Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 165, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344798

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare but fatal cardiopulmonary disease mainly characterized by pulmonary vascular remodeling. Aberrant expression of circRNAs has been reported to play a crucial role in pulmonary vascular remodeling. The existing literature predominantly centers on studies that examined the sponge mechanism of circRNAs. However, the mechanism of circRNAs in regulating PAH-related protein remains largely unknown. This study aimed to investigate the effect of circItgb5 on pulmonary vascular remodeling and the underlying functional mechanism. MATERIALS AND METHODS: High-throughput circRNAs sequencing was used to detect circItgb5 expression in control and PDGF-BB-treated pulmonary arterial smooth muscle cells (PASMCs). Localization of circItgb5 in PASMCs was determined via the fluorescence in situ hybridization assay. Sanger sequencing was applied to analyze the circularization of Itgb5. The identification of proteins interacting with circItgb5 was achieved through a RNA pull-down assay. To assess the impact of circItgb5 on PASMCs proliferation, an EdU assay was employed. Additionally, the cell cycle of PASMCs was examined using a flow cytometry assay. Western blotting was used to detect biomarkers associated with the phenotypic switch of PASMCs. Furthermore, a monocrotaline (MCT)-induced PAH rat model was established to explore the effect of silencing circItgb5 on pulmonary vascular remodeling. RESULTS: CircItgb5 was significantly upregulated in PDGF-BB-treated PASMCs and was predominately localized in the cytoplasm of PASMCs. In vivo experiments revealed that the knockdown of circItgb5 attenuated MCT-induced pulmonary vascular remodeling and right ventricular hypertrophy. In vitro experiments revealed that circItgb5 promoted the transition of PASMCs to synthetic phenotype. Mechanistically, circItgb5 sponged miR-96-5p to increase mTOR level and interacted with Uba1 protein to activate the Ube2n/Mdm2/ACE2 pathway. CONCLUSIONS: CircItgb5 promoted the transition of PASMCs to synthetic phenotype by interacting with miR-96-5p and Uba1 protein. Knockdown of circItgb5 mitigated pulmonary arterial pressure, pulmonary vascular remodeling and right ventricular hypertrophy. Overall, circItgb5 has the potential for application as a therapeutic target for PAH.


Assuntos
Hipertensão Pulmonar , Cadeias beta de Integrinas , RNA Circular , Animais , Masculino , Ratos , Células Cultivadas , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , MicroRNAs/metabolismo , Monocrotalina , Mioblastos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-sis , Ratos Sprague-Dawley , RNA Circular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Remodelação Vascular , Cadeias beta de Integrinas/genética
2.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L328-L333, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722559

RESUMO

Asthma is characterized by a chronic inflammation and remodeling of the airways. Although inflammation can be controlled, therapeutic options to revert remodeling do not exist. Thus, there is a large and unmet need to understand the underlying molecular mechanisms to develop novel therapies. We previously identified a pivotal role for miR-142-3p in regulating airway smooth muscle (ASM) precursor cell proliferation during lung development by fine-tuning the Wingless/Integrase I (WNT) signaling. Thus, we here aimed to investigate the relevance of this interaction in asthma. We performed quantitative RT-PCR and immune staining in a murine model for ovalbumin-induced allergic airway inflammation and in bronchial biopsies from patients with asthma and isolated primary fibroblasts thereof. miR-142-3p was increased in hyperproliferative regions of lung in murine and human asthma, whereas this microRNA (miRNA) was excluded from regions with differentiated ASM cells. Increases in miR-142-3p were associated with a decrease of its known target Adenomatous polyposis coli. Furthermore, we observed a differential expression of miR-142-3p in bronchial biopsies from patients with early or late onset severe asthma, which coincided with a differential WNT signature. Our data suggest that miR-142-3p is involved in regulating the balance between proliferation and differentiation of ASM cells in asthma, possibly via controlling WNT signaling. Thus, this miRNA might be an interesting target to prevent ASM hyperproliferation in asthma.


