Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1874: 1-16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30353505

RESUMO

Microinjection/micromanipulation is more than 100 years old. It is a technique that is instrumental in biomedical research and healthcare. Its longevity lies in its preciseness in mechanical retrieval, or delivery of biological materials, which in some cases is simply necessary or more effective than other retrieval/delivery means. Microinjection is favored for its straightforwardness in transferring contents from micromolecules to macromolecules and from organelles to cells. Microinjection/micromanipulation has been practiced over the century like an art form. Variations in handlings and instruments can be tolerated to a surprising degree with satisfactory outcomes. Throughout the century, microinjection developed as an indispensable tool along with the evolution of biomedical fields: from transgenics to gene targeting, from animal cloning to human infertility treatment, from nuclease-guided genetic engineering to RNA-guided genome editing (Fig. 1). The birth of the CRISPRology rejuvenated microinjection. For microinjection/micromanipulation, the second century has already begun with the early arrival of computerized instrumentation and lately of the high-throughput nanomanipulators potentially operable by artificial intelligence. As we yin-yang both systemic and precision approaches in research and medicine, microinjection will no doubt continue to find its unique place in the future.


Assuntos
Microinjeções/história , Micromanipulação/história , Animais , Sistemas CRISPR-Cas , Edição de Genes , Marcação de Genes , Engenharia Genética , História do Século XX , História do Século XXI , Humanos , Microinjeções/tendências , Micromanipulação/tendências , Nanotecnologia
2.
Reprod Biomed Online ; 32(4): 339-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26936146

RESUMO

Micromanipulation describes a set of tools and techniques for cellular microsurgery and manipulation. Micromanipulation techniques have played an important role in basic research and the development of clinical techniques in assisted reproductive technology. This work provides a review of the development and current practices involving micromanipulation in the human clinical assisted reproduction laboratory.


Assuntos
Micromanipulação/métodos , Técnicas de Reprodução Assistida , Embrião de Mamíferos/citologia , Feminino , Humanos , Masculino , Micromanipulação/tendências , Óvulo/citologia , Guias de Prática Clínica como Assunto , Controle de Qualidade , Injeções de Esperma Intracitoplásmicas/métodos , Espermatozoides/citologia , Ensino
3.
Adv Healthc Mater ; 1(1): 27-34, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184685

RESUMO

Engineering of functional tissues is a fascinating and fertile arena of research and development. This flourishing enterprise weaves together many areas of research to tackle the most complex question faced to date, namely how to design and reconstruct a synthetic three-dimensional fully functional tissue on demand. At present our healthcare is under threat by several social and economical issues together with those of a more scientific and clinical nature. One such issue arises from our increasing life expectancy, resulting in an ageing society. This steeply growing ageing society requires functional organotypic tissues on demand for repair, replacement, and rejuvenation (R(3) ). Several approaches are pioneered and developed to assist conventional tissue/organ transplantation. In this Progress Report, "non-contact jet-based" approaches for engineering functional tissues are introduced and bio-electrosprays and cell electrospinning, i.e., biotechniques that have demonstrated as being benign for directly handling living cells and whole organisms, are highlighted. These biotechniques possess the ability to directly handle heterogeneous cell populations as suspensions with a biopolymer and/or other micro/nanomaterials for directly forming three-dimensional functional living reconstructs. These discoveries and developments have provided a promising biotechnology platform with far-reaching ramifications for a wide range of applications in basic biological laboratories to their utility in the clinic.


Assuntos
Pesquisa Biomédica/tendências , Biologia Celular/tendências , Técnicas de Cultura de Células/tendências , Eletroquímica/métodos , Micromanipulação/tendências , Engenharia Tecidual/tendências , Alicerces Teciduais/tendências
4.
Nat Nanotechnol ; 7(4): 217-26, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22466857

RESUMO

In atomic force microscopy a cantilever with a sharp tip attached to it is scanned over the surface of a sample, and information about the surface is extracted by measuring how the deflection of the cantilever - which is caused by interactions between the tip and the surface - varies with position. In the most common form of atomic force microscopy, dynamic force microscopy, the cantilever is made to vibrate at a specific frequency, and the deflection of the tip is measured at this frequency. But the motion of the cantilever is highly nonlinear, and in conventional dynamic force microscopy, information about the sample that is encoded in the deflection at frequencies other than the excitation frequency is irreversibly lost. Multifrequency force microscopy involves the excitation and/or detection of the deflection at two or more frequencies, and it has the potential to overcome limitations in the spatial resolution and acquisition times of conventional force microscopes. Here we review the development of five different modes of multifrequency force microscopy and examine its application in studies of proteins, the imaging of vibrating nanostructures, measurements of ion diffusion and subsurface imaging in cells.


