Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 809
Filtrar
1.
Nat Commun ; 15(1): 5403, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926363

RESUMO

Idiopathic inflammatory myopathies (IIMs) are severe autoimmune diseases with poorly understood pathogenesis and unmet medical needs. Here, we examine the role of interferon γ (IFNγ) using NOD female mice deficient in the inducible T cell co-stimulator (Icos), which have previously been shown to develop spontaneous IFNγ-driven myositis mimicking human disease. Using muscle proteomic and spatial transcriptomic analyses we reveal profound myofiber metabolic dysregulation in these mice. In addition, we report muscle mitochondrial abnormalities and oxidative stress in diseased mice. Supporting a pathogenic role for oxidative stress, treatment with a reactive oxygen species (ROS) buffer compound alleviated myositis, preserved muscle mitochondrial ultrastructure and respiration, and reduced inflammation. Mitochondrial anomalies and oxidative stress were diminished following anti-IFNγ treatment. Further transcriptomic analysis in IIMs patients and human myoblast in vitro studies supported the link between IFNγ and mitochondrial dysfunction observed in mice. These results suggest that mitochondrial dysfunction, ROS and inflammation are interconnected in a self-maintenance loop, opening perspectives for mitochondria therapy and/or ROS targeting drugs in myositis.


Assuntos
Interferon gama , Miosite , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Interferon gama/metabolismo , Miosite/metabolismo , Miosite/patologia , Miosite/genética , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Modelos Animais de Doenças , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Camundongos Knockout , Mioblastos/metabolismo
2.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892242

RESUMO

Skeletal muscle atrophy (SMA) is caused by a rise in muscle breakdown and a decline in protein synthesis, with a consequent loss of mass and function. This study characterized the effect of an amino acid mixture (AA) in models of SMA, focusing on mitochondria. C57/Bl6 mice underwent immobilization of one hindlimb (I) or cardiotoxin-induced muscle injury (C) and were compared with controls (CTRL). Mice were then administered AA in drinking water for 10 days and compared to a placebo group. With respect to CTRL, I and C reduced running time and distance, along with grip strength; however, the reduction was prevented by AA. Tibialis anterior (TA) muscles were used for histology and mitochondria isolation. I and C resulted in TA atrophy, characterized by a reduction in both wet weight and TA/body weight ratio and smaller myofibers than those of CTRL. Interestingly, these alterations were lightly observed in mice treated with AA. The mitochondrial yield from the TA of I and C mice was lower than that of CTRL but not in AA-treated mice. AA also preserved mitochondrial bioenergetics in TA muscle from I and C mice. To conclude, this study demonstrates that AA prevents loss of muscle mass and function in SMA by protecting mitochondria.


Assuntos
Aminoácidos , Metabolismo Energético , Camundongos Endogâmicos C57BL , Músculo Esquelético , Atrofia Muscular , Animais , Camundongos , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Aminoácidos/farmacologia , Aminoácidos/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Atrofia Muscular/etiologia , Masculino , Modelos Animais de Doenças , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
3.
Aging (Albany NY) ; 16(8): 7141-7152, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38643465

RESUMO

Disrupted mitochondrial dynamics and mitophagy contribute to functional deterioration of skeletal muscle (SM) during aging, but the regulatory mechanisms are poorly understood. Our previous study demonstrated that the expression of thyroid hormone receptor α (TRα) decreased significantly in aged mice, suggesting that the alteration of thyroidal elements, especially the decreased TRα, might attenuate local THs action thus to cause the degeneration of SM with aging, while the underlying mechanism remains to be further explored. In this study, decreased expression of myogenic regulators Myf5, MyoD1, mitophagy markers Pink1, LC3II/I, p62, as well as mitochondrial dynamic factors Mfn1 and Opa1, accompanied by increased reactive oxygen species (ROS), showed concomitant changes with reduced TRα expression in aged mice. Further TRα loss- and gain-of-function studies in C2C12 revealed that silencing of TRα not only down-regulated the expression of above-mentioned myogenic regulators, mitophagy markers and mitochondrial dynamic factors, but also led to a significant decrease in mitochondrial activity and maximum respiratory capacity, as well as more mitochondrial ROS and damaged mitochondria. Notedly, overexpression of TRα could up-regulate the expression of those myogenic regulators, mitophagy markers and mitochondrial dynamic factors, meanwhile also led to an increase in mitochondrial activity and number. These results confirmed that TRα could concertedly regulate mitochondrial dynamics, autophagy, and activity, and myogenic regulators rhythmically altered with TRα expression. Summarily, these results suggested that the decline of TRα might cause the degeneration of SM with aging by regulating mitochondrial dynamics, mitophagy and myogenesis.


