Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.800
Filtrar
1.
Life Sci Alliance ; 7(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39009412

RESUMO

Treatments for Alzheimer's disease have primarily focused on removing brain amyloid plaques to improve cognitive outcomes in patients. We developed small compounds, known as BK40143 and BK40197, and we hypothesize that these drugs alleviate microglial-mediated neuroinflammation and induce autophagic clearance of neurotoxic proteins to improve behavior in models of neurodegeneration. Specificity binding assays of BK40143 and BK40197 showed primary binding to c-KIT/Platelet Derived Growth Factor Receptors (PDGFR)α/ß, whereas BK40197 also differentially binds to FYVE finger-containing phosphoinositide kinase (PIKFYVE). Both compounds penetrate the CNS, and treatment with these drugs inhibited the maturation of peripheral mast cells in transgenic mice, correlating with cognitive improvements on measures of memory and anxiety. In the brain, microglial activation was profoundly attenuated and amyloid-beta and tau were reduced via autophagy. Multi-kinase inhibition, including c-KIT, exerts multifunctional effects to reduce neurodegenerative pathology via autophagy and microglial activity and may represent a potential therapeutic option for neurodegeneration.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia , Proteínas Proto-Oncogênicas c-kit , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Autofagia/efeitos dos fármacos , Humanos , Peptídeos beta-Amiloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Proteínas tau/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Masculino
2.
J Transl Med ; 22(1): 659, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010173

RESUMO

BACKGROUND: Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS: We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS: Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS: In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Gotículas Lipídicas , Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Traumatismos da Medula Espinal , Regulação para Cima , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Microglia/metabolismo , Microglia/patologia , Animais , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Gotículas Lipídicas/metabolismo , Camundongos , Linhagem Celular , Masculino , Metabolismo dos Lipídeos/genética
3.
Brain Behav ; 14(7): e3618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39010692

RESUMO

BACKGROUND: High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been found to ameliorate cognitive impairment. However, the effects of HF-rTMS remain unknown in chronic cerebral hypoperfusion (CCH). AIM: To investigate the effects of HF-rTMS on cognitive improvement and its potential mechanisms in CCH mice. MATERIALS AND METHODS: Daily HF-rTMS therapy was delivered after bilateral carotid stenosis (BCAS) and continued for 14 days. The mice were randomly assigned to three groups: the sham group, the model group, and the HF-rTMS group. The Y maze and the new object recognition test were used to assess cognitive function. The expressions of MAP-2, synapsis, Myelin basic protein(MBP), and brain-derived growth factors (BDNF) were analyzed by immunofluorescence staining and western blot to evaluate neuronal plasticity and white matter myelin regeneration. Nissl staining and the expression of caspase-3, Bax, and Bcl-2 were used to observe neuronal apoptosis. In addition, the activation of microglia and astrocytes were evaluated by fluorescence staining. The inflammation levels of IL-1ß, IL-6, and Tumor Necrosis Factor(TNF)-α were detected by qPCR in the hippocampus of mice in each group. RESULTS: Via behavioral tests, the BCAS mice showed reduced a rate of new object preference and decreased a rate of spontaneous alternations, while HF-rTMS significantly improved hippocampal learning and memory deficits. In addition, the mice in the model group showed decreased levels of MAP-2, synapsis, MBP, and BDNF, while HF-rTMS treatment reversed these effects. As expected, activated microglia and astrocytes increased in the model group, but HF-rTMS treatment suppressed these changes. HF-rTMS decreased BCAS-induced neuronal apoptosis and the expression of pro-apoptotic protein (Caspase-3 and Bax) and increased the expression of anti-apoptotic protein (Bcl-2). In addition, HF-rTMS inhibited the expression of inflammatory cytokines (IL-1ß, IL-6, and TNF-α). CONCLUSIONS: HF-rTMS alleviates cognitive impairment in CCH mice by enhancing neuronal plasticity and inhibiting inflammation, thus serving as a potential method for vascular cognitive impairment.


