Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.692
Filtrar
1.
Food Res Int ; 188: 114491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823842

RESUMO

Minimum inhibitory concentrations (MIC) assays are often questioned for their representativeness. Especially when foodborne pathogens are tested, it is of crucial importance to also consider parameters of the human digestive system. Hence, the current study aimed to assess the inhibitory capacity of two antibiotics, ciprofloxacin and tetracycline, against Salmonella enterica and Listeria monocytogenes, under representative environmental conditions. More specifically, aspects of the harsh environment of the human gastrointestinal tract (GIT) were gradually added to the experimental conditions starting from simple aerobic lab conditions into an in vitro simulation of the GIT. In this way, the effects of parameters including the anoxic environment, physicochemical conditions of the GIT (low gastric pH, digestive enzymes, bile acids) and the gut microbiota were evaluated. The latter was simulated by including a representative consortium of selected gut bacteria species. In this study, the MIC of the two antibiotics against the relevant foodborne pathogens were established, under the previously mentioned environmental conditions. The results of S. enterica highlighted the importance of the anaerobic environment when conducting such studies, since the pathogen thrived under such conditions. Inclusion of physicochemical barriers led to exactly opposite results for S. enterica and L. monocytogenes since the former became more susceptible to ciprofloxacin while the latter showed lower susceptibility towards tetracycline. Finally, the inclusion of gut bacteria had a bactericidal effect against L. monocytogenes even in the absence of antibiotics, while gut bacteria protected S. enterica from the effect of ciprofloxacin.


Assuntos
Antibacterianos , Ciprofloxacina , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Salmonella enterica , Tetraciclina , Ciprofloxacina/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Tetraciclina/farmacologia , Antibacterianos/farmacologia , Humanos , Trato Gastrointestinal/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle
2.
Food Res Int ; 188: 114489, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823872

RESUMO

Solanum nigrum L. (SN) berry is an edible berry containing abundant polyphenols and bioactive compounds, which possess antioxidant and antiinflammatory properties. However, the effects of SN on alcohol-induced biochemical changes in the enterohepatic axis remain unclear. In the current study, a chronic ethanol-fed mice ALD model was used to test the protective mechanisms of SN berries. Microbiota composition was determined via 16S rRNA sequencing, we found that SN berries extract (SNE) improved intestinal imbalance by reducing the Firmicutes to Bacteroides ratio, restoring the abundance of Akkermansia microbiota, and reducing the abundance of Allobaculum and Shigella. SNE restored the intestinal short-chain fatty acids content. In addition, liver transcriptome data analysis revealed that SNE primarily affected the genes involved in lipid metabolism and inflammatory responses. Furthermore, SNE ameliorated hepatic steatosis in alcohol-fed mice by activating AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPAR-α). SNE reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88) nuclear factor kappa-B (NF-κB), which can indicate that SNE mainly adjusted LPS/TLR4/MyD88/NF-κB pathway to reduce liver inflammation. SNE enhanced hepatic antioxidant capacity by regulating NRF2-related protein expression. SNE alleviates alcoholic liver injury by regulating of gut microbiota, lipid metabolism, inflammation, and oxidative stress. This study may provide a reference for the development and utilization of SN resources.


Assuntos
Frutas , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas , Estresse Oxidativo , Extratos Vegetais , Solanum nigrum , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Camundongos , Frutas/química , Solanum nigrum/química , Masculino , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Camundongos Endogâmicos C57BL , Inflamação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptor 4 Toll-Like/metabolismo , Modelos Animais de Doenças , PPAR alfa/metabolismo , Antioxidantes/farmacologia , Etanol
3.
Carbohydr Polym ; 339: 122214, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823900

RESUMO

The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-ß-D-Glcp-(1→, →3)-ß-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-ß-D-Glcp-(1→ by ß-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.