Assuntos
Mitocôndrias , Músculo Esquelético , Sarcopenia , Receptores alfa dos Hormônios Tireóideos , Animais , Camundongos , Envelhecimento/metabolismo , Linhagem Celular , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Dinâmica Mitocondrial , Mitofagia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Espécies Reativas de Oxigênio/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582266

RESUMO

Statins are the first line of choice for the treatment for atherosclerosis, but their use can cause myotoxicity, a common side effect that may require dosage reduction or discontinuation. The exact mechanism of statin-induced myotoxicity is unknown. Previous research has demonstrated that the combination of idebenone and statin yielded superior anti-atherosclerotic outcomes. Here, we investigated the mechanism of statin-induced myotoxicity in atherosclerotic ApoE-/- mice and whether idebenone could counteract it. After administering simvastatin to ApoE-/- mice, we observed a reduction in plaque formation as well as a decrease in their exercise capacity. We observed elevated levels of lactic acid and creatine kinase, along with a reduction in the cross-sectional area of muscle fibers, an increased presence of ragged red fibers, heightened mitochondrial crista lysis, impaired mitochondrial complex activity, and decreased levels of CoQ9 and CoQ10. Two-photon fluorescence imaging revealed elevated H2O2 levels in the quadriceps, indicating increased oxidative stress. Proteomic analysis indicated that simvastatin inhibited the tricarboxylic acid cycle. Idebenone treatment not only further reduced plaque formation but also ameliorated the impaired exercise capacity caused by simvastatin. Our study represents the inaugural comprehensive investigation into the mechanisms underlying statin-induced myotoxicity. We have demonstrated that statins inhibit CoQ synthesis, impair mitochondrial complex functionality, and elevate oxidative stress, ultimately resulting in myotoxic effects. Furthermore, our research marks the pioneering identification of idebenone's capability to mitigate statin-induced myotoxicity by attenuating oxidative stress, thereby safeguarding mitochondrial complex functionality. The synergistic use of idebenone and statin not only enhances the effectiveness against atherosclerosis but also mitigates statin-induced myotoxicity.


Assuntos
Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Estresse Oxidativo , Sinvastatina , Ubiquinona , Animais , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/induzido quimicamente , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sinvastatina/farmacologia , Miotoxicidade/tratamento farmacológico , Miotoxicidade/patologia , Miotoxicidade/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia
5.
Free Radic Biol Med ; 218: 68-81, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574975

RESUMO

Sarcopenia is associated with reduced quality of life and premature mortality. The sex disparities in the processes underlying sarcopenia pathogenesis, which include mitochondrial dysfunction, are ill-understood and can be decisive for the optimization of sarcopenia-related interventions. To improve the knowledge regarding the sex differences in skeletal muscle aging, the gastrocnemius muscle of young and old female and male rats was analyzed with a focus on mitochondrial remodeling through the proteome profiling of mitochondria-enriched fractions. To the best of our knowledge, this is the first study analyzing sex differences in skeletal muscle mitochondrial proteome remodeling. Data demonstrated that age induced skeletal muscle atrophy and fibrosis in both sexes. In females, however, this adverse skeletal muscle remodeling was more accentuated than in males and might be attributed to an age-related reduction of 17beta-estradiol signaling through its estrogen receptor alpha located in mitochondria. The females-specific mitochondrial remodeling encompassed increased abundance of proteins involved in fatty acid oxidation, decreased abundance of the complexes subunits, and enhanced proneness to oxidative posttranslational modifications. This conceivable accretion of damaged mitochondria in old females might be ascribed to low levels of Parkin, a key mediator of mitophagy. Despite skeletal muscle atrophy and fibrosis, males maintained their testosterone levels throughout aging, as well as their androgen receptor content, and the age-induced mitochondrial remodeling was limited to increased abundance of pyruvate dehydrogenase E1 component subunit beta and electron transfer flavoprotein subunit beta. Herein, for the first time, it was demonstrated that age affects more severely the skeletal muscle mitochondrial proteome of females, reinforcing the necessity of sex-personalized approaches towards sarcopenia management, and the inevitability of the assessment of mitochondrion-related therapeutics.