Assuntos
Transtornos da Memória , Doenças Neuroinflamatórias , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Camundongos , Masculino , Transtornos da Memória/terapia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Doenças Neuroinflamatórias/terapia , Hipocampo/metabolismo , Modelos Animais de Doenças , Estenose das Carótidas/terapia , Estenose das Carótidas/fisiopatologia , Camundongos Endogâmicos C57BL , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Apoptose , Astrócitos/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia
4.
ACS Chem Neurosci ; 15(14): 2532-2544, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38970802

RESUMO

It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.


Assuntos
Microglia , Doenças Neuroinflamatórias , Complexo de Endopeptidases do Proteassoma , Microglia/metabolismo , Microglia/efeitos dos fármacos , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Animais , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Inflamação/metabolismo , Inflamação/imunologia
5.
Chem Biol Drug Des ; 104(1): e14592, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39013758

RESUMO

Neuroinflammation is suggested as one of the potential links between CS-induced neuronal dysfunction. Cigarette smoke (CS) is one of the significant contributors of neuroinflammation, consequently leading to cognitive impairment and neurodegeneration. Microglia are the key resident macrophage cells in the brain with cell surface TLR4 receptor for responding to various stress signals. The CS constituents promote inflammation and oxidative stress in microglia leading to cytotoxicity through the TLR4-MK2 axis. However, the role of MK2 kinase in CS-induced microglial inflammation is not yet clearly understood. Therefore, we have used an MK2 inhibitor, PF-3644022 to study modulation of CS-extract induced oxidative and inflammatory signaling in a mouse microglial cell line, Furthermore, we also evaluated the enzymatic activity of acetylcholinesterase (AChE) on a direct exposure of enzyme with CS. CS exposure led to microglial cytotoxicity and enhanced the level of oxidative stress and proinflammatory cytokine release by microglial cells. The microglial cells pretreated with MK2 inhibitor, PF-3644022 significantly reduced the levels of oxidative stress markers, proinflammatory markers, and improved the level of antioxidant proteins in these cells. In addition, direct exposure of CS showed reduction in the enzymatic activity of AChE.


Assuntos
Acetilcolinesterase , Microglia , Estresse Oxidativo , Proteínas Serina-Treonina Quinases , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Acetilcolinesterase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Fumaça/efeitos adversos , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Nicotiana/química
6.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984997

RESUMO

Microparticles (MPs) are secreted by all cells, where they play a key role in intercellular communication, differentiation, inflammation, and cell energy transfer. P2X7 receptor (P2X7R) activation by extracellular ATP (eATP) causes a large MP release and affects their contents in a cell-specific fashion. We investigated MP release and functional impact in microglial cells from P2X7R-WT or P2X7R-KO mice, as well as mouse microglial cell lines characterized for high (N13-P2X7RHigh) or low (N13-P2X7RLow) P2X7R expression. P2X7R stimulation promoted release of a mixed MP population enriched with naked mitochondria. Released mitochondria were taken up and incorporated into the mitochondrial network of the recipient cells in a P2X7R-dependent fashion. NLRP3 and the P2X7R itself were also delivered to the recipient cells. Microparticle transfer increased the energy level of the recipient cells and conferred a pro-inflammatory phenotype. These data show that the P2X7R is a master regulator of intercellular organelle and MP trafficking in immune cells.


Assuntos
Micropartículas Derivadas de Células , Camundongos Knockout , Microglia , Mitocôndrias , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Animais , Microglia/metabolismo , Mitocôndrias/metabolismo , Camundongos , Micropartículas Derivadas de Células/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
7.
CNS Neurosci Ther ; 30(7): e14747, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973085

