Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.406
Filtrar
1.
Sci Rep ; 14(1): 13653, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871812

RESUMO

Eukaryotic membranes are compartmentalized into distinct micro- and nanodomains that rearrange dynamically in response to external and internal cues. This lateral heterogeneity of the lipid bilayer and associated clustering of distinct membrane proteins contribute to the spatial organization of numerous cellular processes. Here, we show that membrane microdomains within the endoplasmic reticulum (ER) of yeast cells are reorganized during metabolic reprogramming and aging. Using biosensors with varying transmembrane domain length to map lipid bilayer thickness, we demonstrate that in young cells, microdomains of increased thickness mainly exist within the nuclear ER, while progressing cellular age drives the formation of numerous microdomains specifically in the cortical ER. Partitioning of biosensors with long transmembrane domains into these microdomains increased protein stability and prevented autophagic removal. In contrast, reporters with short transmembrane domains progressively accumulated at the membrane contact site between the nuclear ER and the vacuole, the so-called nucleus-vacuole junction (NVJ), and were subjected to turnover via selective microautophagy occurring specifically at these sites. Reporters with long transmembrane domains were excluded from the NVJ. Our data reveal age-dependent rearrangement of the lateral organization of the ER and establish transmembrane domain length as a determinant of membrane contact site localization and autophagic degradation.


Assuntos
Autofagia , Senescência Celular , Retículo Endoplasmático , Microdomínios da Membrana , Saccharomyces cerevisiae , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae/metabolismo , Microdomínios da Membrana/metabolismo , Senescência Celular/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Membrana/metabolismo
2.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892363

RESUMO

Autophagy plays a key role in removing protein aggregates and damaged organelles. In addition to its conventional degradative functions, autophagy machinery contributes to the release of cytosolic proteins through an unconventional secretion pathway. In this research, we analyzed autophagy-induced extracellular vesicles (EVs) in HT1080-derived human fibrosarcoma 2FTGH cells using transmission electron microscopy and atomic force microscopy (AFM). We preliminary observed that autophagy induces the formation of a subset of large heterogeneous intracellular vesicular structures. Moreover, AFM showed that autophagy triggering led to a more visible smooth cell surface with a reduced amount of plasma membrane protrusions. Next, we characterized EVs secreted by cells following autophagy induction, demonstrating that cells release both plasma membrane-derived microvesicles and exosomes. A self-forming iodixanol gradient was performed for cell subfractionation. Western blot analysis showed that endogenous LC3-II co-fractionated with CD63 and CD81. Then, we analyzed whether raft components are enriched within EV cargoes following autophagy triggering. We observed that the raft marker GD3 and ER marker ERLIN1 co-fractionated with LC3-II; dual staining by immunogold electron microscopy and coimmunoprecipitation revealed GD3-LC3-II association, indicating that autophagy promotes enrichment of raft components within EVs. Introducing a new brick in the crosstalk between autophagy and the endolysosomal system may have important implications for the knowledge of pathogenic mechanisms, suggesting alternative raft target therapies in diseases in which the generation of EV is active.


Assuntos
Autofagia , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Linhagem Celular Tumoral , Microdomínios da Membrana/metabolismo , Exossomos/metabolismo , Exossomos/ultraestrutura , Tetraspanina 30/metabolismo , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Proteínas Associadas aos Microtúbulos/metabolismo
3.
Cells ; 13(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891023

RESUMO

Podocyte health is vital for maintaining proper glomerular filtration in the kidney. Interdigitating foot processes from podocytes form slit diaphragms which regulate the filtration of molecules through size and charge selectivity. The abundance of lipid rafts, which are ordered membrane domains rich in cholesterol and sphingolipids, near the slit diaphragm highlights the importance of lipid metabolism in podocyte health. Emerging research shows the importance of sphingolipid metabolism to podocyte health through structural and signaling roles. Dysregulation in sphingolipid metabolism has been shown to cause podocyte injury and drive glomerular disease progression. In this review, we discuss the structure and metabolism of sphingolipids, as well as their role in proper podocyte function and how alterations in sphingolipid metabolism contributes to podocyte injury and drives glomerular disease progression.