Assuntos
Remodelação das Vias Aéreas , Asma/metabolismo , MicroRNAs/biossíntese , Miócitos de Músculo Liso/metabolismo , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Asma/patologia , Asma/fisiopatologia , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Mioblastos de Músculo Liso/metabolismo , Mioblastos de Músculo Liso/patologia , Miócitos de Músculo Liso/patologia
3.
Cell Rep ; 23(4): 1152-1165, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694892

RESUMO

Pulmonary hypertension is a devastating disease characterized by excessive vascular muscularization. We previously demonstrated primed platelet-derived growth factor receptor ß+ (PDGFR-ß+)/smooth muscle cell (SMC) marker+ progenitors at the muscular-unmuscular arteriole border in the normal lung, and in hypoxia-induced pulmonary hypertension, a single primed cell migrates distally and expands clonally, giving rise to most of the pathological smooth muscle coating of small arterioles. Little is known regarding the molecular mechanisms underlying this process. Herein, we show that primed cell expression of Kruppel-like factor 4 and hypoxia-inducible factor 1-α (HIF1-α) are required, respectively, for distal migration and smooth muscle expansion in a sequential manner. In addition, the HIF1-α/PDGF-B axis in endothelial cells non-cell autonomously regulates primed cell induction, proliferation, and differentiation. Finally, myeloid cells transdifferentiate into or fuse with distal arteriole SMCs during hypoxia, and Pdgfb deletion in myeloid cells attenuates pathological muscularization. Thus, primed cell autonomous and non-cell autonomous pathways are attractive therapeutic targets for pulmonary hypertension.


Assuntos
Transdiferenciação Celular , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Mioblastos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Feminino , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Linfocinas/genética , Linfocinas/metabolismo , Masculino , Camundongos , Músculo Liso Vascular/patologia , Mioblastos de Músculo Liso/patologia , Miócitos de Músculo Liso/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo
4.
Mol Metab ; 6(11): 1429-1442, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29107290

RESUMO

OBJECTIVE: Strategies improving skeletal muscle mitochondrial capacity are commonly paralleled by improvements in (metabolic) health. We and others previously identified microRNAs regulating mitochondrial oxidative capacity, but data in skeletal muscle are limited. Therefore, the present study aimed to identify novel microRNAs regulating skeletal muscle mitochondrial metabolism. METHODS AND RESULTS: We conducted an unbiased, hypothesis-free microRNA silencing screen in C2C12 myoblasts, using >700 specific microRNA inhibitors, and investigated a broad panel of mitochondrial markers. After subsequent validation in differentiated C2C12 myotubes, and exclusion of microRNAs without a human homologue or with an adverse effect on mitochondrial metabolism, 19 candidate microRNAs remained. Human clinical relevance of these microRNAs was investigated by measuring their expression in human skeletal muscle of subject groups displaying large variation in skeletal muscle mitochondrial capacity. CONCLUSION: The results show that that microRNA-320a, microRNA-196b-3p, microRNA-150-5p, and microRNA-34c-3p are tightly related to in vivo skeletal muscle mitochondrial function in humans and identify these microRNAs as targets for improving mitochondrial metabolism.


Assuntos
MicroRNAs/genética , Mitocôndrias Musculares/metabolismo , Mioblastos de Músculo Liso/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Humanos , Masculino , Camundongos , MicroRNAs/metabolismo , Mitocôndrias Musculares/genética , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo
5.
Stem Cell Res Ther ; 8(1): 156, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676082

RESUMO

BACKGROUND: Smooth muscle progenitor cells (pSMCs) differentiated from human pluripotent stem cells (hPSCs) hold great promise for treating diseases or degenerative conditions involving smooth muscle pathologies. However, the therapeutic potential of pSMCs derived from men and women may be very different. Cell sex can exert a profound impact on the differentiation process of stem cells into somatic cells. In spite of advances in translation of stem cell technologies, the role of cell sex and the effect of sex hormones on the differentiation towards mesenchymal lineage pSMCs remain largely unexplored. METHODS: Using a standard differentiation protocol, two human embryonic stem cell lines (one male line and one female line) and three induced pluripotent stem cell lines (one male line and two female lines) were differentiated into pSMCs. We examined differences in the differentiation of male and female hPSCs into pSMCs, and investigated the effect of 17ß-estradiol (E2) on the extracellular matrix (ECM) metabolisms and cell proliferation rates of the pSMCs. Statistical analyses were performed by using Student's t test or two-way ANOVA, p < 0.05. RESULTS: Male and female hPSCs had similar differentiation efficiencies and generated morphologically comparable pSMCs under a standard differentiation protocol, but the derived pSMCs showed sex differences in expression of ECM proteins, such as MMP-2 and TIMP-1, and cell proliferation rates. E2 treatment induced the expression of myogenic gene markers and suppressed ECM degradation activities through reduction of MMP activity and increased expression of TIMP-1 in female pSMCs, but not in male pSMCs. CONCLUSIONS: hPSC-derived pSMCs from different sexes show differential expression of ECM proteins and proliferation rates. Estrogen appears to promote maturation and ECM protein expression in female pSMCs, but not in male pSMCs. These data suggest that intrinsic cell-sex differences may influence progenitor cell biology.