Assuntos
Basidiomycota , Diferenciação Celular , Glucanos , Animais , Camundongos , Basidiomycota/química , Glucanos/química , Glucanos/farmacologia , Glucanos/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Masculino , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Ciclofosfamida/farmacologia , Camundongos Endogâmicos BALB C , Microbioma Gastrointestinal/efeitos dos fármacos
4.
Carbohydr Polym ; 339: 122275, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823933

RESUMO

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and few therapeutic options are available. The root of Achyranthis bidentatae (AB) is commonly used for DKD treatment in Traditional Chinese medicine. However, its mechanisms are still unclear. Here, a graminan type fructan ABPW1 with molecular weight of 3998 Da was purified from AB. It was composed of ß-1,2-linked Fruf, ß-2,6-linked-Fruf and ß-1,2,6-linked-Fruf backbone, and terminated with T-Glcp and 2-Fruf residues. ABPW1 protected against kidney injuries and intestinal barrier disruption in Streptozotocin (STZ)/High fat diet (HFD) mice. It could modulate gut microbiota composition, evidenced by a rise in the abundance of Bacteroide and decreases of Rikenella, Alistipes, Laedolimicola and Faecalibaculum. ABPW1 intervention promoted short chain fatty acids (SCFAs) production in STZ/HFD mice, especially propionate and isobutyric acid. Antibiotic treatment further demonstrated the key role of gut microbiota in the renal protective action of ABPW1. In addition, in vitro simulated digestion and fermentation together with in vivo fluorescent labeling studies demonstrated ABPW1 was indigestible in upper digestive tract but could reach the colon and be degraded into SCFAs by gut microbiota there. Overall, these data suggested ABPW1 has the potential application on DKD prevention.


Assuntos
Achyranthes , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Frutanos , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Achyranthes/química , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Masculino , Frutanos/farmacologia , Frutanos/química , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Estreptozocina , Rim/efeitos dos fármacos , Rim/patologia , Ácidos Graxos Voláteis/metabolismo
5.
Carbohydr Polym ; 339: 122284, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823935

RESUMO

Interactions between human gut microbiota and dietary fibres (DF) are influenced by the complexity and diversity of both individual microbiota and sources of DF. Based on 480 in vitro fermentations, a full factorial experiment was performed with six faecal inocula representing two enterotypes and three DF sources with nanometer, micrometer, and millimeter length-scales (apple pectin, apple cell walls and apple particles) at two concentrations. Increasing DF size reduced substrate disappearance and fermentation rates but not biomass growth. Concentrated DF enhanced butyrate production and lactate cross-feeding. Enterotype differentiated final microbial compositions but not biomass or fermentation metabolite profiles. Individual donor microbiota differences did not influence DF type or concentration effects but were manifested in the promotion of different functional microbes within each population with the capacity to degrade the DF substrates. Overall, consistent effects (independent of donor microbiota variation) of DF type and concentration on kinetics of substrate degradation, microbial biomass production, gas kinetics and metabolite profiles were found, which can form the basis for informed design of DF for desired rates/sites and consequences of gut fermentation. These results add further evidence to the concept that, despite variations between individuals, the human gut microbiota represents a community with conserved emergent properties.


Assuntos
Fibras na Dieta , Fezes , Fermentação , Microbioma Gastrointestinal , Pectinas , Pectinas/metabolismo , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Fezes/microbiologia , Malus/metabolismo , Adulto , Masculino , Feminino , Bactérias/metabolismo , Bactérias/classificação , Biomassa
6.
Gut Microbes ; 16(1): 2356278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825779

RESUMO

The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.


Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Microbioma Gastrointestinal , Hipertensão , Microbioma Gastrointestinal/fisiologia , Humanos , Hipertensão/microbiologia , Anti-Hipertensivos/uso terapêutico , Animais , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação
7.
Gut Microbes ; 16(1): 2359500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825783

RESUMO

The gut microbiota has been implicated as a driver of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Recently we described, mucosal biofilms, signifying alterations in microbiota composition and bile acid (BA) metabolism in IBS and ulcerative colitis (UC). Luminal oxygen concentration is a key factor in the gastrointestinal (GI) ecosystem and might be increased in IBS and UC. Here we analyzed the role of archaea as a marker for hypoxia in mucosal biofilms and GI homeostasis. The effects of archaea on microbiome composition and metabolites were analyzed via amplicon sequencing and untargeted metabolomics in 154 stool samples of IBS-, UC-patients and controls. Mucosal biofilms were collected in a subset of patients and examined for their bacterial, fungal and archaeal composition. Absence of archaea, specifically Methanobrevibacter, correlated with disrupted GI homeostasis including decreased microbial diversity, overgrowth of facultative anaerobes and conjugated secondary BA. IBS-D/-M was associated with absence of archaea. Presence of Methanobrevibacter correlated with Oscillospiraceae and epithelial short chain fatty acid metabolism and decreased levels of Ruminococcus gnavus. Absence of fecal Methanobrevibacter may indicate a less hypoxic GI environment, reduced fatty acid oxidation, overgrowth of facultative anaerobes and disrupted BA deconjugation. Archaea and Ruminococcus gnavus could distinguish distinct subtypes of mucosal biofilms. Further research on the connection between archaea, mucosal biofilms and small intestinal bacterial overgrowth should be performed.


Assuntos
Archaea , Bactérias , Biofilmes , Fezes , Microbioma Gastrointestinal , Humanos , Biofilmes/crescimento & desenvolvimento , Archaea/classificação , Archaea/metabolismo , Archaea/genética , Archaea/isolamento & purificação , Adulto , Pessoa de Meia-Idade , Feminino , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fezes/microbiologia , Colo/microbiologia , Methanobrevibacter/metabolismo , Methanobrevibacter/genética , Methanobrevibacter/crescimento & desenvolvimento , Methanobrevibacter/isolamento & purificação , Colite Ulcerativa/microbiologia , Colite Ulcerativa/metabolismo , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/metabolismo , Idoso , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Íleo/microbiologia , Ácidos Graxos Voláteis/metabolismo , Adulto Jovem , Ácidos e Sais Biliares/metabolismo
8.
FASEB J ; 38(11): e23721, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822662

RESUMO

Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Schistosoma japonicum , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Colite Ulcerativa/microbiologia , Colite Ulcerativa/imunologia , Camundongos , Schistosoma japonicum/imunologia , Sulfato de Dextrana/toxicidade , Feminino , Imunização/métodos , Óvulo , Camundongos Endogâmicos C57BL
9.
FASEB J ; 38(11): e23648, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822661

RESUMO

Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.


Assuntos
Comportamento Animal , Vida Livre de Germes , Serotonina , Animais , Serotonina/metabolismo , Camundongos , Masculino , Microbioma Gastrointestinal/fisiologia , Encéfalo/metabolismo , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/genética , Ansiedade/metabolismo , Ansiedade/microbiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Camundongos Endogâmicos C57BL , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Colo/metabolismo , Colo/microbiologia
10.
Arch Dermatol Res ; 316(6): 315, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822918

RESUMO

Hypertrophic scarring is a fibro-proliferative disorder caused by abnormal cutaneous wound healing. Circulating metabolites and the gut microbiome may be involved in the formation of these scars, but high-quality evidence of causality is lacking. To assess whether circulating metabolites and the gut microbiome contain genetically predicted modifiable risk factors for hypertrophic scar formation. Two-sample Mendelian randomization (MR) was performed using MR-Egger, inverse-variance weighting (IVW), Mendelian Randomization Pleiotropy RESidual Sum and Outlier, maximum likelihood, and weighted median methods. Based on the genome-wide significance level, genetically predicted uridine (P = 0.015, odds ratio [OR] = 1903.514, 95% confidence interval [CI] 4.280-846,616.433) and isovalerylcarnitine (P = 0.039, OR = 7.765, 95% CI 1.106-54.512) were positively correlated with hypertrophic scar risk, while N-acetylalanine (P = 0.013, OR = 7.98E-10, 95% CI 5.19E-17-0.012) and glycochenodeoxycholate (P = 0.021, OR = 0.021 95% CI 0.003-0.628) were negatively correlated. Gastranaerophilales and two unknown gut microbe species (P = 0.031, OR = 0.378, 95% CI 0.156-0.914) were associated with an decreased risk of hypertrophic scarring. Circulating metabolites and gut microbiome components may have either positive or negative causal effects on hypertrophic scar formation. The study provides new insights into strategies for diagnosing and limiting hypertrophic scarring.