Assuntos
Podócitos , Esfingolipídeos , Podócitos/metabolismo , Podócitos/patologia , Esfingolipídeos/metabolismo , Humanos , Animais , Metabolismo dos Lipídeos , Nefropatias/metabolismo , Nefropatias/patologia , Microdomínios da Membrana/metabolismo
4.
Elife ; 122024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837189

RESUMO

The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting the Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Microdomínios da Membrana , Transporte Proteico , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microdomínios da Membrana/metabolismo , Via Secretória , Humanos , Cinética , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Células HeLa
5.
Cell Mol Life Sci ; 81(1): 261, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878170

RESUMO

Blood ultrafiltration in nephrons critically depends on specialized intercellular junctions between podocytes, named slit diaphragms (SDs). Here, by studying a homologous structure found in Drosophila nephrocytes, we identify the phospholipid scramblase Scramb1 as an essential component of the SD, uncovering a novel link between membrane dynamics and SD formation. In scramb1 mutants, SDs fail to form. Instead, the SD components Sticks and stones/nephrin, Polychaetoid/ZO-1, and the Src-kinase Src64B/Fyn associate in cortical foci lacking the key SD protein Dumbfounded/NEPH1. Scramb1 interaction with Polychaetoid/ZO-1 and Flotillin2, the presence of essential putative palmitoylation sites and its capacity to oligomerize, suggest a function in promoting SD assembly within lipid raft microdomains. Furthermore, Scramb1 interactors as well as its functional sensitivity to temperature, suggest an active involvement in membrane remodeling processes during SD assembly. Remarkably, putative Ca2+-binding sites in Scramb1 are essential for its activity raising the possibility that Ca2+ signaling may control the assembly of SDs by impacting on Scramb1 activity.


Assuntos
Proteínas de Drosophila , Proteínas de Transferência de Fosfolipídeos , Podócitos , Animais , Podócitos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Microdomínios da Membrana/metabolismo , Junções Intercelulares/metabolismo
6.
J Clin Invest ; 134(13)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771648

RESUMO

Endothelial cells (ECs) in the descending aorta are exposed to high laminar shear stress, and this supports an antiinflammatory phenotype. High laminar shear stress also induces flow-aligned cell elongation and front-rear polarity, but whether these are required for the antiinflammatory phenotype is unclear. Here, we showed that caveolin-1-rich microdomains polarize to the downstream end of ECs that are exposed to continuous high laminar flow. These microdomains were characterized by high membrane rigidity, filamentous actin (F-actin), and raft-associated lipids. Transient receptor potential vanilloid (TRPV4) ion channels were ubiquitously expressed on the plasma membrane but mediated localized Ca2+ entry only at these microdomains where they physically interacted with clustered caveolin-1. These focal Ca2+ bursts activated endothelial nitric oxide synthase within the confines of these domains. Importantly, we found that signaling at these domains required both cell body elongation and sustained flow. Finally, TRPV4 signaling at these domains was necessary and sufficient to suppress inflammatory gene expression and exogenous activation of TRPV4 channels ameliorated the inflammatory response to stimuli both in vitro and in vivo. Our work revealed a polarized mechanosensitive signaling hub in arterial ECs that dampened inflammatory gene expression and promoted cell resilience.


Assuntos
Cálcio , Células Endoteliais , Inflamação , Mecanotransdução Celular , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Animais , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Cálcio/metabolismo , Camundongos , Humanos , Microdomínios da Membrana/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Sinalização do Cálcio , Estresse Mecânico , Aorta Torácica/metabolismo , Aorta Torácica/patologia
7.
Curr Protoc ; 4(5): e1048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752255

RESUMO

Both Ca2+ and protein kinase A (PKA) are multifaceted and ubiquitous signaling molecules, essential for regulating the intricate network of signaling pathways. However, their dynamics within specialized membrane regions are still not well characterized. By using genetically encoded fluorescent indicators specifically targeted to distinct plasma membrane microdomains, we have established a protocol that permits observing Ca2+/PKA dynamics in discrete neuronal microdomains with high spatial and temporal resolution. The approach employs a fluorescence microscope with a sensitive camera and a dedicated CFP/YFP/mCherry filter set, enabling the simultaneous detection of donor-acceptor emission and red fluorescence signal. In this detailed step-by-step guide, we outline the experimental procedure, including isolation of rat primary neurons and their transfection with biosensors targeted to lipid rafts or non-raft regions of plasma membrane. We provide information on the necessary equipment and imaging setup required for recording, along with highlighting critical parameters and troubleshooting guidelines for real-time measurements. Finally, we provide examples of the observed Ca2+ and PKA changes in specific cellular compartments. The application of this technique may have significant implications for studying cross-talk between second messengers and their alterations in various pathological conditions. © 2024 Wiley Periodicals LLC.