Assuntos
Diferenciação Celular , Proliferação de Células , Proteínas da Matriz Extracelular/biossíntese , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Mioblastos de Músculo Liso/metabolismo , Caracteres Sexuais , Feminino , Humanos , Masculino , Mioblastos de Músculo Liso/citologia , Células-Tronco Pluripotentes/citologia
6.
Neuroreport ; 27(12): 875-82, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27391329

RESUMO

The present research was designed to investigate whether endothelin-1 (ET-1) secretion can be induced by oxyhemoglobin and whether nuclear factor κB (NF-κB) is involved in the regulation of ET-1 transcription in cerebrovascular muscle cells. Cerebrovascular muscle cells isolated from a rabbit basilar artery were stimulated by oxyhemoglobin (OxyHb) and ET-1 production was increased significantly in the supernatant. Inhibition of NF-κB with pyrrolidine dithiocarbamate and small interfering RNA decreased the expression of ET-1. Nuclear translocation of NF-κB and the degradation of IkB-α was observed with the stimulation of OxyHb. The supernatant obtained from cerebrovascular muscle cells stimulated by OxyHb produced contractions in arterial rings and was blocked by the ET-1 receptor antagonist (BQ-123). The time course of the OxyHb-induced contractions of the basilar artery rings correlated with the time course of the OxyHb-induced ET-1 secretion. The contraction of the basilar artery rings induced by OxyHb was attenuated when the artery rings were preincubated with pyrrolidine dithiocarbamate and SN50 (20 and 10 µM, respectively). These results indicate that cerebrovascular muscle cells may be an important source of ET-1 production after subarachnoid hemorrhage. NF-κB was involved in the expression of ET-1 and the inhibition of the NF-κB pathway may be beneficial for the treatment of cerebral vasospasm.


Assuntos
Artéria Basilar/metabolismo , Endotelina-1/metabolismo , Mioblastos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Oxiemoglobinas/administração & dosagem , Animais , Artéria Basilar/fisiologia , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Masculino , Contração Muscular , RNA Mensageiro/metabolismo , Coelhos , Hemorragia Subaracnóidea/metabolismo
7.
Circ Res ; 116(8): 1392-412, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25858065

RESUMO

The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease.


Assuntos
Doenças Cardiovasculares/patologia , Células Progenitoras Endoteliais/patologia , Músculo Liso Vascular/patologia , Mioblastos de Músculo Liso/patologia , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/cirurgia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/transplante , Mioblastos de Músculo Liso/metabolismo , Mioblastos de Músculo Liso/transplante , Neovascularização Patológica , Neovascularização Fisiológica , Regeneração , Medicina Regenerativa/métodos , Nicho de Células-Tronco
8.
PLoS One ; 9(1): e86100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475076

RESUMO

Interstitial cells of Cajal (ICC) are critical to gastrointestinal motility. The phenotypes of ICC progenitors have been observed in the mouse gut, but whether they exist in the human colon and what abnormal changes in their quantity and ultrastructure are present in Hirschsprung's disease (HSCR) colon remains uncertain. In this study, we collected the surgical resection of colons, both proximal and narrow segments, from HSCR patients and normal controls. First, we identified the progenitor of ICC in normal adult colon using immunofluorescent localization techniques with laser confocal microscopy. Next, the progenitors were sorted to observe their morphology. We further applied flow cytometry to examine the content of ICC progenitors in these fresh samples. The ultrastructural changes in the narrow and proximal parts of the HSCR colon were observed using transmission electron microscopy (TEM) and were compared with the normal adult colon. The presumed early progenitor (c-Kit(low)CD34(+)Igf1r(+)) and committed progenitor (c-Kit(+)CD34(+)Igf1r(+)) of ICC exist in adult normal colon as well as in the narrow and proximal parts of the HSCR colon. However, the proportions of mature, early and committed progenitors of ICC were dramatically reduced in the narrow segment of the HSCR colon. The proportions of mature and committed progenitors of ICC in the proximal segment of the HSCR colon were lower than in the adult normal colon. Ultrastructurally, ICC, enteric nerves, and smooth muscle in the narrow segment of the HSCR colon showed severe injury, including swollen vacuola or ted mitochondria, disappearance of mitochondrial cristae, dilated rough endoplasmic reticulum, vesiculation and degranulation, and disappearance of the caveolae on the ICC membrane surface. The contents of ICC and its progenitors in the narrow part of the HSCR colon were significantly decreased than those of adult colon, which may be associated with HSCR pathogenesis.