Assuntos
Previsões , Aumento da Imagem/instrumentação , Sistemas Microeletromecânicos/instrumentação , Micromanipulação/instrumentação , Micromanipulação/tendências , Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/tendências , Desenho de Equipamento
5.
J Biomed Opt ; 16(5): 051302, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21639562

RESUMO

Optical tweezers have emerged as a promising technique for manipulating biological objects. Instead of direct laser exposure, more often than not, optically-trapped beads are attached to the ends or boundaries of the objects for translation, rotation, and stretching. This is referred to as indirect optical manipulation. In this paper, we utilize the concept of robotic gripping to explain the different experimental setups which are commonly used for indirect manipulation of cells, nucleic acids, and motor proteins. We also give an overview of the kind of biological insights provided by this technique. We conclude by highlighting the trends across the experimental studies, and discuss challenges and promising directions in this domain of active current research.


Assuntos
Separação Celular/instrumentação , Micromanipulação/instrumentação , Proteínas Motores Moleculares/isolamento & purificação , Técnicas de Sonda Molecular/instrumentação , Ácidos Nucleicos/isolamento & purificação , Dispositivos Ópticos , Pinças Ópticas , Separação Celular/tendências , Desenho de Equipamento , Micromanipulação/tendências
7.
Integr Biol (Camb) ; 2(7-8): 305-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20593104

RESUMO

Stem cells provide unique opportunities for understanding basic biology, for developing tissue models for drug testing, and for clinical applications in regenerative medicine. Despite the promise, the field faces significant challenges in identifying stem cell populations, controlling their fate, and characterizing their phenotype. These challenges arise because stem cells are ultimately functionally defined, and thus can often be identified only retrospectively. New technologies are needed that can provide surrogate markers of stem cell identity, can maintain stem cell state in vitro, and can better direct differentiation. In this review, we discuss the opportunities that microtechnologies, in particular, can provide to the unique qualities of stem cell biology. Microtechnology, by allowing organization and manipulation of cells and molecules at biologically relevant length scales, enables control of the cellular environment and assessment of cell functions and phenotypes with cellular resolution. This provides opportunities to, for instance, create more realistic stem cell niches, perform multi-parameter profiling of single cells, and direct the extracellular signals that control cell fate. All these features take place in an environment whose small size naturally conserves reagent and allows for multiplexing of experiments. By appropriately applying micro-scale engineering principles to stem cell research, we believe that significant breakthroughs can be made in stem cell research.


Assuntos
Biotecnologia/tendências , Citometria de Fluxo/tendências , Previsões , Micromanipulação/tendências , Nanotecnologia/tendências , Pesquisa com Células-Tronco
8.
Integr Biol (Camb) ; 1(1): 30-42, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20023789

RESUMO

The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).


Assuntos
Micromanipulação/instrumentação , Nanotecnologia/instrumentação , Manejo de Espécimes/instrumentação , Desenho de Equipamento , Micromanipulação/métodos , Micromanipulação/tendências , Nanotecnologia/métodos , Nanotecnologia/tendências , Manejo de Espécimes/métodos , Manejo de Espécimes/tendências
9.
Recent Pat Nanotechnol ; 2(1): 19-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19076040

RESUMO

The development of nanotechnology relies heavily on the ability to observe and probe at molecular scales. Thus, breakthroughs in instrumentation and techniques play a significant role in the advancement in nanoscience. In this article, we survey recent developments in observing, trapping, and probing single molecules in solution. We give particular attention to patents that cover enabling instrumentation in each of these related areas including, respectively, fluorescence imaging, optical tweezers, and anti-Brownian traps. We conclude by highlighting a broad trend in the literature and patent base from observation toward active interrogation of single molecules in solution.