Assuntos
Cálcio , Proteínas Quinases Dependentes de AMP Cíclico , Transferência Ressonante de Energia de Fluorescência , Hipocampo , Microdomínios da Membrana , Neurônios , Animais , Neurônios/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Ratos , Cálcio/metabolismo , Microdomínios da Membrana/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Cultivadas , Microscopia de Fluorescência/métodos , Técnicas Biossensoriais/métodos
8.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698905

RESUMO

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Assuntos
Toxinas Bacterianas , SARS-CoV-2 , Sinaptogirinas , Internalização do Vírus , Humanos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Sinaptogirinas/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Jurkat , Aggregatibacter actinomycetemcomitans/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Endocitose , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Microdomínios da Membrana/metabolismo
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732158

RESUMO

Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.


Assuntos
Membrana Celular , Endocitose , Canais Epiteliais de Sódio , Hipertensão , Neutrófilos , Canais Epiteliais de Sódio/metabolismo , Humanos , Neutrófilos/metabolismo , Hipertensão/metabolismo , Hipertensão/patologia , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Masculino , Feminino , Proteínas Imediatamente Precoces/metabolismo , Pessoa de Meia-Idade , Microdomínios da Membrana/metabolismo
10.
Langmuir ; 40(21): 11228-11238, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753461

RESUMO

Diverse collections of lipids self-assemble into domains within biological membranes, and these domains are typically organized in both the transverse and lateral directions of the membrane. The ability of the membrane to link these domains across the membrane's interior grants cells control over features on the external cellular surface. Numerous hypothesized factors drive the cross-membrane (or transverse) coupling of lipid domains. In this work we seek to isolate these transverse lipid-lipid influences in a simple model system using droplet interface bilayers (DIBs) to better understand the associated mechanics. DIBs enable symmetric and asymmetric combinations of domain-forming lipid mixtures within a model bilayer, and the evolving energetics of the membrane may be tracked using drop-shape analysis. We find that symmetric distributions of domain-forming lipids produce long-lasting, gradual shifts in the DIB membrane energetics that are not observed in asymmetric distributions of the lipids where the domain-forming lipids are only within one leaflet. The approach selected for this work provides experimental measurement of the mismatch penalty associated with antiregistered lipid domains as well as measurements of the influence of rafts on DIB behaviors with suggestions for their future use as a model platform.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Fosfatidilcolinas/química
11.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731855

RESUMO

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Assuntos
Cricetulus , Modelos Animais de Doenças , Esfingomielina Fosfodiesterase , Canais de Cátion TRPM , beta-Ciclodextrinas , Animais , Esfingomielina Fosfodiesterase/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Camundongos , Humanos , Células CHO , beta-Ciclodextrinas/farmacologia , Células HEK293 , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/metabolismo , Colesterol/metabolismo , Masculino , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Pregnenolona/farmacologia , Sobrevivência Celular/efeitos dos fármacos
12.
Immunity ; 57(6): 1378-1393.e14, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38749447

RESUMO

Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.


Assuntos
Carcinoma Ductal Pancreático , Claudinas , Ativação Linfocitária , Neoplasias Pancreáticas , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Claudinas/metabolismo , Claudinas/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/imunologia , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia
13.
Eur Phys J E Soft Matter ; 47(5): 30, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720027