Assuntos
Doença de Hirschsprung/metabolismo , Células Intersticiais de Cajal/metabolismo , Mioblastos de Músculo Liso/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Células Cultivadas , Pré-Escolar , Feminino , Humanos , Imunofenotipagem , Lactente , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/ultraestrutura , Masculino , Pessoa de Meia-Idade , Mioblastos de Músculo Liso/citologia , Mioblastos de Músculo Liso/ultraestrutura , Fenótipo
9.
Kardiol Pol ; 71(10): 1048-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24197586

RESUMO

BACKGROUND: Modern therapies of post infarcted heart failure are focused on perfusion improvement of the injured myocardium. This effect can be achieved by, among other means, implanting stem cells which could be genetically modified with factors inducing the formation of new blood vessels in the post infarction scar area. Combined stem cell and gene therapy seems to be a promising strategy to heal an impaired myocardium. The creation of new blood vessels can be indirectly stimulated via factors inducing vascular endothelial growth factor synthesis, for example endothelial nitric oxide synthase (eNOS). The product of this enzyme, nitric oxide, is a molecule that can influence numerous physiological activities; it can contribute to vasodilation, stimulation of endothelial cell growth, prevention of platelet aggregation and leukocyte adhesion to the endothelium. AIM: To verify the pro-angiogenic and regenerative potential of human primary myoblasts and murine myoblast cell line C2C12 transiently transfected with eNOS gene. METHODS: Stem cells (either human or murine) were maintained in standard in vitro conditions. Next, both types of myoblasts were modified using electroporation and lipofection (human and murine cells), respectively. The efficacy of the transfection method was evaluated using flow cytometry. The concentration of eNOS protein was measured by ELISA immunoassay. The biological properties of modified cells were assessed using an MTT proliferation test and DAPI cell cycle analysis. To verify the influence of oxidative stress on myoblasts, cytometric tests using Annexin V and propidium iodide were applied. To check possible alterations in myogenic gene expression of stem cells transduced by genetic modification, the myogenic regulatory factors were evaluated by real-time PCR. The function of genetic modification was confirmed by a HUVEC capillary sprouting test using myoblasts supernatants. RESULTS: Electroporation turned out to be an efficient transfection method. High amounts of secreted protein were obtained (in the range 2,000 pg/mL) in both cell types studied. Moreover, the functionality of gene overexpression product was confirmed in capillary development assay. Human myoblasts did not exhibit any changes in cell cycle; however, eNOS transfected murine myoblasts revealed a statistically significant reduction in cell cycle ratio compared to controls (p < 0.001). In the case of myogenic gene expression, a decrease in Myogenin level was only detected in the human transfected myoblast population (p < 0.05). CONCLUSIONS: The results of our study may suggest that transplantation of myoblasts overexpressing eNOS could be promising for cell therapy in regenerating the post infarction heart.


Assuntos
Terapia Genética , Mioblastos Esqueléticos/transplante , Mioblastos de Músculo Liso/transplante , Infarto do Miocárdio/terapia , Óxido Nítrico Sintase Tipo III/genética , Células-Tronco/citologia , Animais , Apoptose/genética , Ciclo Celular/genética , Proliferação de Células , Células Cultivadas , Eletroporação , Células Endoteliais/citologia , Humanos , Camundongos , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Mioblastos de Músculo Liso/citologia , Mioblastos de Músculo Liso/metabolismo , Neovascularização Fisiológica/genética , Estresse Oxidativo/genética , Regeneração/genética , Transplante de Células-Tronco , Transfecção , Veias Umbilicais/citologia , Fator A de Crescimento do Endotélio Vascular
10.
J Surg Res ; 182(1): 40-8, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22925499

