Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
J Biol Chem ; 296: 100471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639160

RESUMO

Actin-myosin mediated contractile forces are crucial for many cellular functions, including cell motility, cytokinesis, and muscle contraction. We determined the effects of ten actin-binding compounds on the interaction of cardiac myosin subfragment 1 (S1) with pyrene-labeled F-actin (PFA). These compounds, previously identified from a small-molecule high-throughput screen (HTS), perturb the structural dynamics of actin and the steady-state actin-activated myosin ATPase activity. However, the mechanisms underpinning these perturbations remain unclear. Here we further characterize them by measuring their effects on PFA fluorescence, which is decreased specifically by the strong binding of myosin to actin. We measured these effects under equilibrium and steady-state conditions, and under transient conditions, in stopped-flow experiments following addition of ATP to S1-bound PFA. We observed that these compounds affect early steps of the myosin ATPase cycle to different extents. They increased the association equilibrium constant K1 for the formation of the strongly bound collision complex, indicating increased ATP affinity for actin-bound myosin, and decreased the rate constant k+2 for subsequent isomerization to the weakly bound ternary complex, thus slowing the strong-to-weak transition that actin-myosin interaction undergoes early in the ATPase cycle. The compounds' effects on actin structure allosterically inhibit the kinetics of the actin-myosin interaction in ways that may be desirable for treatment of hypercontractile forms of cardiomyopathy. This work helps to elucidate the mechanisms of action for these compounds, several of which are currently used therapeutically, and sets the stage for future HTS campaigns that aim to discover new drugs for treatment of heart failure.


Assuntos
Actinas/química , Actinas/metabolismo , Miosinas Cardíacas/metabolismo , Actinas/efeitos dos fármacos , Adenosina Trifosfatases/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Animais , Miosinas Cardíacas/efeitos dos fármacos , Miosinas Cardíacas/fisiologia , Bovinos , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Cinética , Contração Muscular/fisiologia , Subfragmentos de Miosina/efeitos dos fármacos , Subfragmentos de Miosina/metabolismo , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Física , Ligação Proteica , Pirenos/química , Coelhos , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035452

RESUMO

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Assuntos
Músculo Esquelético/metabolismo , Miosinas de Músculo Esquelético/efeitos dos fármacos , Miosinas de Músculo Esquelético/genética , Adulto , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Linhagem Celular , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Músculo Esquelético/fisiologia , Miosinas/efeitos dos fármacos , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Ratos , Ratos Wistar , Miosinas de Músculo Esquelético/metabolismo
3.
Neuropharmacology ; 162: 107803, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580838

RESUMO

The most common injury of preterm infants is periventricular leukomalacia (PVL) and to date there is still no safe and effective treatment. In our previous studies, leptin has been found to have neuroprotective effects on the preterm ischemia-hypoxia brain damage model rats in animal behavior. To gain insight into the neuroprotective mechanisms of leptin on preterm brain damage model rats, we constructed a comparative peptidomic profiling of hippocampal tissue between leptin-treated after model and preterm ischemia-hypoxia brain damage model rats using a stable isobaric labeling strategy involving tandem mass tag reagents, followed by nano liquid chromatography tandem mass spectrometry. We identified and quantified 4164 peptides, 238 of which were differential expressed in hippocampal tissue in the two groups. A total of 150 peptides were up regulated and 88 peptides were down regulated. These peptides were imported into the Ingenuity Pathway Analysis (IPA) and identified putative roles in nervous system development, function and diseases. We concluded that the preterm ischemia-hypoxia brain damage model with leptin treatment induced peptides changes in hippocampus, and these peptides, especially for the peptides associated "microtubule-associated protein 1b (MAP1b), Elastin (Eln), Piccolo presynaptic cytomatrix protein (Pclo), Zinc finger homeobox 3(Zfhx3), Alpha-kinase 3(Alpk3) and Myosin XVA(Myo15a) ", could be candidate bio-active peptides and participate in neuroprotection of leptin. These may advance our current understanding of the mechanism of leptin's neuroprotective effect on preterm brain damage and may be involved in the etiology of preterm brain damage. Meanwhile, we found that repression of ILK signaling pathway plays a significant role in neuroprotection of leptin. A better understanding of the role of ILK signaling pathway in neuroprotective mechanisms will help scientists and researchers to develop selective, safe and efficacious drug for therapy against human nervous system disorders.