RESUMO

AIM: To explore the regulatory mechanisms of microglia-mediated cytotoxic CD8+ T-cell infiltration in the white matter injury of perioperative stroke (PIS). METHODS: Adult male C57BL/6 mice were subjected to ileocolic bowel resection (ICR) 24 h prior to permanent distant middle cerebral artery occlusion (dMCAO) to establish model PIS. White matter injury, functional outcomes, peripheral immune cell infiltration, and microglia phenotype were assessed up to 28 days after dMCAO using behavioral phenotyping, immunofluorescence staining, transmission electron microscopy, western blot, and FACS analysis. RESULTS: We found surgery aggravated white matter injury and deteriorated sensorimotor deficits up to 28 days following PIS. The PIS mice exhibited significantly increased activation of peripheral and central CD8+ T cells, while significantly reduced numbers of mature oligodendrocytes compared to IS mice. Neutralizing CD8+ T cells partly reversed the aggravated demyelination following PIS. Pharmacological blockage or genetic deletion of receptor-interacting protein kinase 1 (RIPK1) activity could alleviate CD8+ T-cell infiltration and demyelination in PIS mice. CONCLUSION: Surgery exacerbates demyelination and worsens neurological function by promoting infiltration of CD8+ T cells and microglia necroptosis, suggesting that modulating interactions of CD8+ T cells and microglia could be a novel therapeutic target of long-term neurological deficits of PIS.


Assuntos
Linfócitos T CD8-Positivos , Infarto da Artéria Cerebral Média , Camundongos Endogâmicos C57BL , Substância Branca , Animais , Masculino , Camundongos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/imunologia , Substância Branca/patologia , Substância Branca/imunologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/imunologia , Microglia/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ativação Linfocitária , Modelos Animais de Doenças
8.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38981852

RESUMO

Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.


Assuntos
Astrócitos , Transtornos da Memória , Metanfetamina , Microglia , Minociclina , Memória Espacial , Animais , Metanfetamina/toxicidade , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Transtornos da Memória/induzido quimicamente , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Memória Espacial/fisiologia , Memória Espacial/efeitos dos fármacos , Masculino , Minociclina/farmacologia , Camundongos Endogâmicos C57BL , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Estimulantes do Sistema Nervoso Central/toxicidade
9.
Theranostics ; 14(10): 4058-4075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994030

RESUMO

Background: Knowledge about the pathogenesis of depression and treatments for this disease are lacking. Epigenetics-related circRNAs are likely involved in the mechanism of depression and have great potential as treatment targets, but their mechanism of action is still unclear. Methods: Circular RNA UBE2K (circ-UBE2K) was screened from peripheral blood of patients with major depressive disorder (MDD) and brain of depression model mice through high-throughput sequencing. Microinjection of circ-UBE2K overexpression lentivirus and adeno-associated virus for interfering with microglial circ-UBE2K into the mouse hippocampus was used to observe the role of circ-UBE2K in MDD. Sucrose preference, forced swim, tail suspension and open filed tests were performed to evaluate the depressive-like behaviors of mice. Immunofluorescence and Western blotting analysis of the effects of circ-UBE2K on microglial activation and immune inflammation. Pull-down-mass spectrometry assay, RNA immunoprecipitation (RIP) test and fluorescence in situ hybridization (FISH) were used to identify downstream targets of circ-UBE2K/ HNRNPU (heterogeneous nuclear ribonucleoprotein U) axis. Results: In this study, through high-throughput sequencing and large-scale screening, we found that circ-UBE2K levels were significantly elevated both in the peripheral blood of patients with MDD and in the brains of depression model mice. Functionally, circ-UBE2K-overexpressing mice exhibited worsened depression-like symptoms, elevated brain inflammatory factor levels, and abnormal microglial activation. Knocking down circ-UBE2K mitigated these changes. Mechanistically, we found that circ-UBE2K binds to heterogeneous nuclear ribonucleoprotein U (HNRNPU) to form a complex that upregulates the expression of the parental gene ubiquitin conjugating enzyme E2 K (UBE2K), leading to abnormal microglial activation and neuroinflammation and promoting the occurrence and development of depression. Conclusions: The findings of the present study revealed that the expression of circUBE2K, which combines with HNRNPU to form the circUBE2K/HNRNPU complex, is increased in microglia after external stress, thus regulating the expression of the parental gene UBE2K and mediating the abnormal activation of microglia to induce neuroinflammation, promoting the development of MDD. These results indicate that circ-UBE2K plays a newly discovered role in the pathogenesis of depression.