RESUMO

PURPOSE: Acellular porcine small intestinal submucosa (SIS) has been successfully used for esophagoplasty in dogs. However, this has not led to complete epithelialization and muscular regeneration. We undertook the present study to assess the effect of tissue-engineered esophagus generated by seeding bone marrow mesenchymal stem cells (BMSCs) onto an SIS scaffold (BMSCs-SIS) in a canine model. METHODS: We cultured, passaged, and measured autologous BMSCs and myoblasts with cell proliferation and immunohistochemical assays. We labeled the third passage of BMSCs with PKH-26, a fluorescent dye, before seeded it onto the SIS. We resected canine cervical esophagus to generate a defect 5 cm in length and 50% in circumference, which we repaired with BMSCs-SIS or SIS alone. RESULTS: Four weeks later, barium esophagram demonstrated that esophageal lumen surface of the patch graft was smoother in the BMSCs-SIS group compared with the SIS group. Histological examination suggested a strong similarity between BMSCs and esophageal myoblasts in terms of morphology and function. Although both BMSCs-SIS and SIS repaired the esophageal defects, we noted complete re-epithelialization with almost no inflammation only in the former group. By 12 wk after the surgery, we observed long bundles of skeletal muscles only in the BMSCs-SIS group, where the microvessel density was also much greater. CONCLUSIONS: Bone marrow mesenchymal stem cells on an SIS scaffold can promote re-epithelialization, revascularization, and muscular regeneration. This approach may provide an attractive option for esophageal regeneration.


Assuntos
Diferenciação Celular/fisiologia , Esôfago/citologia , Células-Tronco Mesenquimais/citologia , Modelos Animais , Engenharia Tecidual/métodos , Actinas/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células , Células Cultivadas , Cães , Esôfago/fisiologia , Masculino , Células-Tronco Mesenquimais/fisiologia , Mioblastos de Músculo Liso/citologia , Mioblastos de Músculo Liso/metabolismo , Regeneração/fisiologia , Alicerces Teciduais
11.
Development ; 139(17): 3099-108, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22833126

RESUMO

Smooth muscle cells (SMCs) are a key component of many visceral organs, including the ureter, yet the molecular pathways that regulate their development from mesenchymal precursors are insufficiently understood. Here, we identified epithelial Wnt7b and Wnt9b as possible ligands of Fzd1-mediated ß-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated ureteric mesenchyme. Mice with a conditional deletion of Ctnnb1 in the ureteric mesenchyme exhibited hydroureter and hydronephrosis at newborn stages due to functional obstruction of the ureter. Histological analysis revealed that the layer of undifferentiated mesenchymal cells directly adjacent to the ureteric epithelium did not undergo characteristic cell shape changes, exhibited reduced proliferation and failed to differentiate into SMCs. Molecular markers for prospective SMCs were lost, whereas markers of the outer layer of the ureteric mesenchyme fated to become adventitial fibroblasts were expanded to the inner layer. Conditional misexpression of a stabilized form of Ctnnb1 in the prospective ureteric mesenchyme resulted in the formation of a large domain of cells that exhibited histological and molecular features of prospective SMCs and differentiated along this lineage. Our analysis suggests that Wnt signals from the ureteric epithelium pattern the ureteric mesenchyme in a radial fashion by suppressing adventitial fibroblast differentiation and initiating smooth muscle precursor development in the innermost layer of mesenchymal cells.


Assuntos
Hipoxantina Fosforribosiltransferase/genética , Mioblastos de Músculo Liso/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Ureter/embriologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Diferenciação Celular/fisiologia , Cruzamentos Genéticos , Fluorescência , Técnicas de Introdução de Genes , Hibridização In Situ , Camundongos , Mioblastos de Músculo Liso/metabolismo , Ureter/citologia , Ureter/metabolismo , beta Catenina/deficiência
12.
Dev Biol ; 367(2): 178-86, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22609551

RESUMO

MicroRNAs are potent modulators of cellular differentiation. miR-145 is expressed in, and promotes the differentiation of vascular and visceral smooth muscle cells (SMCs). Interestingly, we have observed that miR-145 also promotes differentiation of the gut epithelium in the developing zebrafish, a cell type where it is not expressed. Here we identify that a paracrine pathway involving the morphogens Sonic hedgehog (Shh) in epithelium and bone morphogenic protein 4 (Bmp4) in SMCs is modulated by miR-145. We show that expression of miR-145 in visceral SMCs normally represses the expression of the morphogen bmp4, as loss of miR-145 leads to upregulation of bmp4 in SMCs. We show that bmp4 in turn controls expression of Shh in the visceral epithelium. Conversely, in miR-145 morphants where bmp4 expression is increased, expression of sonic hedgehog a (shha) is strongly increased in gut epithelium. We show that expression of bmp4 is modulated by the miR-145 direct target gata6 but not a second potential direct target, klf5a. Thus although miR-145 is a tissue-restricted microRNA, it plays an essential role in promoting the patterning of both gut layers during gut development via a paracrine mechanism.


