Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.249
Filtrar
1.
Elife ; 122024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837189

RESUMO

The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting the Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Microdomínios da Membrana , Transporte Proteico , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microdomínios da Membrana/metabolismo , Via Secretória , Humanos , Cinética , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Células HeLa
2.
Eur Phys J E Soft Matter ; 47(5): 30, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720027

RESUMO

The aggregation or clustering of proteins and other macromolecules plays an important role in the formation of large-scale molecular assemblies within cell membranes. Examples of such assemblies include lipid rafts, and postsynaptic domains (PSDs) at excitatory and inhibitory synapses in neurons. PSDs are rich in scaffolding proteins that can transiently trap transmembrane neurotransmitter receptors, thus localizing them at specific spatial positions. Hence, PSDs play a key role in determining the strength of synaptic connections and their regulation during learning and memory. Recently, a two-dimensional (2D) diffusion-mediated aggregation model of PSD formation has been developed in which the spatial locations of the clusters are determined by a set of fixed anchoring sites. The system is kept out of equilibrium by the recycling of particles between the cell membrane and interior. This results in a stationary distribution consisting of multiple clusters, whose average size can be determined using an effective mean-field description of the particle concentration around each anchored cluster. In this paper, we derive corrections to the mean-field approximation by applying the theory of diffusion in singularly perturbed domains. The latter is a powerful analytical method for solving two-dimensional (2D) and three-dimensional (3D) diffusion problems in domains where small holes or perforations have been removed from the interior. Applications range from modeling intracellular diffusion, where interior holes could represent subcellular structures such as organelles or biological condensates, to tracking the spread of chemical pollutants or heat from localized sources. In this paper, we take the bounded domain to be the cell membrane and the holes to represent anchored clusters. The analysis proceeds by partitioning the membrane into a set of inner regions around each cluster, and an outer region where mean-field interactions occur. Asymptotically matching the inner and outer stationary solutions generates an asymptotic expansion of the particle concentration, which includes higher-order corrections to mean-field theory that depend on the positions of the clusters and the boundary of the domain. Motivated by a recent study of light-activated protein oligomerization in cells, we also develop the analogous theory for cluster formation in a three-dimensional (3D) domain. The details of the asymptotic analysis differ from the 2D case due to the contrasting singularity structure of 2D and 3D Green's functions.


Assuntos
Membrana Celular , Difusão , Membrana Celular/metabolismo , Membrana Celular/química , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Modelos Biológicos
3.
Curr Protoc ; 4(5): e1048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752255

RESUMO

Both Ca2+ and protein kinase A (PKA) are multifaceted and ubiquitous signaling molecules, essential for regulating the intricate network of signaling pathways. However, their dynamics within specialized membrane regions are still not well characterized. By using genetically encoded fluorescent indicators specifically targeted to distinct plasma membrane microdomains, we have established a protocol that permits observing Ca2+/PKA dynamics in discrete neuronal microdomains with high spatial and temporal resolution. The approach employs a fluorescence microscope with a sensitive camera and a dedicated CFP/YFP/mCherry filter set, enabling the simultaneous detection of donor-acceptor emission and red fluorescence signal. In this detailed step-by-step guide, we outline the experimental procedure, including isolation of rat primary neurons and their transfection with biosensors targeted to lipid rafts or non-raft regions of plasma membrane. We provide information on the necessary equipment and imaging setup required for recording, along with highlighting critical parameters and troubleshooting guidelines for real-time measurements. Finally, we provide examples of the observed Ca2+ and PKA changes in specific cellular compartments. The application of this technique may have significant implications for studying cross-talk between second messengers and their alterations in various pathological conditions. © 2024 Wiley Periodicals LLC.


Assuntos
Cálcio , Proteínas Quinases Dependentes de AMP Cíclico , Transferência Ressonante de Energia de Fluorescência , Hipocampo , Microdomínios da Membrana , Neurônios , Animais , Neurônios/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Ratos , Cálcio/metabolismo , Microdomínios da Membrana/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Cultivadas , Microscopia de Fluorescência/métodos , Técnicas Biossensoriais/métodos
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732158

RESUMO

Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.