Assuntos
Transtorno Depressivo Maior , Modelos Animais de Doenças , Microglia , RNA Circular , Enzimas de Conjugação de Ubiquitina , Animais , RNA Circular/genética , RNA Circular/metabolismo , Microglia/metabolismo , Humanos , Camundongos , Masculino , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Feminino , Depressão/genética , Depressão/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Adulto , Pessoa de Meia-Idade
10.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000563

RESUMO

Circadian rhythms regulate physiological processes in approximately 24 h cycles, and their disruption is associated with various diseases. Inflammation may perturb circadian rhythms, though these interactions remain unclear. This study examined whether systemic inflammation induced by an intraperitoneal injection of lipopolysaccharide (LPS) could alter central and peripheral circadian rhythms and diurnal neuroimmune dynamics. Mice were randomly assigned to two groups: the saline control group and the LPS group. The diurnal expression of circadian clock genes and inflammatory cytokines were measured in the hypothalamus, hippocampus, and liver. Diurnal dynamic behaviors of microglia were also assessed. Our results revealed that the LPS perturbed circadian gene oscillations in the hypothalamus, hippocampus, and liver. Furthermore, systemic inflammation induced by the LPS could trigger neuroinflammation and perturb the diurnal dynamic behavior of microglia in the hippocampus. These findings shed light on the intricate link between inflammation and circadian disruption, underscoring their significance in relation to neurodegenerative diseases.


Assuntos
Ritmo Circadiano , Inflamação , Lipopolissacarídeos , Animais , Camundongos , Masculino , Microglia/metabolismo , Microglia/imunologia , Hipotálamo/metabolismo , Hipotálamo/imunologia , Hipocampo/metabolismo , Citocinas/metabolismo , Fígado/metabolismo , Fígado/patologia , Fígado/imunologia , Camundongos Endogâmicos C57BL , Relógios Circadianos/genética , Neuroimunomodulação
11.
Nat Commun ; 15(1): 5654, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969669

RESUMO

Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.


Assuntos
Bussulfano , Microglia , Progranulinas , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Progranulinas/metabolismo , Progranulinas/genética , Camundongos , Bussulfano/farmacologia , Transplante de Células-Tronco Hematopoéticas , Aminopiridinas/farmacologia , Encéfalo/metabolismo , Pirróis/farmacologia , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Transplante de Medula Óssea , Masculino , Sistema Nervoso Central/metabolismo , Camundongos Knockout , Condicionamento Pré-Transplante/métodos , Análise de Célula Única , Citocinas/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores
12.
Cell Biol Toxicol ; 40(1): 54, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995476

RESUMO

BACKGROUND: The neuropathic pain with complex networks of neuroinflammatory activation severely limits clinical therapeutic research. TNF receptor-associated factor 6 (TRAF6) is associated with multiple inflammatory diseases. However, there remains confusion about the effects and mechanisms of TRAF6 in neuropathic pain. METHODS: A chronic constriction injury (CCI) model was developed to simulate neuralgia in vivo. We overexpressed or knocked down TRAF6 in CCI mice, respectively. Activation of microglia by TRAF6, the inflammatory response, and disease progression were inspected using WB, qRT-PCR, immunofluorescence, flow cytometry, and ELISA assays. Moreover, the mechanism of M1/M2 polarization activation of microglia by TRAF6 was elaborated in BV-2 cells. RESULTS: TRAF6 was enhanced in the spinal neurons and microglia of the CCI mice model compared with the sham operation group.. Down-regulation of TRAF6 rescued the expression of Iba-1. In response to mechanical and thermal stimulation, PWT and PWL were improved after the knockdown of TRAF6. Decreased levels of pro-inflammatory factors were observed in TRAF6 knockdown groups. Meanwhile, increased microglial M1 markers induced by CCI were limited in mice with TRAF6 knockdown. In addition, TRAF6 overexpression has the precise opposite effect on CCI mice or microglia polarization. We also identifed that TRAF6 activated the c-JUN/NF-kB pathway signaling; the inhibitor of c-JUN/NF-kB could effectively alleviate the neuropathic pain induced by upregulated TRAF6 in the CCI mice model. CONCLUSION: In summary, this study indicated that TRAF6 was concerned with neuropathic pain, and targeting the TRAF6/c-JUN/NF-kB pathway may be a prospective target for treating neuropathic pain.