Assuntos
Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Leptina/farmacologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Artéria Carótida Primitiva , Proteínas do Citoesqueleto/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Elastina/efeitos dos fármacos , Elastina/metabolismo , Hipocampo/efeitos dos fármacos , Proteínas de Homeodomínio/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Hipóxia-Isquemia Encefálica/fisiopatologia , Leucomalácia Periventricular/metabolismo , Leucomalácia Periventricular/fisiopatologia , Ligadura , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Neuropeptídeos/efeitos dos fármacos , Neuropeptídeos/metabolismo , Peptídeos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases , Ratos , Transdução de Sinais
4.
Circ Res ; 124(8): 1228-1239, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30732532

RESUMO

RATIONALE: Subcellular Ca2+ indicators have yet to be developed for the myofilament where disease mutation or small molecules may alter contractility through myofilament Ca2+ sensitivity. Here, we develop and characterize genetically encoded Ca2+ indicators restricted to the myofilament to directly visualize Ca2+ changes in the sarcomere. OBJECTIVE: To produce and validate myofilament-restricted Ca2+ imaging probes in an adenoviral transduction adult cardiomyocyte model using drugs that alter myofilament function (MYK-461, omecamtiv mecarbil, and levosimendan) or following cotransduction of 2 established hypertrophic cardiomyopathy disease-causing mutants (cTnT [Troponin T] R92Q and cTnI [Troponin I] R145G) that alter myofilament Ca2+ handling. METHODS AND RESULTS: When expressed in adult ventricular cardiomyocytes RGECO-TnT (Troponin T)/TnI (Troponin I) sensors localize correctly to the sarcomere without contractile impairment. Both sensors report cyclical changes in fluorescence in paced cardiomyocytes with reduced Ca2+ on and increased Ca2+ off rates compared with unconjugated RGECO. RGECO-TnT/TnI revealed changes to localized Ca2+ handling conferred by MYK-461 and levosimendan, including an increase in Ca2+ binding rates with both levosimendan and MYK-461 not detected by an unrestricted protein sensor. Coadenoviral transduction of RGECO-TnT/TnI with hypertrophic cardiomyopathy causing thin filament mutants showed that the mutations increase myofilament [Ca2+] in systole, lengthen time to peak systolic [Ca2+], and delay [Ca2+] release. This contrasts with the effect of the same mutations on cytoplasmic Ca2+, when measured using unrestricted RGECO where changes to peak systolic Ca2+ are inconsistent between the 2 mutations. These data contrast with previous findings using chemical dyes that show no alteration of [Ca2+] transient amplitude or time to peak Ca2+. CONCLUSIONS: RGECO-TnT/TnI are functionally equivalent. They visualize Ca2+ within the myofilament and reveal unrecognized aspects of small molecule and disease-associated mutations in living cells.


Assuntos
Cálcio/metabolismo , Cardiomiopatia Hipertrófica/genética , Mutação , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Sarcômeros/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Adenoviridae , Animais , Benzilaminas/farmacologia , Cardiomiopatia Hipertrófica/metabolismo , Cobaias , Técnicas In Vitro , Masculino , Miofibrilas/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Simendana/farmacologia , Transdução Genética/métodos , Troponina I/genética , Troponina I/metabolismo , Troponina T/genética , Troponina T/metabolismo , Uracila/análogos & derivados , Uracila/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia
5.
Circ Res ; 124(8): 1172-1183, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30700234

RESUMO

RATIONALE: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues. OBJECTIVE: We aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate. METHODS AND RESULTS: We developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C ( MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment. CONCLUSIONS: SarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants.