RESUMO

The aggregation or clustering of proteins and other macromolecules plays an important role in the formation of large-scale molecular assemblies within cell membranes. Examples of such assemblies include lipid rafts, and postsynaptic domains (PSDs) at excitatory and inhibitory synapses in neurons. PSDs are rich in scaffolding proteins that can transiently trap transmembrane neurotransmitter receptors, thus localizing them at specific spatial positions. Hence, PSDs play a key role in determining the strength of synaptic connections and their regulation during learning and memory. Recently, a two-dimensional (2D) diffusion-mediated aggregation model of PSD formation has been developed in which the spatial locations of the clusters are determined by a set of fixed anchoring sites. The system is kept out of equilibrium by the recycling of particles between the cell membrane and interior. This results in a stationary distribution consisting of multiple clusters, whose average size can be determined using an effective mean-field description of the particle concentration around each anchored cluster. In this paper, we derive corrections to the mean-field approximation by applying the theory of diffusion in singularly perturbed domains. The latter is a powerful analytical method for solving two-dimensional (2D) and three-dimensional (3D) diffusion problems in domains where small holes or perforations have been removed from the interior. Applications range from modeling intracellular diffusion, where interior holes could represent subcellular structures such as organelles or biological condensates, to tracking the spread of chemical pollutants or heat from localized sources. In this paper, we take the bounded domain to be the cell membrane and the holes to represent anchored clusters. The analysis proceeds by partitioning the membrane into a set of inner regions around each cluster, and an outer region where mean-field interactions occur. Asymptotically matching the inner and outer stationary solutions generates an asymptotic expansion of the particle concentration, which includes higher-order corrections to mean-field theory that depend on the positions of the clusters and the boundary of the domain. Motivated by a recent study of light-activated protein oligomerization in cells, we also develop the analogous theory for cluster formation in a three-dimensional (3D) domain. The details of the asymptotic analysis differ from the 2D case due to the contrasting singularity structure of 2D and 3D Green's functions.


Assuntos
Membrana Celular , Difusão , Membrana Celular/metabolismo , Membrana Celular/química , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Modelos Biológicos
14.
Mol Aspects Med ; 97: 101279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772081

RESUMO

The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.


Assuntos
Metabolismo dos Lipídeos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Viroses , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Viroses/metabolismo , Viroses/imunologia , Viroses/virologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Microdomínios da Membrana/metabolismo , Imunidade Inata , Interações Hospedeiro-Patógeno
15.
New Phytol ; 243(1): 48-57, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757654

RESUMO

Recent advancements in our understanding of cell membrane dynamics have shed light on the importance of plasma membrane (PM) nanodomains in plant cell signaling. Nevertheless, many aspects of membrane nanodomains, including their regulatory mechanisms and biological functions, remain enigmatic. To address this knowledge gap, our review article proposes a novel perspective wherein signaling pathways target endoplasmic reticulum (ER)-based lipid metabolism to exert control over the formation and function of membrane nanodomains. Subsequently, these nanodomains reciprocate by influencing the localization and activity of signaling molecules at the PM. We place a specific emphasis on ER-based enzymatic reactions, given the ER's central role in membrane lipid biosynthesis and its capacity to directly impact PM lipid composition, particularly with regard to saturation levels - an essential determinant of nanodomain properties. The interplay among cell signaling, glycerolipid metabolism, and PM nanodomain may create feedforward/feedback loops that fine-tune cellular responses to developmental and environmental cues.


Assuntos
Membrana Celular , Retículo Endoplasmático , Metabolismo dos Lipídeos , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Lipídeos de Membrana/metabolismo
16.
J Phys Chem B ; 128(15): 3652-3661, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38576273

RESUMO

Many pharmaceutical drugs are known to interact with lipid membranes through nonspecific molecular interactions, which affect their therapeutic effect. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and one of the most commonly prescribed. In the presence of cholesterol, lipid bilayers can separate into nanoscale liquid-disordered and liquid-ordered structures, the latter known as lipid rafts. Here, we study spin-labeled ibuprofen (ibuprofen-SL) in the model membrane consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol in the molar ratio of (0.5-0.5xchol)/(0.5-0.5xchol)/xchol. Electron paramagnetic resonance (EPR) spectroscopy is employed, along with its pulsed version of double electron-electron resonance (DEER, also known as PELDOR). The data obtained indicate lateral lipid-mediated clustering of ibuprofen-SL molecules with a local surface density noticeably larger than that expected for random lateral distribution. In the absence of cholesterol, the data can be interpreted as indicating alternating clustering in two opposing leaflets of the bilayer. In the presence of cholesterol, for xchol ≥ 20 mol %, the results show that ibuprofen-SL molecules have a quasi-regular lateral distribution, with a "superlattice" parameter of ∼3.0 nm. This regularity can be explained by the entrapment of ibuprofen-SL molecules by lipid rafts known to exist in this system with the additional assumption that lipid rafts have a nanoscale substructure.