Assuntos
Microglia , NF-kappa B , Neuralgia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Masculino , Camundongos , Linhagem Celular , Polaridade Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator 6 Associado a Receptor de TNF/metabolismo
13.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998988

RESUMO

Naturally occurring homoisoflavonoids isolated from some Liliaceae plants have been reported to have diverse biological activities (e.g., antioxidant, anti-inflammatory, and anti-angiogenic effects). The exact mechanism by which homoisoflavonones exert anti-neuroinflammatory effects against activated microglia-induced inflammatory cascades has not been well studied. Here, we aimed to explore the mechanism of homoisoflavonoid SH66 having a potential anti-inflammatory effect in lipopolysaccharide (LPS)-primed BV2 murine microglial cells. Microglia cells were pre-treated with SH66 followed by LPS (100 ng/mL) activation. SH66 treatment attenuated the production of inflammatory mediators, including nitric oxide and proinflammatory cytokines, by down-regulating mitogen-activated protein kinase signaling in LPS-activated microglia. The SH66-mediated inhibition of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex and the respective inflammatory biomarker-like active interleukin (IL)-1ß were noted to be one of the key pathways of the anti-inflammatory effect. In addition, SH66 increased the neurite length in the N2a neuronal cell and the level of nerve growth factor in the C6 astrocyte cell. Our results demonstrated the anti-neuroinflammatory effect of SH66 against LPS-activated microglia-mediated inflammatory events by down-regulating the NLRP3 inflammasome complex, with respect to its neuroprotective effect. SH66 could be an interesting candidate for further research and development regarding prophylactics and therapeutics for inflammation-mediated neurological complications.


Assuntos
Anti-Inflamatórios , Lipopolissacarídeos , Microglia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Linhagem Celular , Isoflavonas/farmacologia , Isoflavonas/química , Citocinas/metabolismo , Óxido Nítrico/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo
14.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000116

RESUMO

Metabolic endotoxemia is a severe health problem for residents in developed countries who follow a Western diet, disrupting intestinal microbiota and the whole organism's homeostasis. Although the effect of endotoxin on the human immune system is well known, its long-term impact on the human body, lasting many months or even years, is unknown. This is due to the difficulty of conducting in vitro and in vivo studies on the prolonged effect of endotoxin on the central nervous system. In this article, based on the available literature, we traced the path of endotoxin from the intestines to the blood through the intestinal epithelium and factors promoting the development of metabolic endotoxemia. The presence of endotoxin in the bloodstream and the inflammation it induces may contribute to lowering the blood-brain barrier, potentially allowing its penetration into the central nervous system; although, the theory is still controversial. Microglia, guarding the central nervous system, are the first line of defense and respond to endotoxin with activation, which may contribute to the development of neurodegenerative diseases. We traced the pro-inflammatory role of endotoxin in neurodegenerative diseases and its impact on the epigenetic regulation of microglial phenotypes.


Assuntos
Endotoxemia , Endotoxinas , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Endotoxemia/metabolismo , Endotoxemia/etiologia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/etiologia , Animais , Endotoxinas/metabolismo , Microglia/metabolismo , Microglia/patologia , Barreira Hematoencefálica/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/microbiologia , Inflamação/metabolismo
15.
PeerJ ; 12: e17664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974415