Assuntos
Algoritmos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Sarcômeros/fisiologia , Software , Benzilaminas/antagonistas & inibidores , Benzilaminas/farmacologia , Fármacos Cardiovasculares/farmacologia , Proteínas de Transporte/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desenho Assistido por Computador , Fluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Microscopia de Força Atômica/métodos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Propranolol/farmacologia , Uracila/análogos & derivados , Uracila/antagonistas & inibidores , Uracila/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Verapamil/farmacologia , Gravação em Vídeo
6.
Nat Commun ; 9(1): 3838, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242219

RESUMO

Omecamtiv mecarbil (OM) is a positive cardiac inotrope in phase-3 clinical trials for treatment of heart failure. Although initially described as a direct myosin activator, subsequent studies are at odds with this description and do not explain OM-mediated increases in cardiac performance. Here we show, via single-molecule, biophysical experiments on cardiac myosin, that OM suppresses myosin's working stroke and prolongs actomyosin attachment 5-fold, which explains inhibitory actions of the drug observed in vitro. OM also causes the actin-detachment rate to become independent of both applied load and ATP concentration. Surprisingly, increased myocardial force output in the presence of OM can be explained by cooperative thin-filament activation by OM-inhibited myosin molecules. Selective suppression of myosin is an unanticipated route to muscle activation that may guide future development of therapeutic drugs.


Assuntos
Cardiotônicos/farmacologia , Miosinas/efeitos dos fármacos , Ureia/análogos & derivados , Trifosfato de Adenosina , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Camundongos , Método de Monte Carlo , Pinças Ópticas , Suínos , Ureia/farmacologia
7.
Am J Physiol Cell Physiol ; 315(3): C422-C431, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29874107

RESUMO

Hydrogen peroxide (H2O2) increases paracellular permeability of Madin-Darby canine kidney (MDCK) cells, but the mechanism mediating this effect remains unclear. Treatment of MDCK cells with H2O2 activated ERK 1/2. Inhibition of ERK 1/2 activation blocked the ability of H2O2 to increase paracellular permeability. Knockdown of zonula occludens-1 (ZO-1) protein but not occludin eliminated the ability of H2O2 to increase paracellular permeability. H2O2 treatment did not, however, affect the total cell content or contents of the Triton X-100-soluble and -insoluble fractions for occludin, ZO-1, or ZO-2. H2O2 treatment decreased the number of F-actin stress fibers in the basal portion of the cells. Similar to wild-type MDCK cells, H2O2 increased ERK 1/2 activation in ZO-1 knockdown and occludin knockdown cells. Inhibition of ERK 1/2 activation blocked the increase in paracellular permeability in occludin knockdown cells. ZO-1 knockdown cell paracellular permeability was regulated by PP1, an src inhibitor, indicating that the loss of response to H2O2 was not a general loss of the ability to regulate the paracellular barrier. Inhibition of myosin ATPase activity with blebbistatin increased paracellular permeability in ZO-1 knockdown cells but not in wild-type MDCK cells. H2O2 treatment sensitized wild-type MDCK cells to inhibition of myosin ATPase. Knockdown of TOCA-1 protein, which promotes formation of local branched actin networks, reproduced the effects of ZO-1 protein knockdown. These results demonstrate that H2O2 increases MDCK cell paracellular permeability through activation of ERK 1/2. This H2O2 action requires ZO-1 protein and TOCA-1 protein, suggesting involvement of the actin cytoskeleton.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Cães , Células Madin Darby de Rim Canino , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Ocludina/metabolismo , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo
8.
Food Chem ; 242: 22-28, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037682

RESUMO

The objective of this paper is to investigate the potential affecting mechanisms of l-lysine (Lys)/l-arginine (Arg) on myosin solubility. The results showed that both Lys and Arg increased the solubility of myosin at the examined pH values. Additionally, both Lys and Arg decreased the hydrodynamic size of myosin but increased the hydration capacity (HC), the surface aromatic hydrophobicity of myosin, the surface tension of the myosin solution and the absolute transfer free energy (TFE) of the major amino acids that constitute myosin. The results indicate that the properties of Lys or Arg that result in an inhibition of myosin aggregation and an interaction with hydrophobic amino acid residues may play important roles in increasing the myosin solubility. The results are attractive to the meat industry.