Assuntos
Micromanipulação/tendências , Técnicas de Sonda Molecular/tendências , Nanotecnologia/tendências , Patentes como Assunto , Espectrometria de Fluorescência/tendências , Nanoestruturas/química
10.
Drug Discov Today ; 13(21-22): 989-96, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18835363

RESUMO

Micro- and nanotechnology have gathered 20 years of increasing research efforts. This research activity began and developed with the design and the fabrication of micro- and nanomechanisms, sensors and actuators, which range from 10nm to 100mum. More recent trends focus on the transfer of this technology know-how towards nanobiological topics and very wide range applications can be addressed. Among them, this review proposes various examples that include MEMS tweezers for molecular direct handling and characterization, single molecular characterization in femto-L chambers and dynamic microarray for cell positioning. The micromachined devices are described with bio-oriented experiences that are relevant to foresee their future contribution to drug discovery.


Assuntos
Micromanipulação/instrumentação , Micromanipulação/tendências , Nanotecnologia/instrumentação , Nanotecnologia/tendências , Animais , DNA/química , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
11.
Nat Nanotechnol ; 3(3): 139-43, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18654485

RESUMO

By binding magnetic nanoparticles to the surface of cells, it is possible to manipulate and control cell function with an external magnetic field. The technique of activating cells with magnetic nanoparticles offers a means to isolate and explore cellular mechanics and ion channel activation to gain better understanding of these processes. Here, we go beyond using this technique as an investigative tool and focus on its potential to actively control cellular functions and processes with an eye towards biological and clinical applications. In particular, we focus on applications in tissue engineering and regenerative medicine.


Assuntos
Separação Celular/métodos , Separação Imunomagnética/tendências , Micromanipulação/métodos , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Engenharia Tecidual/métodos , Separação Celular/tendências , Separação Imunomagnética/métodos , Micromanipulação/tendências , Nanotecnologia/tendências , Engenharia Tecidual/tendências
14.
Cell Biochem Biophys ; 45(3): 289-302, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16845175

RESUMO

Advances in the technologies for labeling and imaging biological samples drive a constant progress in our capability of studying structures and their dynamics within cells and tissues. In the last decade, the development of numerous nonlinear optical microscopies has led to a new prospective both in basic research and in the potential development of very powerful noninvasive diagnostic tools. These techniques offer large advantages over conventional linear microscopy with regard to penetration depth, spatial resolution, three-dimensional optical sectioning, and lower photobleaching. Additionally, some of these techniques offer the opportunity for optically probing biological functions directly in living cells, as highlighted, for example, by the application of second harmonic generation to the optical measurement of electrical potential and activity in excitable cells. In parallel with imaging techniques, nonlinear microscopy has been developed into a new area for the selective disruption and manipulation of intracellular structures, providing an extremely useful tool of investigation in cell biology. In this review we present some basic features of nonlinear microscopy with regard both to imaging and manipulation, and show some examples to illustrate the advantages offered by these novel methodologies.


Assuntos
Células Cultivadas/citologia , Células Cultivadas/fisiologia , Imageamento Tridimensional/métodos , Micromanipulação/métodos , Microscopia/métodos , Animais , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/tendências , Micromanipulação/instrumentação , Micromanipulação/tendências , Microscopia/instrumentação , Microscopia/tendências , Dinâmica não Linear
16.
IEEE Trans Nanobioscience ; 4(2): 133-40, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16117021

RESUMO

The authors present a new approach using genetic algorithms, neural networks, and nanorobotics concepts applied to the problem of control design for nanoassembly automation and its application in medicine. As a practical approach to validate the proposed design, we have elaborated and simulated a virtual environment focused on control automation for nanorobotics teams that exhibit collective behavior. This collective behavior is a suitable way to perform a large range of tasks and positional assembly manipulation in a complex three-dimensional workspace. We emphasize the application of such techniques as a feasible approach for the investigation of nanorobotics system design in nanomedicine. Theoretical and practical analyses of control modeling is one important aspect that will enable rapid development in the emerging field of nanotechnology.