Assuntos
Membrana Celular , Endocitose , Canais Epiteliais de Sódio , Hipertensão , Neutrófilos , Canais Epiteliais de Sódio/metabolismo , Humanos , Neutrófilos/metabolismo , Hipertensão/metabolismo , Hipertensão/patologia , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Masculino , Feminino , Proteínas Imediatamente Precoces/metabolismo , Pessoa de Meia-Idade , Microdomínios da Membrana/metabolismo
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731855

RESUMO

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Assuntos
Cricetulus , Modelos Animais de Doenças , Esfingomielina Fosfodiesterase , Canais de Cátion TRPM , beta-Ciclodextrinas , Animais , Esfingomielina Fosfodiesterase/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Camundongos , Humanos , Células CHO , beta-Ciclodextrinas/farmacologia , Células HEK293 , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/metabolismo , Colesterol/metabolismo , Masculino , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Pregnenolona/farmacologia , Sobrevivência Celular/efeitos dos fármacos
6.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698905

RESUMO

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Assuntos
Toxinas Bacterianas , SARS-CoV-2 , Sinaptogirinas , Internalização do Vírus , Humanos , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Sinaptogirinas/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Jurkat , Aggregatibacter actinomycetemcomitans/metabolismo , Aggregatibacter actinomycetemcomitans/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Endocitose , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Microdomínios da Membrana/metabolismo
7.
New Phytol ; 243(1): 48-57, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757654

RESUMO

Recent advancements in our understanding of cell membrane dynamics have shed light on the importance of plasma membrane (PM) nanodomains in plant cell signaling. Nevertheless, many aspects of membrane nanodomains, including their regulatory mechanisms and biological functions, remain enigmatic. To address this knowledge gap, our review article proposes a novel perspective wherein signaling pathways target endoplasmic reticulum (ER)-based lipid metabolism to exert control over the formation and function of membrane nanodomains. Subsequently, these nanodomains reciprocate by influencing the localization and activity of signaling molecules at the PM. We place a specific emphasis on ER-based enzymatic reactions, given the ER's central role in membrane lipid biosynthesis and its capacity to directly impact PM lipid composition, particularly with regard to saturation levels - an essential determinant of nanodomain properties. The interplay among cell signaling, glycerolipid metabolism, and PM nanodomain may create feedforward/feedback loops that fine-tune cellular responses to developmental and environmental cues.


Assuntos
Membrana Celular , Retículo Endoplasmático , Metabolismo dos Lipídeos , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Lipídeos de Membrana/metabolismo
8.
J Nutr ; 154(6): 1945-1958, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582385

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) controls the biophysical organization of plasma membrane sphingolipid/cholesterol-enriched lipid rafts to exert anti-inflammatory effects, particularly in lymphocytes. However, the impact of DHA on the spatial arrangement of alveolar macrophage lipid rafts and inflammation is unknown. OBJECTIVES: The primary objective was to determine how DHA controls lipid raft organization and function of alveolar macrophages. As proof-of-concept, we also investigated DHA's anti-inflammatory effects on select pulmonary inflammatory markers with a murine influenza model. METHODS: MH-S cells, an alveolar macrophage line, were treated with 50 µM DHA or vehicle control and were used to study plasma membrane molecular organization with fluorescence-based methods. Biomimetic membranes and coarse grain molecular dynamic (MD) simulations were employed to investigate how DHA mechanistically controls lipid raft size. qRT-PCR, mass spectrometry, and ELISAs were used to quantify downstream inflammatory signaling transcripts, oxylipins, and cytokines, respectively. Lungs from DHA-fed influenza-infected mice were analyzed for specific inflammatory markers. RESULTS: DHA increased the size of lipid rafts while decreasing the molecular packing of the MH-S plasma membrane. Adding a DHA-containing phospholipid to a biomimetic lipid raft-containing membrane led to condensing, which was reversed with the removal of cholesterol. MD simulations revealed DHA nucleated lipid rafts by driving cholesterol and sphingomyelin into rafts. Downstream of the plasma membrane, DHA lowered the concentration of select inflammatory transcripts, oxylipins, and IL-6 secretion. DHA lowered pulmonary Il6 and Tnf-α mRNA expression and increased anti-inflammatory oxylipins of influenza-infected mice. CONCLUSIONS: The data suggest a model in which the localization of DHA acyl chains to nonrafts is driving sphingomyelin and cholesterol molecules into larger lipid rafts, which may serve as a trigger to impede signaling and lower inflammation. These findings also identify alveolar macrophages as a target of DHA and underscore the anti-inflammatory properties of DHA for lung inflammation.