Assuntos
Aminoácidos Acídicos/química , Arginina/farmacologia , Lisina/farmacologia , Miosinas/efeitos dos fármacos , Arginina/química , Interações Hidrofóbicas e Hidrofílicas , Lisina/química , Miosinas/química , Agregados Proteicos/efeitos dos fármacos , Solubilidade
9.
Proc Natl Acad Sci U S A ; 114(10): E1796-E1804, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223517

RESUMO

Omecamtiv mecarbil (OM), a putative heart failure therapeutic, increases cardiac contractility. We hypothesize that it does this by changing the structural kinetics of the myosin powerstroke. We tested this directly by performing transient time-resolved FRET on a ventricular cardiac myosin biosensor. Our results demonstrate that OM stabilizes myosin's prepowerstroke structural state, supporting previous measurements showing that the drug shifts the equilibrium constant for myosin-catalyzed ATP hydrolysis toward the posthydrolysis biochemical state. OM slowed the actin-induced powerstroke, despite a twofold increase in the rate constant for actin-activated phosphate release, the biochemical step in myosin's ATPase cycle associated with force generation and the conversion of chemical energy into mechanical work. We conclude that OM alters the energetics of cardiac myosin's mechanical cycle, causing the powerstroke to occur after myosin weakly binds to actin and releases phosphate. We discuss the physiological implications for these changes.


Assuntos
Miosinas Cardíacas/efeitos dos fármacos , Insuficiência Cardíaca/fisiopatologia , Miosinas/efeitos dos fármacos , Ureia/análogos & derivados , Animais , Técnicas Biossensoriais , Miosinas Cardíacas/química , Miosinas Cardíacas/isolamento & purificação , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/química , Bovinos , Galinhas , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Cinética , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Miocárdio/patologia , Miosinas/química , Fosfatos/química , Fosfatos/metabolismo , Coelhos , Ureia/administração & dosagem , Ureia/química
10.
Pathobiology ; 84(4): 171-183, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28002815

RESUMO

OBJECTIVES: Cortical actin is a thin layer of filamentous (F-)actin that lies beneath the plasma membrane, and its role in pathophysiology remains unclear. We investigated the subcellular localization of cortical actin by the histopathological and experimental studies of lung adenocarcinomas. MATERIALS AND METHODS: The subcellular localization of cortical actin was studied in surgically resected lung adenocarcinomas tissues and in 3-dimensionally cultured lung adenocarcinoma A549 cells. RESULTS: In normal type II alveolar cells and the bronchiolar epithelium, cortical actin was localized to the apical-side cytoplasm. In invasive adenocarcinoma cells, cortical actin was frequently localized to the matrix side. The degree of cortical actin localized to the matrix side was associated with the loss of basement membrane and a poor prognosis. In A549 cell spheroids cultured in a type I collagen and basement membrane extract Matrigel™ mixed gel, cortical F-actin was localized to the matrix side with phosphorylated myosin light chain. Super-resolution and electron microscopy results suggest that compact wrinkling of the plasma membrane by myosin-mediated F-actin contraction is an explanation for cortical actin accumulation at the matrix side. The myosin II inhibitor blebbistatin suppressed the 3-dimensional collective migration of A549 cells induced by constitutively active Cdc42 and MT1-MMP. CONCLUSION: Cortical actin accumulation at the matrix-side cytoplasm of cancer cells occurs in invasive lung adenocarcinomas and it possibly participates in the migration of cancer cells through myosin-mediated contraction.


Assuntos
Actinas/metabolismo , Adenocarcinoma/patologia , Neoplasias Pulmonares/patologia , Células A549 , Adenocarcinoma/diagnóstico , Adenocarcinoma de Pulmão , Membrana Celular/metabolismo , Movimento Celular , Citoplasma/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Miosinas/efeitos dos fármacos , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico
11.
Am J Physiol Heart Circ Physiol ; 312(1): H46-H59, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793852

