-deoxy-6-sulfoglucose, SQ) is a component of sulfolipids found in the photosynthetic membranes of plants and other photosynthetic organisms, and is one of the most abundant organosulfur compounds in nature. Microbial degradation of SQ, termed sulfoglycolysis, constitutes an important component of the biogeochemical sulfur cycle. Two sulfoglycolysis pathways have been reported, with one resembling the Embden-Meyerhof-Parnas (sulfo-EMP) pathway, and the other resembling the Entner-Doudoroff (sulfo-ED) pathway. Here we report a third sulfoglycolysis pathway in the bacterium Bacillus megaterium DSM 1804, in which sulfosugar cleavage is catalyzed by the transaldolase SqvA, which converts 6-deoxy-6-sulfofructose and glyceraldehyde 3-phosphate into fructose -6-phosphate and (S)-sulfolactaldehyde. Variations of this transaldolase-dependent sulfoglycolysis (sulfo-TAL) pathway are present in diverse bacteria, and add to the diversity of mechanisms for the degradation of this abundant organosulfur compound.


Assuntos
Bacillus megaterium/metabolismo , Glicólise , Redes e Vias Metabólicas , Metilglucosídeos/metabolismo , Transaldolase/metabolismo , Bacillus megaterium/enzimologia , Cromatografia Líquida , Biologia Computacional , Expressão Gênica , Glicólise/genética , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Família Multigênica , Filogenia
10.
Proc Natl Acad Sci U S A ; 117(27): 15599-15608, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571930

RESUMO

2(S)-dihydroxypropanesulfonate (DHPS) is a microbial degradation product of 6-deoxy-6-sulfo-d-glucopyranose (sulfoquinovose), a component of plant sulfolipid with an estimated annual production of 1010 tons. DHPS is also at millimolar levels in highly abundant marine phytoplankton. Its degradation and sulfur recycling by microbes, thus, play important roles in the biogeochemical sulfur cycle. However, DHPS degradative pathways in the anaerobic biosphere are not well understood. Here, we report the discovery and characterization of two O2-sensitive glycyl radical enzymes that use distinct mechanisms for DHPS degradation. DHPS-sulfolyase (HpsG) in sulfate- and sulfite-reducing bacteria catalyzes C-S cleavage to release sulfite for use as a terminal electron acceptor in respiration, producing H2S. DHPS-dehydratase (HpfG), in fermenting bacteria, catalyzes C-O cleavage to generate 3-sulfopropionaldehyde, subsequently reduced by the NADH-dependent sulfopropionaldehyde reductase (HpfD). Both enzymes are present in bacteria from diverse environments including human gut, suggesting the contribution of enzymatic radical chemistry to sulfur flux in various anaerobic niches.


Assuntos
Alcanossulfonatos/metabolismo , Anaerobiose , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Biologia Computacional , Ensaios Enzimáticos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/toxicidade , Metilglucosídeos/metabolismo , Enxofre/metabolismo
11.
Eur J Pharmacol ; 879: 173141, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32353360

RESUMO

Dapagliflozin (DAPA) or canagliflozin (CANA), Na+-dependent glucose co-transporter type 2 (SGLT2) inhibitors, were used for treatment of type II diabetes mellitus. Addition of DAPA or CANA suppressed M-type K+ current (IK(M)) in pituitary tumor (GH3) and pheochromocytoma PC12 cells. The IC50 value for DAPA- or CANA-mediated inhibition of IK(M) in GH3 cells was 0.11 or 0.42 µM, respectively. The presence of DAPA (0.1 µM) shifted the steady-state activation of IK(M) to less depolarized potential without changing the gating charge of the current. During high-frequency depolarizing pulses, IK(M) magnitude was reduced by DAPA; however, DAPA-induced block of IK(M) remained effective. The amplitude of neither erg-mediated K+ current nor hyperpolarization-activated cation current in GH3 cells was modified in the presence of 1 µM DAPA. Alternatively, addition of DAPA, CANA, phlorizin or chlorotoxin effectively suppressed α-methylglucoside-(αMG-) induced current (IαMG) in GH3 cells, albeit inability of tefluthrin (activator of INa) to suppress this current. DAPA shifted the charge-voltage relation of presteady-state IαMG in a rightward and downward direction with no change in the gating charge of the IαMG. Under current-clamp recordings, subsequent additions of DAPA, but still in the continued presence of αMG, increased the firing rate of spontaneous action potentials stimulated by αMG. Our results suggested that activity of SGLT was expressed functionally in GH3 and PC12 cells. Therefore, inhibitory actions of DAPA or CANA on the amplitude and gating of IK(M) might provide a yet unidentified mechanism through which the SGLT1 or SGLT2 activity were attenuated in unclamped cells occurring in vivo.