Assuntos
Ácidos Docosa-Hexaenoicos , Macrófagos Alveolares , Microdomínios da Membrana , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Inflamação/metabolismo , Pulmão/metabolismo , Infecções por Orthomyxoviridae , Camundongos Endogâmicos C57BL , Linhagem Celular , Colesterol/metabolismo
9.
Lipids Health Dis ; 23(1): 114, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643132

RESUMO

Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.


Assuntos
Transtorno do Espectro Autista , Humanos , Colesterol/metabolismo , Degradação Associada com o Retículo Endoplasmático , Microdomínios da Membrana/metabolismo
10.
J Phys Chem Lett ; 15(16): 4515-4522, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38634827

RESUMO

Cholesterol-rich lipid rafts are found to facilitate membrane fusion, central to processes like viral entry, fertilization, and neurotransmitter release. While the fusion process involves local, transient membrane dehydration, the impact of reduced hydration on cholesterol's structural organization in biological membranes remains unclear. Here, we employ confocal fluorescence microscopy and atomistic molecular dynamics simulations to investigate cholesterol behavior in phase-separated lipid bilayers under controlled hydration. We unveiled that dehydration prompts cholesterol release from raft-like domains into the surrounding fluid phase. Unsaturated phospholipids undergo more significant dehydration-induced structural changes and lose more hydrogen bonds with water than sphingomyelin. The results suggest that cholesterol redistribution is driven by the equalization of biophysical properties between phases and the need to satisfy lipid hydrogen bonds. This underscores the role of cholesterol-phospholipid-water interplay in governing cholesterol affinity for a specific lipid type, providing a new perspective on the regulatory role of cell membrane heterogeneity during membrane fusion.


Assuntos
Colesterol , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Água , Colesterol/química , Colesterol/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Água/química , Água/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Ligação de Hidrogênio , Esfingomielinas/química , Esfingomielinas/metabolismo , Fusão de Membrana , Fosfolipídeos/química , Fosfolipídeos/metabolismo
11.
J Chem Inf Model ; 64(9): 3874-3883, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652138

RESUMO

The lipid raft subdomains in cancer cell membranes play a key role in signal transduction, biomolecule recruitment, and drug transmembrane transport. Augmented membrane rigidity due to the formation of a lipid raft is unfavorable for the entry of drugs, a limiting factor in clinical oncology. The short-chain ceramide (CER) has been reported to promote drug entry into membranes and disrupt lipid raft formation, but the underlying mechanism is not well understood. We recently explored the carrier-membrane fusion dynamics of PEG-DPPE micelles in delivering doxorubicin (DOX). Based on the phase-segregated membrane model composed of DPPC/DIPC/CHOL/GM1/PIP2, we aim to explore the dynamic mechanism of the PEG-DPPE micelle-encapsulating DOXs in association with the raft-included cell membrane modulated by C8 acyl tail CERs. The results show that the lipid raft remains integrated and DOX-resistant subjected to free DOXs and the micelle-encapsulating ones. Addition of CERs disorganizes the lipid raft by pushing CHOL aside from DPPC. It subsequently allows for a good permeability for PEG-DPPE micelle-encapsulated DOXs, which penetrate deeper as CER concentration increases. GM1 is significant in guiding drugs' redistributing between bilayer phases, and the anionic PIP2 further helps DOXs attain the inner bilayer surface. These results elaborate on the perturbing effect of CERs on lipid raft stability, which provides a new comprehensive approach for further design of drug delivery systems.


Assuntos
Ceramidas , Doxorrubicina , Microdomínios da Membrana , Micelas , Simulação de Dinâmica Molecular , Polietilenoglicóis , Polietilenoglicóis/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Ceramidas/química , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Fosfatidiletanolaminas/química , Humanos
12.
Biosensors (Basel) ; 14(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667199