Assuntos
Cicatriz Hipertrófica , Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Humanos , Microbioma Gastrointestinal/fisiologia , Cicatriz Hipertrófica/microbiologia , Cicatriz Hipertrófica/sangue , Cicatriz Hipertrófica/etiologia , Fatores de Risco , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
11.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829379

RESUMO

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Assuntos
Bactérias , Microbioma Gastrointestinal , Larva , RNA Ribossômico 16S , Tephritidae , Vespas , Animais , Tephritidae/microbiologia , Tephritidae/parasitologia , Vespas/microbiologia , Vespas/fisiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Larva/microbiologia , Larva/parasitologia , Larva/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Fungos/genética , Fungos/fisiologia , Interações Hospedeiro-Parasita , Microbiota , Disbiose/microbiologia , Disbiose/parasitologia
12.
Zhonghua Nei Ke Za Zhi ; 63(6): 605-612, 2024 Jun 01.
Artigo em Chinês | MEDLINE | ID: mdl-38825930

RESUMO

Objective: To observe the characteristics and differences of gut microbiota in asthma patients with different inflammatory types through metagenomic analysis. Methods: Adults aged ≥18 years who visited the Respiratory Clinic of Peking University Third Hospital from August 1, 2021 to August 31, 2022 and were primarily diagnosed with asthma were selected as the study subjects. Finally, 29 patients with stable asthma were included. Fresh fecal samples were collected and the fecal DNA was extracted for high-throughput 16sRNA sequencing of gut microbiota. The diversity and community structure of gut microbiota in different groups of asthma patients were compared, and the species differences were analyzed through random forest and LEfSe analysis. Results: There were sex-based differences in asthma patients with different types of inflammation, and the proportion of female patients was higher in neutrophilic asthma patients (χ2=4.14, P=0.042). There was no significant intergroup difference in the alpha diversity of gut microbiota among asthma patients with different inflammatory types, but there were significant differences in the microbiome. Patients with neutrophilic asthma had higher relative abundance of Bacillales (P=0.029) and Oscillospiraceae (P=0.015). In species LEfSe analysis, patients with eosinophilic asthma had a higher relative abundance of fungi. Conclusion: There are intergroup differences in the gut microbiota of asthma patients with different inflammation types, and fungi are biomarkers that distinguish the differences in gut microbiota between patients with eosinophilic asthma and neutrophilic asthma.


Assuntos
Asma , Fezes , Microbioma Gastrointestinal , Inflamação , Humanos , Asma/microbiologia , Fezes/microbiologia , Inflamação/microbiologia , Feminino , Masculino , RNA Ribossômico 16S/genética , Adulto
13.
Microbiologyopen ; 13(3): e13, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825966