RESUMO

Objective: To study the mechanism by which conditioned medium of bone marrow mesenchymal stem cells (BMSCs-CM) facilitates the transition of pro-inflammatory polarized microglia to an anti-inflammatory phenotype. Methods: BV2 cells, a mouse microglia cell line, were transformed into a pro-inflammatory phenotype using lipopolysaccharide. The expression of phenotypic genes in BV2 cells was detected using real-time quantitative PCR (RT-qPCR). Enzyme-linked immunosorbent assay was used to measure inflammatory cytokine levels in BV2 cells co-cultured with BMSCs-CM. The expressions of mitophagy-associated proteins were determined using western blot. The mitochondrial membrane potential and ATP levels in BV2 cells were measured using JC-1 staining and an ATP assay kit, respectively. Additionally, we examined the proliferation, apoptosis, and migration of C8-D1A cells, a mouse astrocyte cell line, co-cultured with BV2 cells. Results: After co- culture with BMSCs -CM, the mRNA expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase significantly decreased in pro-inflammatory BV2 cells, whereas the expression of CD206 and arginase-1 significantly increased. Moreover, TNF-α and interleukin-6 levels significantly decreased, whereas transforming growth factor-ß and interleukin-10 levels significantly increased. Furthermore, co-culture with BMSCs-CM increased mitophagy-associated protein expression, ATP levels, mitochondrial and lysosomal co-localization in these cells and decreased reactive oxygen species levels. Importantly, BMSCs-CM reversed the decrease in the proliferation and migration of C8-D1A cells co-cultured with pro-inflammatory BV2 cells and inhibited the apoptosis of C8-D1A cells. Conclusion: BMSCs-CM may promote the transition of polarized microglia from a pro-inflammatory to an anti-inflammatory phenotype by regulating mitophagy and influences the functional state of astrocytes.


Assuntos
Autofagia , Técnicas de Cocultura , Células-Tronco Mesenquimais , Microglia , Mitocôndrias , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Microglia/metabolismo , Camundongos , Meios de Cultivo Condicionados/farmacologia , Mitocôndrias/metabolismo , Fenótipo , Linhagem Celular , Mitofagia , Proliferação de Células , Citocinas/metabolismo , Apoptose , Lipopolissacarídeos/farmacologia
16.
Front Cell Infect Microbiol ; 14: 1367566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983114

RESUMO

Humanized mouse models are valuable tools for investigating the human immune system in response to infection and injury. We have previously described the human immune system (HIS)-DRAGA mice (HLA-A2.HLA-DR4.Rag1KO.IL-2RgKO.NOD) generated by infusion of Human Leukocyte Antigen (HLA)-matched, human hematopoietic stem cells from umbilical cord blood. By reconstituting human cells, the HIS-DRAGA mouse model has been utilized as a "surrogate in vivo human model" for infectious diseases such as Human Immunodeficiency Virus (HIV), Influenza, Coronavirus Disease 2019 (COVID-19), scrub typhus, and malaria. This humanized mouse model bypasses ethical concerns about the use of fetal tissues for the humanization of laboratory animals. Here in, we demonstrate the presence of human microglia and T cells in the brain of HIS-DRAGA mice. Microglia are brain-resident macrophages that play pivotal roles against pathogens and cerebral damage, whereas the brain-resident T cells provide surveillance and defense against infections. Our findings suggest that the HIS-DRAGA mouse model offers unique advantages for studying the functions of human microglia and T cells in the brain during infections, degenerative disorders, tumors, and trauma, as well as for testing therapeutics in these pathological conditions.


Assuntos
Encéfalo , Modelos Animais de Doenças , Microglia , Linfócitos T , Animais , Microglia/imunologia , Humanos , Camundongos , Encéfalo/imunologia , Linfócitos T/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia
17.
Invest Ophthalmol Vis Sci ; 65(8): 12, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967942

RESUMO

Purpose: Recruitment and activation of inflammatory cells, such as retinal microglia/macrophages, in the subretinal space contribute significantly to the pathogenesis of age-related macular degeneration (AMD). This study aims to explore the functional role of vascular endothelial growth factor (VEGF-A), placental growth factor (PlGF) and VEGF-A/PlGF heterodimer in immune homeostasis and activation during pathological laser-induced choroidal neovascularization (CNV). Methods: To investigate these roles, we utilized the PlGF-DE knockin (KI) mouse model, which is the full functional knockout (KO) of PlGF. In this model, mice express a variant of PlGF, named PlGF-DE, that is unable to bind and activate VEGFR-1 but can still form heterodimer with VEGF-A. Results: Our findings demonstrate that, although there is no difference in healthy conditions, PlGF-DE-KI mice exhibit decreased microglia reactivity and reduced recruitment of both microglia and monocyte-macrophages, compared to wild-type mice during laser-induced CNV. This impairment is associated with a reduction in VEGF receptor 1 (VEGFR-1) phosphorylation in the retinae of PlGF-DE-KI mice compared to C57Bl6/J mice. Corroborating these data, intravitreal delivery of PlGF or VEGF-A/PlGF heterodimer in PlGF-DE-KI mice rescued the immune cell response at the early phase of CNV compared to VEGF-A delivery. Conclusions: In summary, our study suggests that targeting PlGF and the VEGF-A/PlGF heterodimer, thereby preventing VEGFR-1 activation, could represent a potential therapeutic approach for the management of inflammatory processes in diseases such as AMD.