RESUMO

C-terminal Src kinase (CSK) is the major inhibitory kinase for Src family kinases (SFKs) through the phosphorylation of their C-tail tyrosine sites, and it regulates various types of cellular activity in association with SFK function. As a cytoplasmic protein, CSK needs be recruited to the plasma membrane to regulate SFKs' activity. The regulatory mechanism behind CSK activity and its subcellular localization remains largely unclear. In this work, we developed a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) to visualize the CSK activity in live cells. The biosensor, with an optimized substrate peptide, confirmed the crucial Arg107 site in the CSK SH2 domain and displayed sensitivity and specificity to CSK activity, while showing minor responses to co-transfected Src and Fyn. FRET measurements showed that CSK had a relatively mild level of kinase activity in comparison to Src and Fyn in rat airway smooth muscle cells. The biosensor tagged with different submembrane-targeting signals detected CSK activity at both non-lipid raft and lipid raft microregions, while it showed a higher FRET level at non-lipid ones. Co-transfected receptor-type protein tyrosine phosphatase alpha (PTPα) had an inhibitory effect on the CSK FRET response. The biosensor did not detect obvious changes in CSK activity between metastatic cancer cells and normal ones. In conclusion, a novel FRET biosensor was generated to monitor CSK activity and demonstrated CSK activity existing in both non-lipid and lipid raft membrane microregions, being more present at non-lipid ones.


Assuntos
Técnicas Biossensoriais , Proteína Tirosina Quinase CSK , Transferência Ressonante de Energia de Fluorescência , Humanos , Animais , Proteína Tirosina Quinase CSK/metabolismo , Ratos , Quinases da Família src/metabolismo , Fosforilação , Microdomínios da Membrana/metabolismo , Domínios de Homologia de src
13.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668720

RESUMO

Amyloid ß (Aß) is a central contributor to neuronal damage and cognitive impairment in Alzheimer's disease (AD). Aß disrupts AMPA receptor-mediated synaptic plasticity, a key factor in early AD progression. Numerous studies propose that Aß oligomers hinder synaptic plasticity, particularly long-term potentiation (LTP), by disrupting GluA1 (encoded by GRIA1) function, although the precise mechanism remains unclear. In this study, we demonstrate that Aß mediates the accumulation of GM1 ganglioside in lipid raft domains of cultured cells, and GluA1 exhibits preferential localization in lipid rafts via direct binding to GM1. Aß enhances the raft localization of GluA1 by increasing GM1 in these areas. Additionally, chemical LTP stimulation induces lipid raft-dependent GluA1 internalization in Aß-treated neurons, resulting in reduced cell surface and postsynaptic expression of GluA1. Consistent with this, disrupting lipid rafts and GluA1 localization in rafts rescues Aß-mediated suppression of hippocampal LTP. These findings unveil a novel functional deficit in GluA1 trafficking induced by Aß, providing new insights into the mechanism underlying AD-associated cognitive dysfunction.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Hipocampo , Potenciação de Longa Duração , Microdomínios da Membrana , Receptores de AMPA , Peptídeos beta-Amiloides/metabolismo , Receptores de AMPA/metabolismo , Microdomínios da Membrana/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Hipocampo/metabolismo , Gangliosídeo G(M1)/metabolismo , Humanos , Neurônios/metabolismo , Ratos , Camundongos , Transporte Proteico
14.
FEBS Lett ; 598(9): 1061-1079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649155

RESUMO

The molecular mechanisms of selective RNA loading into exosomes and other extracellular vesicles are not yet completely understood. In order to show that a pool of RNA sequences binds both the amino acid arginine and lipid membranes, we constructed a bifunctional RNA 10Arg aptamer specific for arginine and lipid vesicles. The preference of RNA 10Arg for lipid rafts was visualized and confirmed using FRET microscopy in neuroblastoma cells. The selection-amplification (SELEX) method using a doped (with the other three nucleotides) pool of RNA 10Arg sequences yielded several RNA 10Arg(D) sequences, and the affinities of these RNAs both to arginine and liposomes are improved in comparison to pre-doped RNA. Generation of these bispecific aptamers supports the hypothesis that an RNA molecule can bind both to RNA-binding proteins (RBPs) through arginine within the RBP-binding site and to membrane lipid rafts, thus facilitating RNA loading into exosomes and other extracellular vesicles.


Assuntos
Arginina , Lipossomos , Arginina/química , Arginina/metabolismo , Humanos , Lipossomos/química , Lipossomos/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Sequência de Bases , RNA/metabolismo , RNA/química , RNA/genética , Exossomos/metabolismo , Exossomos/genética , Exossomos/química , Transferência Ressonante de Energia de Fluorescência
15.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534331