Assuntos
Neoplasias das Glândulas Suprarrenais/fisiopatologia , Compostos Benzidrílicos/farmacologia , Canagliflozina/farmacologia , Glucosídeos/farmacologia , Feocromocitoma/fisiopatologia , Neoplasias Hipofisárias/fisiopatologia , Canais de Potássio/fisiologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Linhagem Celular Tumoral , Metilglucosídeos/farmacologia , Feocromocitoma/metabolismo , Neoplasias Hipofisárias/metabolismo , Ratos
12.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32444469

RESUMO

Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living Rhizobium leguminosarum SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil.IMPORTANCE Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, Rhizobium leguminosarum SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.


Assuntos
Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Metilglucosídeos/metabolismo , Proteoma/metabolismo , Rhizobium leguminosarum/metabolismo , Proteômica
13.
Nature ; 580(7804): 511-516, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322067

RESUMO

The taste of sugar is one of the most basic sensory percepts for humans and other animals. Animals can develop a strong preference for sugar even if they lack sweet taste receptors, indicating a mechanism independent of taste1-3. Here we examined the neural basis for sugar preference and demonstrate that a population of neurons in the vagal ganglia and brainstem are activated via the gut-brain axis to create preference for sugar. These neurons are stimulated in response to sugar but not artificial sweeteners, and are activated by direct delivery of sugar to the gut. Using functional imaging we monitored activity of the gut-brain axis, and identified the vagal neurons activated by intestinal delivery of glucose. Next, we engineered mice in which synaptic activity in this gut-to-brain circuit was genetically silenced, and prevented the development of behavioural preference for sugar. Moreover, we show that co-opting this circuit by chemogenetic activation can create preferences to otherwise less-preferred stimuli. Together, these findings reveal a gut-to-brain post-ingestive sugar-sensing pathway critical for the development of sugar preference. In addition, they explain the neural basis for differences in the behavioural effects of sweeteners versus sugar, and uncover an essential circuit underlying the highly appetitive effects of sugar.


Assuntos
Encéfalo/fisiologia , Comportamento de Escolha/fisiologia , Açúcares da Dieta/metabolismo , Preferências Alimentares/fisiologia , Glucose/metabolismo , Intestinos/fisiologia , Animais , Encéfalo/citologia , Açúcares da Dieta/química , Glucose/análogos & derivados , Glucose/química , Masculino , Metilglucosídeos/química , Metilglucosídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Paladar/fisiologia , Tiazinas/metabolismo , Água/metabolismo
14.
J Microbiol ; 58(2): 163-172, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993989