Assuntos
Ibuprofeno , Bicamadas Lipídicas , Espectroscopia de Ressonância de Spin Eletrônica , Bicamadas Lipídicas/química , Colesterol/química , Microdomínios da Membrana , Fosfatidilcolinas/química
17.
Lipids Health Dis ; 23(1): 114, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643132

RESUMO

Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.


Assuntos
Transtorno do Espectro Autista , Humanos , Colesterol/metabolismo , Degradação Associada com o Retículo Endoplasmático , Microdomínios da Membrana/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(17): e2314772121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621122

RESUMO

Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35[Formula: see text] strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that-even upon reinstatement of initial densities-ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.


Assuntos
Formigas , Formigas Lava-Pés , Animais , Formigas/fisiologia , Física , Microdomínios da Membrana
19.
J Nutr ; 154(6): 1945-1958, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582385

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) controls the biophysical organization of plasma membrane sphingolipid/cholesterol-enriched lipid rafts to exert anti-inflammatory effects, particularly in lymphocytes. However, the impact of DHA on the spatial arrangement of alveolar macrophage lipid rafts and inflammation is unknown. OBJECTIVES: The primary objective was to determine how DHA controls lipid raft organization and function of alveolar macrophages. As proof-of-concept, we also investigated DHA's anti-inflammatory effects on select pulmonary inflammatory markers with a murine influenza model. METHODS: MH-S cells, an alveolar macrophage line, were treated with 50 µM DHA or vehicle control and were used to study plasma membrane molecular organization with fluorescence-based methods. Biomimetic membranes and coarse grain molecular dynamic (MD) simulations were employed to investigate how DHA mechanistically controls lipid raft size. qRT-PCR, mass spectrometry, and ELISAs were used to quantify downstream inflammatory signaling transcripts, oxylipins, and cytokines, respectively. Lungs from DHA-fed influenza-infected mice were analyzed for specific inflammatory markers. RESULTS: DHA increased the size of lipid rafts while decreasing the molecular packing of the MH-S plasma membrane. Adding a DHA-containing phospholipid to a biomimetic lipid raft-containing membrane led to condensing, which was reversed with the removal of cholesterol. MD simulations revealed DHA nucleated lipid rafts by driving cholesterol and sphingomyelin into rafts. Downstream of the plasma membrane, DHA lowered the concentration of select inflammatory transcripts, oxylipins, and IL-6 secretion. DHA lowered pulmonary Il6 and Tnf-α mRNA expression and increased anti-inflammatory oxylipins of influenza-infected mice. CONCLUSIONS: The data suggest a model in which the localization of DHA acyl chains to nonrafts is driving sphingomyelin and cholesterol molecules into larger lipid rafts, which may serve as a trigger to impede signaling and lower inflammation. These findings also identify alveolar macrophages as a target of DHA and underscore the anti-inflammatory properties of DHA for lung inflammation.


Assuntos
Ácidos Docosa-Hexaenoicos , Macrófagos Alveolares , Microdomínios da Membrana , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Inflamação/metabolismo , Pulmão/metabolismo , Infecções por Orthomyxoviridae , Camundongos Endogâmicos C57BL , Linhagem Celular , Colesterol/metabolismo
20.
FEBS Lett ; 598(9): 1061-1079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649155

RESUMO

The molecular mechanisms of selective RNA loading into exosomes and other extracellular vesicles are not yet completely understood. In order to show that a pool of RNA sequences binds both the amino acid arginine and lipid membranes, we constructed a bifunctional RNA 10Arg aptamer specific for arginine and lipid vesicles. The preference of RNA 10Arg for lipid rafts was visualized and confirmed using FRET microscopy in neuroblastoma cells. The selection-amplification (SELEX) method using a doped (with the other three nucleotides) pool of RNA 10Arg sequences yielded several RNA 10Arg(D) sequences, and the affinities of these RNAs both to arginine and liposomes are improved in comparison to pre-doped RNA. Generation of these bispecific aptamers supports the hypothesis that an RNA molecule can bind both to RNA-binding proteins (RBPs) through arginine within the RBP-binding site and to membrane lipid rafts, thus facilitating RNA loading into exosomes and other extracellular vesicles.


Assuntos
Arginina , Lipossomos , Arginina/química , Arginina/metabolismo , Humanos , Lipossomos/química , Lipossomos/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Sequência de Bases , RNA/metabolismo , RNA/química , RNA/genética , Exossomos/metabolismo , Exossomos/genética , Exossomos/química , Transferência Ressonante de Energia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...