Assuntos
MicroRNAs/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular , Proliferação de Células , Sistema Digestório/embriologia , Sistema Digestório/metabolismo , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Morfolinos/genética , Músculo Liso/embriologia , Músculo Liso/metabolismo , Mioblastos de Músculo Liso/citologia , Mioblastos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Comunicação Parácrina , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(18): 6993-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22509029

RESUMO

Vascular smooth muscle cells (VSMC) have been suggested to arise from various developmental sources during embryogenesis, depending on the vascular bed. However, evidence also points to a common subpopulation of vascular progenitor cells predisposed to VSMC fate in the embryo. In the present study, we use binary transgenic reporter mice to identify a Tie1(+)CD31(dim)vascular endothelial (VE)-cadherin(-)CD45(-) precursor that gives rise to VSMC in vivo in all vascular beds examined. This precursor does not represent a mature endothelial cell, because a VE-cadherin promoter-driven reporter shows no expression in VSMC during murine development. Blockade of Notch signaling in the Tie1(+) precursor cell, but not the VE-cadherin(+) endothelial cell, decreases VSMC investment of developing arteries, leading to localized hemorrhage in the embryo at the time of vascular maturation. However, Notch signaling is not required in the Tie1(+) precursor after establishment of a stable artery. Thus, Notch activity is required in the differentiation of a Tie1(+) local precursor to VSMC in a spatiotemporal fashion across all vascular beds.


Assuntos
Diferenciação Celular/fisiologia , Mioblastos de Músculo Liso/citologia , Mioblastos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Receptores Notch/metabolismo , Animais , Antígenos CD/genética , Artérias/embriologia , Artérias/crescimento & desenvolvimento , Artérias/metabolismo , Sequência de Bases , Caderinas/deficiência , Caderinas/genética , Diferenciação Celular/genética , Primers do DNA/genética , Feminino , Antígenos Comuns de Leucócito/deficiência , Antígenos Comuns de Leucócito/genética , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Receptor de TIE-1/metabolismo , Receptores Notch/antagonistas & inibidores , Transdução de Sinais
15.
Arterioscler Thromb Vasc Biol ; 32(1): 42-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22034512

RESUMO

OBJECTIVE: The goal of this study was to use mice expressing human tissue factor pathway inhibitor (TFPI) on α-smooth muscle actin (α-SMA)(+) cells as recipients of allogeneic aortas to gain insights into the cellular mechanisms of intimal hyperplasia (IH). METHODS AND RESULTS: BALB/c aortas (H-2(d)) transplanted into α-TFPI-transgenic (Tg) mice (H-2(b)) regenerated a quiescent endothelium in contrast to progressive IH seen in C57BL/6 wild-type (WT) mice even though both developed aggressive anti-H-2(d) alloresponses, indicating similar vascular injuries. Adoptively transferred Tg CD34(+) (but not CD34(-)) cells inhibited IH in WT recipients, indicating the phenotype of α-TFPI-Tg mice was due to these cells. Compared with syngeneic controls, endogenous CD34(+) cells were mobilized in significant numbers after allogeneic transplantation, the majority showing sustained expression of tissue factor and protease-activated receptor-1 (PAR-1). In WT, most were CD45(+) myeloid progenitors coexpressing CD31, vascular endothelial growth factor receptor-2 and E-selectin; 10% of these cells coexpressed α-SMA and were recruited to the neointima. In contrast, the α-SMA(+) human TFPI(+) CD34(+) cells recruited in Tg recipients were from a CD45(-) lineage. WT CD34(+) cells incubated with a PAR-1 antagonist or taken from PAR-1-deficient mice inhibited IH as Tg cells did. CONCLUSIONS: Specific inhibition of thrombin generation or PAR-1 signaling on α-SMA(+) CD34(+) cells inhibits IH and promotes regenerative repair despite ongoing immune-mediated damage.