RESUMO

α-Glucosidase is a crucial enzyme for the production of isomaltooligosaccharide. In this study, a novel method comprising eosin Y (EY) and α-D-methylglucoside (AMG) in glass plates was tested for the primary screening of α-glucosidaseproducing strains. First, α-glucosidase-producing Aspergillus niger strains were selected on plates containing EY and AMG based on transparent zone formation resulting from the solubilization of EY by the hydrolyzed product. Conventional methods that use trypan blue (TB) and p-nitrophenyl-α-D-glucopyranoside (pPNP) as indicators were then compared with the new strategy. The results showed that EY-containing plates provide the advantages of low price and higher specificity for the screening of α-glucosidase-producing strains. We then evaluated the correlation between the hydrolytic activity of α-glucosidase and diffusion distance, and found that good linearity could be established within a 6-75 U/ml enzyme concentration range. Finally, the hydrolytic and transglycosylation activities of α-glucosidase obtained from the target isolates were determined by EY plate assay and 3,5-dinitrosalicylic acid-Saccharomyces cerevisiae assay, respectively. The results showed that the diameter of the transparent zone varied among isolates was positively correlated with α-glucosidase hydrolytic activity, while good linearity could also be established between α-glucosidase transglycosylation activity and non-fermentable reducing sugars content. With this strategy, 7 Aspergillus niger mutants with high yield of α-glucosidase from 200 obvious single colonies on the primary screen plate were obtained.


Assuntos
Aspergillus niger/metabolismo , alfa-Glucosidases/biossíntese , Amarelo de Eosina-(YS)/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Hidrólise , Metilglucosídeos/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
Nature ; 578(7795): 403-408, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31940659

RESUMO

Glycans have diverse physiological functions, ranging from energy storage and structural integrity to cell signalling and the regulation of intracellular processes1. Although biomass-derived carbohydrates (such as D-glucose, D-xylose and D-galactose) are extracted on commercial scales, and serve as renewable chemical feedstocks and building blocks2,3, there are hundreds of distinct monosaccharides that typically cannot be isolated from their natural sources and must instead be prepared through multistep chemical or enzymatic syntheses4,5. These 'rare' sugars feature prominently in bioactive natural products and pharmaceuticals, including antiviral, antibacterial, anticancer and cardiac drugs6,7. Here we report the preparation of rare sugar isomers directly from biomass carbohydrates through site-selective epimerization reactions. Mechanistic studies establish that these reactions proceed under kinetic control, through sequential steps of hydrogen-atom abstraction and hydrogen-atom donation mediated by two distinct catalysts. This synthetic strategy provides concise and potentially extensive access to this valuable class of natural compounds.


Assuntos
Técnicas de Química Sintética , Açúcares/química , Açúcares/síntese química , Biomassa , Catálise , Hidrogênio/química , Isomerismo , Cinética , Metilglucosídeos/síntese química , Metilglucosídeos/química , Polissacarídeos/síntese química , Polissacarídeos/química
16.
Ultrason Sonochem ; 63: 104934, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31945562

RESUMO

The electro-oxidation of organic molecules at the anode with simultaneous generation of hydrogen at the cathode in electrosynthesis reactors is considered as a promising and efficient process for the co-production of hydrogen and bio-sourced value-added chemicals. In this study and for the first time, we investigated the electro-oxidation of glucose and methylglucoside in 0.1 mol L-1 NaOH on polycrystalline Pt (real surface area = 14.5 ± 0.5 cm2, roughness ≈ 5) in the potential range [0; +1.20 V vs. rhe] under silent and ultrasonic (bath, 45 kHz, Pacous = 11.20 W) conditions. A series of linear sweep voltammograms, chronoamperograms and high-performance liquid chronoamperograms were generated. It was found that higher current densities were obtained under ultrasonic conditions over the potential range of +0.25 V to +1.10 V vs. rhe, indicating that higher oxidation rates were provided under ultrasonication. It was observed that the desorption of species from the Pt surface in the medium potential region was favoured, allowing free catalytic Pt sites for further adsorption and oxidation of reactants; and in the high potential region, high peak current densities in the presence of ultrasound was due to enhanced mass transport of the electroactive species from the bulk electrolyte to the Pt-polycrystalline electrode surface. HPLC studies confirmed that higher electrochemical activity was obtained in the presence of ultrasound than in the absence. In our conditions, it was also found that low frequency ultrasound did not change the selectivity of the glucose and methylglucoside electro-oxidation reactions but instead, a significant increase in the rate of conversion was observed.