RESUMO

Acute application of progesterone attenuates cardiac contraction, although the underlying mechanisms are unclear. We investigated whether progesterone modified contraction in isolated ventricular myocytes and identified the Ca2+ handling mechanisms involved in female C57BL/6 mice (6-9 mo; sodium pentobarbital anesthesia). Cells were field-stimulated (4 Hz; 37°C) and exposed to progesterone (0.001-10.0 µM) or vehicle (35 min). Ca2+ transients (fura-2) and cell shortening were recorded simultaneously. Maximal concentrations of progesterone inhibited peak contraction by 71.4% (IC50 = 160 ± 50 nM; n = 12) and slowed relaxation by 75.4%. By contrast, progesterone had no effect on amplitudes or time courses of underlying Ca2+ transients. Progesterone (1 µM) also abbreviated action potential duration. When the duration of depolarization was controlled by voltage-clamp, progesterone attenuated contraction and slowed relaxation but did not affect Ca2+ currents, Ca2+ transients, sarcoplasmic reticulum (SR) content, or fractional release of SR Ca2+ Actomyosin MgATPase activity was assayed in myofilaments from hearts perfused with progesterone (1 µM) or vehicle (35 min). While maximal responses to Ca2+ were not affected by progesterone, myofilament Ca2+ sensitivity was reduced (EC50 = 0.94 ± 0.01 µM for control, n = 7 vs. 1.13 ± 0.05 µM for progesterone, n = 6; P < 0.05) and progesterone increased phosphorylation of myosin binding protein C. The effects on contraction were inhibited by lonaprisan (progesterone receptor antagonist) and levosimendan (Ca2+ sensitizer). Unlike results in females, progesterone had no effect on contraction or myofilament Ca2+ sensitivity in age-matched male mice. These data indicate that progesterone reduces myofilament Ca2+ sensitivity in female hearts, which may exacerbate manifestations of cardiovascular disease late in pregnancy when progesterone levels are high. NEW & NOTEWORTHY: We investigated myocardial effects of acute application of progesterone. In females, but not males, progesterone attenuates and slows cardiomyocyte contraction with no effect on calcium transients. Progesterone also reduces myofilament calcium sensitivity in female hearts. This may adversely affect heart function, especially when serum progesterone levels are high in pregnancy.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/acute-progesterone-modifies-cardiac-contraction/.


Assuntos
Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Progesterona/farmacologia , Progestinas/farmacologia , Animais , Cálcio/metabolismo , Cardiotônicos/farmacologia , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Estrenos/farmacologia , Feminino , Ventrículos do Coração/citologia , Hidrazonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Fosforilação , Piridazinas/farmacologia , Receptores de Progesterona/antagonistas & inibidores , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Simendana
12.
Am J Physiol Heart Circ Physiol ; 309(6): H1059-65, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26254335

RESUMO

Animal studies suggest that hypertension leads to cardiac tissue hypothyroidism, a condition that can by itself lead to heart failure. We have previously shown that short-term thyroid hormone treatment in Spontaneously Hypertensive Heart Failure (SHHF) rats near heart failure is beneficial. This study tested the hypothesis that therapeutic, long-term T3 treatment in SHHF rats can prevent or attenuate cardiac dysfunction. Female SHHF rats were treated orally with a physiological T3 dose (0.04 µg/ml) from 12 to 24 mo of age. Age-matched female SHHF and Wistar-Kyoto rats served as hypertensive and normotensive controls, respectively. SHHF rats had reduced serum free thyroid hormone levels and cardiac tissue T3 levels, LV dysfunction, and elevated LV collagen content compared with normotensive controls. Restoration of serum and cardiac tissue thyroid hormone levels in T3-treated rats was associated with no change in heart rate, but strong trends for improvement in LV systolic function and collagen levels. For instance, end-systolic diameter, fractional shortening, systolic wall stress, and LV collagen levels were no longer significantly different from controls. In conclusion, longstanding hypertension in rats led to chronic low serum and cardiac tissue thyroid hormone levels. Long-term treatment with low-dose T3 was safe. While cardiac dysfunction could not be completely prevented in the absence of antihypertensive treatment, T3 may offer additional benefits as an adjunct therapy with possible improvement in diastolic function.


Assuntos
Colágeno/efeitos dos fármacos , Insuficiência Cardíaca/etiologia , Ventrículos do Coração/efeitos dos fármacos , Coração/efeitos dos fármacos , Hipertensão/complicações , Hipotireoidismo/etiologia , Tri-Iodotironina/farmacologia , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Colágeno/metabolismo , Feminino , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Hipertensão/metabolismo , Hipotireoidismo/metabolismo , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Tiroxina/metabolismo , Disfunção Ventricular Esquerda/metabolismo
13.
Org Lett ; 16(20): 5362-5, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25259727

RESUMO

Acuminolide A (1), along with pectenotoxin II (PTX-2), dinophysistoxin I (DTX-1), okadaic acid (OA), and 7-epi-PTX-2 seco acid, was isolated from a large-scale cultivation of the dinoflagellate Dinophysis acuminata. The new 33-membered macrolide 1 was characterized by detailed analysis of 2D NMR and MS data. Its relative stereochemistry was elucidated on the basis of ROESY correlations and J-based analysis. In contrast to the other well-known toxins that were isolated, 1 showed no cytotoxicity against four cancer cell lines but caused potent stimulation of actomyosin ATPase activity.