Assuntos
Algoritmos , Engenharia Biomédica/instrumentação , Comportamento Cooperativo , Micromanipulação/instrumentação , Modelos Teóricos , Nanotecnologia/instrumentação , Robótica/instrumentação , Engenharia Biomédica/métodos , Engenharia Biomédica/tendências , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Micromanipulação/métodos , Micromanipulação/tendências , Nanotecnologia/métodos , Nanotecnologia/tendências , Robótica/métodos , Robótica/tendências
17.
IEEE Trans Nanobioscience ; 4(2): 201-2; discussion 202-3, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16117028

RESUMO

The limitations on nanorobot design and activity imposed by Brownian motion events, communication problems, and the nature of the intercellular space are discussed. It is shown that severe problems exist for a nanorobot designed to enter tissues for therapeutic purposes when it is smaller than about 1 microm in any one of its dimensions.


Assuntos
Algoritmos , Engenharia Biomédica/instrumentação , Comportamento Cooperativo , Micromanipulação/instrumentação , Modelos Teóricos , Nanotecnologia/instrumentação , Robótica/instrumentação , Engenharia Biomédica/métodos , Engenharia Biomédica/tendências , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Micromanipulação/métodos , Micromanipulação/tendências , Nanotecnologia/métodos , Nanotecnologia/tendências , Robótica/métodos , Robótica/tendências
18.
Curr Opin Biotechnol ; 15(1): 44-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15102465

RESUMO

Many efforts are currently underway to try and mimic the properties of single cells with the aim of designing chips that are as efficient as cells. However, cells are nature's nanotechnology engineering at the scale of atoms and molecules, and it might be better to envision a microchip that utilizes a single cell as an experimentation platform. A novel, so-called laboratory-in-a-cell concept has been described, where advantage is taken of micro- and nanotechnological tools to enable precise control of the biochemical cellular environment; these tools also offer the possibility to analyse the composition of single cells. Methods for single-cell handling and analysis are being developed and will be required for this concept to progress further.


Assuntos
Técnicas de Cultura de Células/instrumentação , Fenômenos Fisiológicos Celulares , Citometria de Fluxo/instrumentação , Microfluídica/instrumentação , Micromanipulação/instrumentação , Nanotecnologia/instrumentação , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/tendências , Células Cultivadas , Eletroforese/instrumentação , Eletroforese/métodos , Eletroforese/tendências , Desenho de Equipamento , Citometria de Fluxo/métodos , Citometria de Fluxo/tendências , Humanos , Microfluídica/métodos , Microfluídica/tendências , Micromanipulação/métodos , Micromanipulação/tendências , Miniaturização/instrumentação , Miniaturização/métodos , Nanotecnologia/métodos , Nanotecnologia/tendências , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Técnicas de Patch-Clamp/tendências
20.
Med Sci (Paris) ; 19(1): 92-9, 2003 Jan.
Artigo em Francês | MEDLINE | ID: mdl-12836197

RESUMO

Using a sharp tip attached at the end of a soft cantilever as a probe, the atomic force microscope (AFM) explores the surface topography of biological samples bathed in physiological solutions. In the last few years, the AFM has gained popularity among biologists. This has been obtained through the improvement of the equipment and imaging techniques as well as through the development of new non-imaging applications. Biological imaging has to face a main difficulty that is the softness and the dynamics of most biological materials. Progress in understanding the AFM tip-biological samples interactions provided spectacular results in different biological fields. Recent examples of the possibilities offered by the AFM in the imaging of intact cells, isolated membranes, membrane model systems and single molecules at work are discussed in this review. Applications where the AFM tip is used as a nanotool to manipulate biomolecules and to determine intra- and intermolecular forces from single molecules are also presented.


Assuntos
Microscopia de Força Atômica , Animais , Células/ultraestrutura , DNA/ultraestrutura , Desenho de Equipamento , Previsões , Humanos , Processamento de Imagem Assistida por Computador , Microdomínios da Membrana/ultraestrutura , Membranas/ultraestrutura , Micromanipulação/instrumentação , Micromanipulação/métodos , Micromanipulação/tendências , Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/métodos , Microscopia de Força Atômica/tendências , Óptica e Fotônica , Proteínas/ultraestrutura , Frações Subcelulares/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...