Assuntos
Técnicas Eletroquímicas/métodos , Sonicação , Adsorção , Glucose/química , Metilglucosídeos/química , Oxirredução
17.
Molecules ; 24(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640173

RESUMO

Bombyx batryticatus is a well-known animal in traditional Chinese medicine. The aim of the research was to reveal the quality formation mechanism of B. batryticatus and to screen out the characteristic component used for the quality control. The anticonvulsant effects of B. batryticatus with a stiff time of one, five, and nine days (D1, D5 and D9, respectively) and healthy silkworm of the same developmental stage (SW) were determined by animal experiment. The dynamic changes in chemical composition were analyzed using UPLC-Q-TOF-MS-based metabolomics. D5 and D9 B. batryticatus exhibited significant anticonvulsant effects (p < 0.05 and p < 0.01, respectively). Accordingly, principal component analysis (PCA) and partial least squares discrimination analysis (PLS-DA) indicated that the chemical composition of D5 and D9 B. batryticatus changed significantly. The different metabolites mainly consisted of primary metabolites such as lipids and amino acids and secondary metabolites such as flavonoids, beauvericin, and glycolipids. Interestingly, the relative abundance of quercetin-7-O-ß-d-4-O-methylglucoside, the characteristic component of B. batryticatus, increased with stiff time and was promised to be used as an index component of quality control. The results expand our understanding of the quality formation mechanism of B. batryticatus. In addition, it highlights the potential of UPLC-Q-TOF-MS-based metabolomics for the quality control purpose of TCMs.


Assuntos
Bombyx/fisiologia , Metabolômica/métodos , Metilglucosídeos/análise , Animais , Anticonvulsivantes , Bombyx/química , Bombyx/microbiologia , Cromatografia Líquida de Alta Pressão , Análise dos Mínimos Quadrados , Espectrometria de Massas , Metilglucosídeos/química , Análise de Componente Principal , Quercetina , Metabolismo Secundário
18.
J Phys Chem B ; 123(40): 8472-8479, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31508961

RESUMO

Simple sugars are remarkably effective at preserving protein and enzymatic structures against thermal and hydrostatic stress. Here, we investigate the hydrodynamic and biopreservative properties of three small cyclic molecules: glucose, myo-inositol, and methyl-α-d-glucopyranoside using circular dichroism spectroscopy and isothermal calorimetry. Using ultrafast fluorescence frequency upconversion spectroscopy, we measure the dynamical retardation of hydration dynamics in cosolute solutions. We find that all three molecules are effective modifiers of hydration dynamics in solution and all are also effective at protecting model protein systems against thermal denaturation. Methyl-α-d-glucopyranoside is found to be the most effective dynamic reducer displaying an approximately 30% increase in solvation relaxation time as compared to water in a cosolute free solution. myo-Inositol and glucose both exhibit a smaller reduction in dynamics with similar magnitudes of concentration dependence. Using these cosolute models, we demonstrate that the thermal enhancement of protein structure does not correlate strongly with either the dynamical reduction of the bulk solution nor with the number of hydrogen bonds a cosolute makes with the solvent. Furthermore, solutions of glucose at twice the concentration of trehalose are shown to have similar magnitudes of dynamical impact. This implies that regulation of hydration dynamics is not a distinguishing characteristic of successful osmolytes. This work highlights the need for further studies and computational analysis to understand the phenomena of preferential exclusion and the contribution of hydration dynamics to protein structural stability.