RESUMO

The factors that influence the distribution of bacterial community composition are not well understood. The role of geographical patterns, which suggest limited dispersal, is still a topic of debate. Bacteria associated with hosts face unique dispersal challenges as they often rely on their hosts, which provide specific environments for their symbionts. In this study, we examined the effect of biogeographic distances on the bacterial diversity and composition of bacterial communities in the gastrointestinal tract of Ampullaceana balthica. We compared the effects on the host-associated bacterial community to those on bacterial communities in water and sediment. This comparison was made using 16S ribosomal RNA gene sequencing. We found that the bacterial communities we sampled in Estonia, Denmark, and Northern Germany varied between water, sediment, and the gastrointestinal tract. They also varied between countries within each substrate. This indicates that the type of substrate is a dominant factor in determining bacterial community composition. We separately analyzed the turnover rates of water, sediment, and gastrointestinal bacterial communities over increasing geographic distances. We observed that the turnover rate was lower for gastrointestinal bacterial communities compared to water bacterial communities. This implies that the composition of gastrointestinal bacteria remains relatively stable over distances, while water bacterial communities exhibit greater variability. However, the gastrointestinal tract had the lowest percentage of country-specific amplicon sequence variants, suggesting bacterial colonization from local bacterial communities. Since the overlap between the water and gastrointestinal tract was highest, it appears that the gastrointestinal bacterial community is colonized by the water bacterial community. Our study confirmed that biogeographical patterns in host-associated communities differ from those in water and sediment bacterial communities. These host-associated communities consist of numerous facultative symbionts derived from the water bacterial community.


Assuntos
Bactérias , Trato Gastrointestinal , Sedimentos Geológicos , RNA Ribossômico 16S , Caramujos , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Trato Gastrointestinal/microbiologia , Animais , Caramujos/microbiologia , Alemanha , Dinamarca , Microbioma Gastrointestinal/genética , Microbiologia da Água , Biodiversidade , Estônia , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA
14.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830802

RESUMO

AIMS: The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing annually, leading to substantial medical and health burdens. Numerous studies have demonstrated the potential effectiveness of intestinal probiotics as a treatment strategy for NAFLD. Therefore, the objective of this study is to identify a probiotic for the treatment of NAFLD. METHODS AND RESULTS: In this study, blood and fecal samples were collected from 41 healthy volunteers and 44 patients diagnosed with NAFLD. Analysis of the 16S rDNA sequencing data and quantitative real-time PCR (RT-qPCR) revealed a significant reduction in the abundance of Coprococcus in NAFLD patients. Subsequent animal experiments demonstrated that Coprococcus was able to effectively reverse liver lipid accumulation, inflammation, and fibrosis induced by a high-fat diet (HFD) in mice. CONCLUSIONS: This study provides the first in vivo evidence that Coprococcus is a beneficial bacterium capable of preventing NAFLD and has the same probiotic effect in mice as Lactobacillus GG (LGG), a positive control. Therefore, Coprococcus has the potential to serve as a probiotic for the prevention and treatment of NAFLD in humans.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Probióticos , Animais , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Probióticos/farmacologia , Probióticos/uso terapêutico , Camundongos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fezes/microbiologia , Fezes/química , Adulto , Feminino , Fígado/metabolismo , Microbioma Gastrointestinal , Pessoa de Meia-Idade , Modelos Animais de Doenças
15.
Sci Rep ; 14(1): 12668, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830904

RESUMO

Crohn's disease is an inflammatory condition of the intestine characterized by largely unknown etiology and a relapse remission cycle of disease control. While possible triggers have been identified, research is inconsistent on the precise cause of these relapses, especially in the under-researched pediatric population. We hypothesized that patients in remission would have persistent microbial and inflammatory changes in small intestinal tissue that might trigger relapse. To this end, we analyzed intestinal biopsy samples from six patients with pediatric Crohn's disease in remission and a control group of 16 pediatric patients with no evident pathogenic abnormality. We identified compositional microbiota differences, including decreases in the genera Streptococcus and Actinobacillus as well as increases in Oribacterium and Prevotella in patients with controlled Crohn's disease compared to controls. Further, a histologic analysis found that patients with controlled Crohn's disease had increased epithelial integrity, and decreased intraepithelial lymphocytes compared with controls. Additionally, we observed increased peripheral CD4+ T cells in patients with pediatric Crohn's disease. These results indicate that markers of intestinal inflammation are responsive to Crohn's disease treatment, however the interventions may not resolve the underlying dysbiosis. These findings suggest that persistent dysbiosis may increase vulnerability to relapse of pediatric Crohn's disease. This study used a nested cohort of patients from the Bangladesh Environmental Enteric Dysfunction (BEED) study (ClinicalTrials.gov ID: NCT02812615 Date of first registration: 24/06/2016).