Assuntos
Actinas/metabolismo , Lesões das Artérias Carótidas/metabolismo , Mioblastos de Músculo Liso/metabolismo , Receptores de Trombina/antagonistas & inibidores , Transferência Adotiva , Animais , Antígenos CD34/metabolismo , Aorta/imunologia , Aorta/metabolismo , Aorta/patologia , Aorta/transplante , Lesões das Artérias Carótidas/imunologia , Lesões das Artérias Carótidas/patologia , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mioblastos de Músculo Liso/imunologia , Mioblastos de Músculo Liso/patologia , Neointima/imunologia , Neointima/metabolismo , Neointima/patologia , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/deficiência , Receptor PAR-1/genética , Receptores de Trombina/metabolismo , Transdução de Sinais , Cicatrização/fisiologia
16.
Hybridoma (Larchmt) ; 30(2): 125-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21529284

RESUMO

Double homeobox 4 (DUX4) is a candidate disease gene for facioscapulohumeral dystrophy (FSHD), one of the most common muscular dystrophies characterized by progressive skeletal muscle degeneration. Despite great strides in understanding precise genetics of FSHD, the molecular pathophysiology of the disease remains unclear. One of the major limitations has been the availability of appropriate molecular tools to study DUX4 protein. In the present study, we report the development of five new monoclonal antibodies targeted against the N- and C-termini of human DUX4, and characterize their reactivity using Western blot and immunofluorescence staining. Additionally, we show that expression of the canonical full coding DUX4 induces cell death in human primary muscle cells, whereas the expression of a shorter splice form of DUX4 results in no such toxicity. Immunostaining with these new antibodies reveals a differential effect of two DUX4 isoforms on human muscle cells. These antibodies will provide an excellent tool for investigating the role of DUX4 in FSHD pathogenesis.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Musculares/metabolismo , Mioblastos de Músculo Liso/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Western Blotting , Técnicas de Cultura de Células , Clonagem Molecular , Escherichia coli , Imunofluorescência , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Camundongos , Células Musculares/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Mioblastos de Músculo Liso/patologia , Plasmídeos , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Estrutura Terciária de Proteína/genética , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Transfecção
17.
J Mol Cell Cardiol ; 50(2): 304-11, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20850452

RESUMO

Homeostasis of the vessel wall is essential for maintaining its function, including blood pressure and patency of the lumen. In physiological conditions, the turnover rate of vascular cells, i.e. endothelial and smooth muscle cells, is low, but markedly increased in diseased situations, e.g. vascular injury after angioplasty. It is believed that mature vascular cells have an ability to proliferate to replace lost cells normally. On the other hand, recent evidence indicates stem/progenitor cells may participate in vascular repair and the formation of neointimal lesions in severely damaged vessels. It was found that all three layers of the vessels, the intima, media and adventitia, contain resident progenitor cells, including endothelial progenitor cells, mesenchymal stromal cells, Sca-1+ and CD34+ cells. Data also demonstrated that these resident progenitor cells could differentiate into a variety of cell types in response to different culture conditions. However, collective data were obtained mostly from in vitro culture assays and phenotypic marker studies. There are many unanswered questions concerning the mechanism of cell differentiation and the functional role of these cells in vascular repair and the pathogenesis of vascular disease. In the present review, we aim to summarize the data showing the presence of the resident progenitor cells, to highlight possible signal pathways orchestrating cell differentiation toward endothelial and smooth muscle cells, and to discuss the data limitations, challenges and controversial issues related to the role of progenitors. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Células Endoteliais/patologia , Homeostase/fisiologia , Humanos , Mioblastos de Músculo Liso/citologia , Mioblastos de Músculo Liso/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Células-Tronco/patologia , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia
18.
J Mol Cell Cardiol ; 50(2): 333-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21147123

RESUMO

Early pro-angiogenic cells (EPCs) have been shown to be involved in neovascularization, angiogenesis and re-endothelialization and cathepsin L inhibition blunted their pro-angiogenic effect. In the present study, we have analysed and mapped the proteome and secretome of human EPCs, utilizing a combination of difference in-gel electrophoresis (DIGE) and shotgun proteomics. A population of 206 protein spots were analysed, with 171 being identified in the cellular proteome of EPCs. 82 proteins were identified in their conditioned medium, including the alternative macrophage markers C-C motif chemokine 18 (CCL18) and the hemoglobin scavenger receptor CD163 as well as platelet factor 4 (CXCL4) and platelet basic protein (CXCL7) with "platelet alpha granule" being returned as the top category according to the Gene Ontology Annotation. Apart from cathepsin L, the cathepsin L inhibitor also attenuated the release of a wide range of other cathepsins and lysosomal proteins such as legumain, but stimulated the secretion of members of the S100 protein family. The data presented here are the most comprehensive characterization of protein expression and secretion in human EPCs to date and highlight the potential importance of cysteine proteases in the processing of platelet factors for their pro-angiogenic potential. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".