Assuntos
Dinoflagellida/química , Macrolídeos/isolamento & purificação , Macrolídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/isolamento & purificação , Macrolídeos/química , Estrutura Molecular , Miosinas/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Ácido Okadáico/isolamento & purificação , Piranos/isolamento & purificação
14.
Nanotechnology ; 25(21): 215101, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24786855

RESUMO

It has been unknown whether cells retain their mechanical properties after fixation. Therefore, this study was designed to compare the stiffness properties of the cell cortex (the 50-100 nm thick zone below the plasma membrane) before and after fixation. Atomic force microscopy was used to acquire force indentation curves from which the nanomechanical cell properties were derived. Cells were pretreated with different concentrations of actin destabilizing agent cytochalasin D, which results in a gradual softening of the cell cortex. Then cells were studied 'alive' or 'fixed'. We show that the cortical stiffness of fixed endothelial cells still reports functional properties of the actin web qualitatively comparable to those of living cells. Myosin motor protein activity, tested by blebbistatin inhibition, can only be detected, in terms of cortical mechanics, in living but not in fixed cells. We conclude that fixation interferes with motor proteins while maintaining a functional cortical actin web. Thus, fixation of cells opens up the prospect of differentially studying the actions of cellular myosin and actin.


Assuntos
Citoesqueleto de Actina/fisiologia , Células Endoteliais/ultraestrutura , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Animais , Fenômenos Biomecânicos , Bovinos , Linhagem Celular , Citocalasina D/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Microscopia de Força Atômica , Miosinas/química , Miosinas/efeitos dos fármacos , Fixação de Tecidos
15.
Acta Otolaryngol ; 134(6): 564-70, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24673561

RESUMO

CONCLUSION: Ototoxic gentamicin exposure does not disrupt the expression of myosin VIIa in the inner hair cells (IHCs) of mice, whereas gentamicin ototoxicity causes altered expression of otoferlin in IHCs, as well as parallel hearing threshold shifts. OBJECTIVE: To explore whether myosin VIIa and otoferlin in IHCs have different responses to gentamicin ototoxicity. METHODS: Lower dose treatment (100 mg/kg): adult C57 mice were continuously injected intraperitoneally with gentamicin once a day for 14 consecutive days. Dose-dependent gentamicin treatment: mice were injected intraperitoneally with differing doses (100, 200, and 300 mg/kg) once a day for 2 consecutive days. The hearing thresholds were detected by auditory brainstem response (ABR). Immunostaining and Western blotting were utilized to measure the manner of expression of myosin VIIa and otoferlin in IHCs. RESULTS: Lower dose treatment: There were no significant differences among the control (day 0), and 4, 7, and 14 days after the ototoxicity exposure (p > 0.05). Dose-dependent gentamicin treatment: There were no significant differences among the control, 100, 200, and 300 mg/kg groups after the ototoxicity exposure (p > 0.05). In contrast, we found an altered expression of otoferlin in IHCs among the control (day 0), and 4, 7, and 14 days of exposure, when the mice were exposed to gentamicin ototoxicity (p > 0.05).


Assuntos
Antibacterianos/toxicidade , Limiar Auditivo/efeitos dos fármacos , Gentamicinas/toxicidade , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Relação Dose-Resposta a Droga , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Gentamicinas/administração & dosagem , Células Ciliadas Auditivas Internas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Miosina VIIa , Miosinas/metabolismo
16.
Br J Pharmacol ; 171(24): 5491-506, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24571448

RESUMO

UNLABELLED: Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies. LINKED ARTICLES: This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Leucócitos/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores , Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Leucócitos/fisiologia , Miosinas/metabolismo , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Proteínas rho de Ligação ao GTP/metabolismo
17.
Philos Trans R Soc Lond B Biol Sci ; 368(1629): 20130008, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24062580