Assuntos
Neovascularização de Coroide , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia , Fator de Crescimento Placentário , Fator A de Crescimento do Endotélio Vascular , Animais , Neovascularização de Coroide/metabolismo , Fator de Crescimento Placentário/metabolismo , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microglia/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Camundongos Knockout
18.
Nat Commun ; 15(1): 5815, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987616

RESUMO

The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.


Assuntos
Doença de Alzheimer , Análise de Célula Única , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Masculino , Feminino , Idoso , Microglia/metabolismo , Idoso de 80 Anos ou mais , Oligodendroglia/metabolismo , Pessoa de Meia-Idade , Imunoglobulina G/metabolismo , Redes Reguladoras de Genes , Análise de Sequência de RNA , Encéfalo/metabolismo , Encéfalo/patologia , Perfilação da Expressão Gênica
19.
Semin Immunopathol ; 46(1-2): 1, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990389

RESUMO

Activation of the maternal immune system during gestation has been associated with an increased risk for neurodevelopmental disorders in the offspring, particularly schizophrenia and autism spectrum disorder. Microglia, the tissue-resident macrophages of the central nervous system, are implicated as potential mediators of this increased risk. Early in development, microglia start populating the embryonic central nervous system and in addition to their traditional role as immune responders under homeostatic conditions, microglia are also intricately involved in various early neurodevelopmental processes. The timing of immune activation may interfere with microglia functioning during early neurodevelopment, potentially leading to long-term consequences in postnatal life. In this review we will discuss the involvement of microglia in brain development during the prenatal and early postnatal stages of life, while also examining the effects of maternal immune activation on microglia and neurodevelopmental processes. Additionally, we discuss recent single cell RNA-sequencing studies focusing on microglia during prenatal development, and hypothesize how early life microglial priming, potentially through epigenetic reprogramming, may be related to neurodevelopmental disorders.


Assuntos
Microglia , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Microglia/imunologia , Microglia/metabolismo , Humanos , Gravidez , Animais , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Feminino , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/embriologia , Epigênese Genética , Suscetibilidade a Doenças
20.
PLoS One ; 19(7): e0302376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990806

RESUMO

We applied the patch-seq technique to harvest transcripts from individual microglial cells from cortex, hippocampus and corpus callosum of acute brain slices from adult mice. After recording membrane currents with the patch-clamp technique, the cytoplasm was collected via the pipette and underwent adapted SMART-seq2 preparation with subsequent sequencing. On average, 4138 genes were detected in 113 cells from hippocampus, corpus callosum and cortex, including microglia markers such as Tmem119, P2ry12 and Siglec-H. Comparing our dataset to previously published single cell mRNA sequencing data from FACS-isolated microglia indicated that two clusters of cells were absent in our patch-seq dataset. Pathway analysis of marker genes in FACS-specific clusters revealed association with microglial activation and stress response. This indicates that under normal conditions microglia in situ lack transcripts associated with a stress-response, and that the microglia-isolation procedure by mechanical dissociation and FACS triggers the expression of genes related to activation and stress.


Assuntos
Microglia , Microglia/metabolismo , Animais , Camundongos , Citometria de Fluxo/métodos , Estresse Fisiológico/genética , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Masculino , Hipocampo/metabolismo , Hipocampo/citologia , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...