RESUMO

High blood levels of low-density lipoprotein (LDL)-cholesterol (LDL-C) are associated with atherosclerosis, mainly by promoting foam cell accumulation in vessels. As cholesterol is an essential component of cell plasma membranes and a regulator of several signaling pathways, LDL-C excess may have wider cardiovascular toxicity. We examined, in untreated hypercholesterolemia (HC) patients, selected regardless of the cause of LDL-C accumulation, and in healthy participants (HP), the expression of the adenosine A2A receptor (A2AR), an anti-inflammatory and vasodilatory protein with cholesterol-dependent modulation, and Flotillin-1, protein marker of cholesterol-enriched plasma membrane domains. Blood cardiovascular risk and inflammatory biomarkers were measured. A2AR and Flotillin-1 expression in peripheral blood mononuclear cells (PBMC) was lower in patients compared to HP and negatively correlated to LDL-C blood levels. No other differences were observed between the two groups apart from transferrin and ferritin concentrations. A2AR and Flotillin-1 proteins levels were positively correlated in the whole study population. Incubation of HP PBMCs with LDL-C caused a similar reduction in A2AR and Flotillin-1 expression. We suggest that LDL-C affects A2AR expression by impacting cholesterol-enriched membrane microdomains. Our results provide new insights into the molecular mechanisms underlying cholesterol toxicity, and may have important clinical implication for assessment and treatment of cardiovascular risk in HC.


Assuntos
Doenças Cardiovasculares , Hipercolesterolemia , Proteínas de Membrana , Humanos , LDL-Colesterol/metabolismo , Receptor A2A de Adenosina/metabolismo , Leucócitos Mononucleares/metabolismo , Adenosina , Fatores de Risco , Colesterol , Proteínas de Transporte , Fatores de Risco de Doenças Cardíacas , Microdomínios da Membrana/metabolismo
16.
Acta Physiol (Oxf) ; 240(4): e14125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533975

RESUMO

AIM: Trafficking, membrane retention, and signal-specific regulation of the Na+/H+ exchanger 3 (NHE3) are modulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adapter proteins. This study explored the assembly of NHE3 and NHERF2 with the cGMP-dependent kinase II (cGKII) within detergent-resistant membrane microdomains (DRMs, "lipid rafts") during in vivo guanylate cycle C receptor (Gucy2c) activation in murine small intestine. METHODS: Small intestinal brush border membranes (siBBMs) were isolated from wild type, NHE3-deficient, cGMP-kinase II-deficient, and NHERF2-deficient mice, after oral application of the heat-stable Escherichia coli toxin (STa) analog linaclotide. Lipid raft and non-raft fractions were separated by Optiprep density gradient centrifugation of Triton X-solubilized siBBMs. Confocal microscopy was performed to study NHE3 redistribution after linaclotide application in vivo. RESULTS: In the WT siBBM, NHE3, NHERF2, and cGKII were strongly raft associated. The raft association of NHE3, but not of cGKII, was NHERF2 dependent. After linaclotide application to WT mice, lipid raft association of NHE3 decreased, that of cGKII increased, while that of NHERF2 did not change. NHE3 expression in the BBM shifted from a microvillar to a terminal web region. The linaclotide-induced decrease in NHE3 raft association and in microvillar abundance was abolished in cGKII-deficient mice, and strongly reduced in NHERF2-deficient mice. CONCLUSION: NHE3, cGKII, and NHERF2 form a lipid raft-associated signal complex in the siBBM, which mediates the inhibition of salt and water absorption by Gucy2c activation. NHERF2 enhances the raft association of NHE3, which is essential for its close interaction with the exclusively raft-associated activated cGKII.


Assuntos
Microdomínios da Membrana , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio , Animais , Camundongos , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Intestino Delgado/metabolismo , Microdomínios da Membrana/metabolismo , Microvilosidades/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo
17.
J Biol Chem ; 300(4): 107154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479603

RESUMO

Styrene-maleic acid (SMA) and similar amphiphilic copolymers are known to cut biological membranes into lipid nanoparticles/nanodiscs containing membrane proteins apparently in their relatively native membrane lipid environment. Our previous work demonstrated that membrane raft microdomains resist such disintegration by SMA. The use of SMA in studying membrane proteins is limited by its heterogeneity and the inability to prepare defined derivatives. In the present paper, we demonstrate that some amphiphilic peptides structurally mimicking SMA also similarly disintegrate cell membranes. In contrast to the previously used copolymers, the simple peptides are structurally homogeneous. We found that their membrane-disintegrating activity increases with their length (reaching optimum at 24 amino acids) and requires a basic primary structure, that is, (XXD)n, where X represents a hydrophobic amino acid (optimally phenylalanine), D aspartic acid, and n is the number of repeats of these triplets. These peptides may provide opportunities for various well-defined potentially useful modifications in the study of membrane protein biochemistry. Our present results confirm a specific character of membrane raft microdomains.