RESUMO

Neutrophils are cells of the innate immune system that hunt and kill pathogens using directed migration. This process, known as chemotaxis, requires the regulation of actin polymerization downstream of chemoattractant receptors. Reciprocal interactions between actin and intracellular signals are thought to underlie many of the sophisticated signal processing capabilities of the chemotactic cascade including adaptation, amplification and long-range inhibition. However, with existing tools, it has been difficult to discern actin's role in these processes. Most studies investigating the role of the actin cytoskeleton have primarily relied on actin-depolymerizing agents, which not only block new actin polymerization but also destroy the existing cytoskeleton. We recently developed a combination of pharmacological inhibitors that stabilizes the existing actin cytoskeleton by inhibiting actin polymerization, depolymerization and myosin-based rearrangements; we refer to these processes collectively as actin dynamics. Here, we investigated how actin dynamics influence multiple signalling responses (PI3K lipid products, calcium and Pak phosphorylation) following acute agonist addition or during desensitization. We find that stabilized actin polymer extends the period of receptor desensitization following agonist binding and that actin dynamics rapidly reset receptors from this desensitized state. Spatial differences in actin dynamics may underlie front/back differences in agonist sensitivity in neutrophils.


Assuntos
Actinas/metabolismo , Quimiotaxia/imunologia , Citoesqueleto/fisiologia , Miosinas/metabolismo , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Amidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Citoesqueleto/efeitos dos fármacos , Depsipeptídeos/farmacologia , Humanos , Miosinas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazolidinas/farmacologia
18.
FEBS J ; 280(22): 5875-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24004408

RESUMO

To examine the motility of actomyosin complexes in the presence of high concentrations of polymers, we investigated the effect of poly(ethylene glycol) on the sliding velocities of actin filaments and regulated thin filaments on myosin molecules in the presence of ATP. Increased concentrations and relative molecular masses of poly(ethylene glycol) decreased the sliding velocities of actin and regulated thin filaments. The decreased ratio of velocity in regulated thin filaments at - log[Ca(2+) ] of 4 was higher than that of actin filaments. Furthermore, in the absence of Ca(2+) , regulated thin filaments were moderately motile in the presence of poly(ethylene glycol). The excluded volume change (∆V), defined as the change in water volume surrounding actomyosin during the interactions, was estimated by determining the relationship between osmotic pressure exerted by poly(ethylene glycol) and the decreased ratio of the velocities in the presence and absence of poly(ethylene glycol). The ∆V increased up to 3.7 × 10(5) Å(3) as the Mr range of poly(ethylene glycol) was increased up to 20,000. Moreover, the ∆V for regulated thin filaments was approximately two-fold higher than that of actin filaments. This finding suggests that differences in the conformation of filaments according to whether troponin-tropomyosin complexes lie on actin filaments alter the ∆V during interactions of actomyosin complexes and influence motility.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Polietilenoglicóis/farmacologia , Citoesqueleto de Actina/química , Actomiosina/química , Actomiosina/efeitos dos fármacos , Actomiosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Fenômenos Biofísicos , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/efeitos dos fármacos , Proteínas Motores Moleculares/metabolismo , Peso Molecular , Músculo Esquelético/química , Subfragmentos de Miosina/química , Subfragmentos de Miosina/efeitos dos fármacos , Subfragmentos de Miosina/metabolismo , Miosinas/química , Pressão Osmótica , Polietilenoglicóis/química , Coelhos , Tropomiosina/química , Tropomiosina/efeitos dos fármacos , Tropomiosina/metabolismo , Troponina/química , Troponina/efeitos dos fármacos , Troponina/metabolismo
19.
Braz J Med Biol Res ; 46(2): 178-85, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23369976

RESUMO

We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetate iv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2 vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13 vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a ß-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.


Assuntos
Hipertensão/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Adenosina Trifosfatases/efeitos dos fármacos , Animais , Ativação Enzimática , Hipertensão/enzimologia , Masculino , Contração Miocárdica/fisiologia , Miosinas/fisiologia , Ratos Wistar
20.
Braz. j. med. biol. res ; 46(2): 178-185, 01/fev. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-668775

RESUMO

We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetate iv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2 vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13 vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.


Assuntos
Animais , Masculino , Hipertensão/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Adenosina Trifosfatases/efeitos dos fármacos , Ativação Enzimática , Hipertensão/enzimologia , Contração Miocárdica/fisiologia , Miosinas/fisiologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...