Assuntos
Glucose/química , Inositol/química , Metilglucosídeos/química , Água/química , Hidrodinâmica , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Soluções , Temperatura
19.
J Cell Physiol ; 234(4): 4396-4408, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30352123

RESUMO

GLUT12 was cloned from the mammary cancer cell line MCF-7, but its physiological role still needs to be elucidated. To gain more knowledge of GLUT12 function in the intestine, we investigated GLUT12 subcellular localization in the small intestine and its regulation by sugars, hormones, and intracellular mediators in Caco-2 cells and mice. Immunohistochemical methods were used to determine GLUT12 subcellular localization in human and murine small intestine. Brush border membrane vesicles were isolated for western blot analyses. Functional studies were performed in Caco-2 cells by measuring α-methyl-d-glucose (αMG) uptake in the absence of sodium. GLUT12 is located in the apical cytoplasm, below the brush border membrane, and in the perinuclear region of murine and human enterocytes. In Caco-2 cells, GLUT12 translocation to the apical membrane and α-methyl- d-glucose uptake by the transporter are stimulated by protons, glucose, insulin, tumor necrosis factor-α (TNF-α), protein kinase C, and AMP-activated protein kinase. In contrast, hypoxia decreases GLUT12 expression in the apical membrane. Upregulation of TNF-α and hypoxia-inducible factor-1α ( HIF-1α) genes is found in the jejunal mucosa of diet-induced obese mice. In these animals, GLUT12 expression in the brush border membrane is slightly decreased compared with lean animals. Moreover, an intraperitoneal injection of insulin does not induce GLUT12 translocation to the membrane, as it occurs in lean animals. GLUT12 rapid translocation to the enterocytes' apical membrane in response to glucose and insulin could be related to GLUT12 participation in sugar absorption during postprandial periods. In obesity, in which insulin sensitivity is reduced, the contribution of GLUT12 to sugar absorption is affected.


Assuntos
Colo/metabolismo , Enterócitos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Absorção Intestinal , Intestino Delgado/metabolismo , Metilglucosídeos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células CACO-2 , Hipóxia Celular , Colo/citologia , Colo/efeitos dos fármacos , Modelos Animais de Doenças , Enterócitos/efeitos dos fármacos , Regulação da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Insulina/farmacologia , Intestino Delgado/citologia , Intestino Delgado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico , Ratos Wistar , Fator de Necrose Tumoral alfa/farmacologia
20.
J Cell Physiol ; 234(4): 4352-4361, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30246472

RESUMO

We have previously demonstrated in Caco-2 cells that tumor necrosis factor-α (TNF-α) inhibits sugar uptake, acting from the apical membrane, by decreasing the expression of the Na+ -glucose cotransporter SGLT1 in the brush border membrane. The goal was to investigate the hypothesis that TNF-α from abdominal adipose tissue (adipocytes and macrophages) would decrease sugar and amino acid transport acting from the basolateral membrane of the enterocytes. TNF-α placed in the basal compartment of Caco-2 cells decreased α-methyl- d-glucose (αMG) and glutamine uptake. The apical medium derived from these Caco-2 cells apically placed in another set of cells, also reduced sugar and glutamine transport. Reverse-transcription polymerase chain reaction analysis demonstrated upregulation of TNF-α, IL-1ß, and MCP1 expression in Caco-2 cells exposed to basal TNF-α. Similarly, αMG uptake was inhibited after Caco-2 cells were incubated, in the basal compartment, with medium from visceral human mesenchymal stem cells-derived adipocytes of overweight individuals. The apical medium collected from those Caco-2 cells, and placed in the upper side of other set of cells, also decreased sugar uptake. Basal presence of medium derived from lipopolysaccharide-activated macrophages and nonactivated macrophages decreased αMG uptake as well. Diet-induced obese mice showed an increase in the visceral adipose tissue surrounding the intestine. In this physiological condition, there was a reduction on αMG uptake in jejunal everted rings. Altogether, these results suggest that basolateral TNF-α, which can be produced by adipocytes and macrophages during obesity, would be able to activate TNF-α and other proinflammatory proteins expression in the small intestine and diminish intestinal sugar and amino acids transport.


Assuntos
Adipócitos/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Metilglucosídeos/metabolismo , Comunicação Parácrina , Transportador 1 de Glucose-Sódio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células CACO-2 , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Glutamina/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Via Secretória , Transdução de Sinais , Células THP-1 , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...