Assuntos
Doença de Crohn , Disbiose , Microbioma Gastrointestinal , Humanos , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Doença de Crohn/complicações , Disbiose/microbiologia , Feminino , Masculino , Criança , Adolescente , Duodeno/microbiologia , Duodeno/patologia , Inflamação/microbiologia , Inflamação/patologia , Estudos de Casos e Controles
16.
Gut Microbes ; 16(1): 2359677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831607

RESUMO

The composition of the human gut microbiome has been observed to change over the course of an individual's life. From birth, it is shaped by mode of delivery, diet, environmental exposures, geographic location, exposures to medications, and by aging itself. Here, we present a narrative review of the gut microbiome across the lifespan with a focus on its impacts on aging and age-related diseases in humans. We will describe how it is shaped, and features of the gut microbiome that have been associated with diseases at different phases of life and how this can adversely affect healthy aging. Across the lifespan, and especially in old age, a diverse microbiome that includes organisms suspected to produce anti-inflammatory metabolites such as short-chain fatty acids, has been reported to be associated with healthy aging. These findings have been remarkably consistent across geographic regions of the world suggesting that they could be universal features of healthy aging across all cultures and genetic backgrounds. Exactly how these features of the microbiome affect biologic processes associated with aging thus promoting healthy aging will be crucial to targeting the gut microbiome for interventions that will support health and longevity.


Assuntos
Envelhecimento , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Envelhecimento/fisiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Longevidade , Dieta
17.
Sci Rep ; 14(1): 12838, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834634

RESUMO

Disorders related to gut health are a significant cause of morbidity among athletes in wheelchair. This pilot feasibility trial aims to investigate whether probiotics compared to prebiotics can improve inflammatory status and gut microbiome composition in elite athletes in wheelchair. We conducted a 12-week, randomized, cross-over controlled trial involving 14 elite Swiss athletes in wheelchair. Participants were given a multispecies-multistrain probiotic or prebiotic (oat bran) daily for 4 weeks (Clinical trials.gov NCT04659408 09/12/2020). This was followed by a 4-week washout and then crossed over. Thirty inflammatory markers were assessed using bead-based multiplex immunoassays (LegendPlex) from serum samples. The gut microbiome was characterized via 16S rRNA sequencing of stool DNA samples. Statistical analyses were conducted using linear mixed-effect models (LMM). At baseline, most athletes (10/14) exhibited low levels of inflammation which associated with higher gut microbiome alpha diversity indices compared to those with high inflammation levels. The use of probiotic had higher decrease in 25 (83%) inflammatory markers measured compared to prebiotic use. Probiotic has the potential in lowering inflammation status and improving the gut microbiome diversity. The future trial should focus on having sufficient sample sizes, population with higher inflammation status, longer intervention exposure and use of differential abundance analysis.


Assuntos
Atletas , Estudos Cross-Over , Microbioma Gastrointestinal , Inflamação , Prebióticos , Probióticos , Humanos , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Prebióticos/administração & dosagem , Masculino , Projetos Piloto , Adulto , Feminino , Cadeiras de Rodas , Adulto Jovem , RNA Ribossômico 16S/genética , Biomarcadores , Fezes/microbiologia
19.
Lab Anim (NY) ; 53(6): 127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834804
20.
Sci Rep ; 14(1): 12827, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834834

RESUMO

Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Lipopolissacarídeos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , NF-kappa B/metabolismo , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/microbiologia , Camundongos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/microbiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Linhagem Celular Tumoral , Invasividade Neoplásica , Inflamação/metabolismo , Inflamação/patologia , Bacteroidetes , Microbioma Gastrointestinal , Movimento Celular/efeitos dos fármacos , Masculino , Metástase Neoplásica , Proliferação de Células , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...