Assuntos
Células Endoteliais/metabolismo , Proteômica , Plaquetas/citologia , Catepsina L/antagonistas & inibidores , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Mioblastos de Músculo Liso/efeitos dos fármacos , Mioblastos de Músculo Liso/metabolismo
19.
J Mol Cell Cardiol ; 50(2): 273-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21047514

RESUMO

The proliferation and migration of vascular smooth muscle cells (SMCs) from the media toward the intimal layer are key components in vascular proliferative diseases. In addition, the differentiation of circulating bone marrow-derived mononuclear cells (BMMCs) into SMCs has been described to contribute to lesion progression in experimental models of atherosclerosis, transplant arteriosclerosis, and neointima formation. In vitro, CD14(+) BMMCs from peripheral blood acquire a spindle-shaped phenotype and express specific SMC markers in response to platelet-derived growth factor-BB. However, the 'trans-differentiation' capacity of BMMCs into definitive SMCs in vivo remains a highly controversial issue. Whereas SMCs within atherosclerotic plaques have been demonstrated to be exclusively of local origin, more severe injury models have shown a wide diversity of SMCs or smooth muscle-like cells derived from BMMCs. In hindsight, these discrepancies may be attributed to methodological differences, e.g., the use of high-resolution microscopy or the specificity of the SMC marker proteins. In fact, the analysis of mouse strains that express marker genes under the control of a highly specific smooth muscle-myosin heavy chain (SM-MHC) promoter and a time-course analysis on the dynamic process of neointima formation have recently shown that BMMCs temporarily express α-smooth muscle actin, not SM-MHC. Additionally, BM-derived cells disappear from the neointimal lesion after the inflammatory response to the injury has subsided. Although CD14(+)/CD68(+) have important paracrine effects on arterial lesion progression, BMMCs account for more of the 'SMC-like macrophages' than the highly 'trans-differentiated' and definitive SMCs in vivo. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".


Assuntos
Artérias/patologia , Mioblastos de Músculo Liso/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Antígenos de Superfície/metabolismo , Artérias/metabolismo , Arteriosclerose/patologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Humanos , Mioblastos de Músculo Liso/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/patologia
20.
Endocrinology ; 151(10): 4938-48, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20826562

RESUMO

This study examined the efficacy and in vivo mechanism of action of the antifibrotic hormone, relaxin, in a mouse model of unilateral ureteric obstruction (UUO). Kidney fibrosis was assessed in recombinant human gene-2 relaxin-treated animals maintained for 3 and 9 d after UUO. Results were compared with untreated and unoperated animals (d 0). Total collagen, collagen subtypes (I, IV), TGF-ß2 production, mothers against decapentaplegic homolog 2 (Smad2) phosphorylation, myofibroblast differentiation, mitosis, and apoptosis were all progressively increased by UUO (all P<0.05 vs. d 0 group at d 3 and d 9), whereas TGF-ß1 production was increased and vascular endothelial growth factor expression (angiogenesis) decreased at d 9 (both P<0.05 vs. d 0). A progressive increase in matrix metalloproteinase (MMP)-2 after UUO suggested that it was reactive to the increased fibrogenesis. Conversely, MMP-9 was decreased at d 9, whereas its inhibitor tissue inhibitor of metalloproteinase-1 progressively decreased after UUO. Human gene-2 relaxin pretreatment of animals from 4 d prior to UUO ameliorated the increase in total collagen, collagen IV, Smad2 phosphorylation, and myofibroblasts at both time points (all P<0.05 vs. untreated groups) and inhibited TGF-ß2 production and cell proliferation (both P<0.05 vs. untreated groups) with a trend toward normalizing vascular endothelial growth factor expression at d 9, with no effect on TGF-ß1 production or apoptosis. The relaxin-mediated regulation of MMPs and tissue inhibitor of metalloproteinases in this model was not consistent with its antifibrotic properties. The beneficial effects of relaxin were lost when treatment was stopped. These findings establish that relaxin can inhibit both early and established phases of tubulointerstitial fibrosis, primarily by suppressing cell proliferation, myofibroblast differentiation, and collagen production. Not all of these effects paralleled changes to TGF-ß-Smad signaling.


Assuntos
Citoproteção/efeitos dos fármacos , Nefropatias/prevenção & controle , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Relaxina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Fibrose/prevenção & controle , Gelatinases/metabolismo , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos de Músculo Liso/efeitos dos fármacos , Mioblastos de Músculo Liso/metabolismo , Mioblastos de Músculo Liso/patologia , Relaxina/uso terapêutico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...