Assuntos
Proteínas de Membrana , Peptídeos , Animais , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Maleatos/química , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Peptídeos/química , Poliestirenos/química , Linhagem Celular
18.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119710, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522726

RESUMO

Calcium signaling stands out as the most widespread and universally used signaling system and is of utmost importance for immunity. Controlled elevations in cytosolic and organellar Ca2+ concentrations in T cells control complex and essential effector functions including proliferation, differentiation, cytokine secretion, and cytotoxicity, among others. Additionally, disruptions in Ca2+ regulation in T cells contribute to diverse autoimmune, inflammatory, and immunodeficiency conditions. Among the initial intracellular signals, which occurring even before T cell receptor (TCR) stimulation are highly localized, spatially and temporally restricted so-called Ca2+ microdomains, caused by adhesion to extracellular matrix proteins (ECM proteins). The Ca2+ microdomains present both before and within the initial seconds following TCR stimulation are likely to play a crucial role in fine-tuning the downstream activity of T cell activation and thus, shaping an adaptive immune response. In this review, the emphasis is on the recent advances of adhesion-dependent Ca2+ microdomains (ADCM) in the absence of TCR stimulation, initial Ca2+ microdomains evoked by TCR stimulation (TDCM), the downstream signaling processes as well as possible therapeutic targets for interventions.


Assuntos
Imunidade Adaptativa , Sinalização do Cálcio , Cálcio , Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Cálcio/metabolismo , Animais , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Ativação Linfocitária/imunologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/imunologia
19.
J Cell Biol ; 223(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358349

RESUMO

Different membrane microdomain compositions provide unique environments that can regulate signaling receptor function. We identify microdomains on the endosome membrane of Drosophila endosomes, enriched in lipid-raft or clathrin/ESCRT-0, which are associated with Notch activation by distinct, ligand-independent mechanisms. Transfer of Notch between microdomains is regulated by Deltex and Suppressor of deltex ubiquitin ligases and is limited by a gate-keeper role for ESCRT complexes. Ubiquitination of Notch by Deltex recruits it to the clathrin/ESCRT-0 microdomain and enhances Notch activation by an ADAM10-independent/TRPML-dependent mechanism. This requirement for Deltex is bypassed by the downregulation of ESCRT-III. In contrast, while ESCRT-I depletion also activates Notch, it does so by an ADAM10-dependent/TRPML-independent mechanism and Notch is retained in the lipid raft-like microdomain. In the absence of such endosomal perturbation, different activating Notch mutations also localize to different microdomains and are activated by different mechanisms. Our findings demonstrate the interplay between Notch regulators, endosomal trafficking components, and Notch genetics, which defines membrane locations and activation mechanisms.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas de Membrana , Receptores Notch , Canais de Potencial de Receptor Transitório , Animais , Proteína ADAM10/metabolismo , Clatrina/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Receptores Notch/metabolismo , Ubiquitinação , Proteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo
20.
J Mater Chem B ; 12(10): 2547-2558, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358131

RESUMO

Monitoring active membrane cholesterol and lipid raft cholesterol in the inner leaflet of the plasma membrane is significant for understanding the membrane function and cellular physiopathological processes. Limited by existing methods, it is difficult to differentiate active membrane cholesterol and lipid raft cholesterol. A novel dual-monomer solvatochromic probe system (DSPS) that targets two types of cholesterol was developed. Acrylodan-BG/SNAP-D4 composed of SNAP-D4 cholesterol-recognizing monomers and solvatochromic acrylodan-BG-sensing monomers exhibits excellent cholesterol detecting properties in terms of selectivity, accuracy, convenience and economic benefits. Cell imaging revealed that lipid raft cholesterol emitted blue fluorescence, whereas active membrane cholesterol (which partially bobbed in aqueous cytosol) displayed green fluorescence; both the fluorescence emissions increased or decreased in a cholesterol-dependent manner. This system provides a new technology for the determination of two types of cholesterol, which is beneficial for the further study of membrane function, intracellular cholesterol trafficking, and cell signaling.


Assuntos
2-Naftilamina/análogos & derivados , Colesterol , Microdomínios da Membrana , Membrana Celular/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...