Assuntos
Envelhecimento , Músculo Esquelético , Sarcopenia , Animais , Masculino , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Envelhecimento/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Estradiol/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fibrose/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteoma/metabolismo , Fatores Sexuais , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521420

RESUMO

Mitochondrial DNA (mtDNA) deletions which clonally expand in skeletal muscle of patients with mtDNA maintenance disorders, impair mitochondrial oxidative phosphorylation dysfunction. Previously we have shown that these mtDNA deletions arise and accumulate in perinuclear mitochondria causing localised mitochondrial dysfunction before spreading through the muscle fibre. We believe that mito-nuclear signalling is a key contributor in the accumulation and spread of mtDNA deletions, and that knowledge of how muscle fibres respond to mitochondrial dysfunction is key to our understanding of disease mechanisms. To understand the contribution of mito-nuclear signalling to the spread of mitochondrial dysfunction, we use imaging mass cytometry. We characterise the levels of mitochondrial Oxidative Phosphorylation proteins alongside a mitochondrial mass marker, in a cohort of patients with mtDNA maintenance disorders. Our expanded panel included protein markers of key signalling pathways, allowing us to investigate cellular responses to different combinations of oxidative phosphorylation dysfunction and ragged red fibres. We find combined Complex I and IV deficiency to be most common. Interestingly, in fibres deficient for one or more complexes, the remaining complexes are often upregulated beyond the increase of mitochondrial mass typically observed in ragged red fibres. We further find that oxidative phosphorylation deficient fibres exhibit an increase in the abundance of proteins involved in proteostasis, e.g. HSP60 and LONP1, and regulation of mitochondrial metabolism (including oxidative phosphorylation and proteolysis, e.g. PHB1). Our analysis suggests that the cellular response to mitochondrial dysfunction changes depending on the combination of deficient oxidative phosphorylation complexes in each fibre.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , Fosforilação Oxidativa , Proibitinas , Humanos , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Masculino , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Doenças Mitocondriais/genética , Feminino , Adulto , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Transdução de Sinais , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
7.
Am J Physiol Cell Physiol ; 322(3): C382-C394, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044855

RESUMO

Sarcolipin (SLN) is a small regulatory protein that inhibits the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump. When bound to SERCA, SLN reduces the apparent Ca2+ affinity of SERCA and uncouples SERCA Ca2+ transport from its ATP consumption. As such, SLN plays a direct role in altering skeletal muscle relaxation and energy expenditure. Interestingly, the expression of SLN is dynamic during times of muscle adaptation, in that large increases in SLN content are found in response to development, atrophy, overload, and disease. Several groups have suggested that increases in SLN, especially in dystrophic muscle, are deleterious as it may reduce muscle function and exacerbate already abhorrent intracellular Ca2+ levels. However, there is also significant evidence to show that increased SLN content is a beneficial adaptive mechanism that protects the SERCA pump and activates Ca2+ signaling and adaptive remodeling during times of cell stress. In this review, we first discuss the role for SLN in healthy muscle during both development and overload, where SLN has been shown to activate Ca2+ signaling to promote mitochondrial biogenesis, fiber-type shifts, and muscle hypertrophy. Then, with respect to muscle disease, we summarize the discrepancies in the literature as to whether SLN upregulation is adaptive or maladaptive in nature. This review is the first to offer the concept of SLN hormesis in muscle disease, wherein both too much and too little SLN are detrimental to muscle health. Finally, the underlying mechanisms which activate SLN upregulation are discussed, specifically acknowledging a potential positive feedback loop between SLN and Ca2+ signaling molecules.


Assuntos
Desenvolvimento Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Atrofia Muscular/enzimologia , Distrofias Musculares/enzimologia , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio , Humanos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia
8.
J Clin Endocrinol Metab ; 107(2): 346-362, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34614176

RESUMO

CONTEXT: Familial partial lipodystrophy (FPL), Dunnigan variety is characterized by skeletal muscle hypertrophy and insulin resistance besides fat loss from the extremities. The cause for the muscle hypertrophy and its functional consequences is not known. OBJECTIVE: To compare muscle strength and endurance, besides muscle protein synthesis rate between subjects with FPL and matched controls (n = 6 in each group). In addition, we studied skeletal muscle mitochondrial function and gene expression pattern to help understand the mechanisms for the observed differences. METHODS: Body composition by dual-energy X-ray absorptiometry, insulin sensitivity by minimal modelling, assessment of peak muscle strength and fatigue, skeletal muscle biopsy and calculation of muscle protein synthesis rate, mitochondrial respirometry, skeletal muscle transcriptome, proteome, and gene set enrichment analysis. RESULTS: Despite increased muscularity, FPL subjects did not demonstrate increased muscle strength but had earlier fatigue on chest press exercise. Decreased mitochondrial state 3 respiration in the presence of fatty acid substrate was noted, concurrent to elevated muscle lactate and decreased long-chain acylcarnitine. Based on gene transcriptome, there was significant downregulation of many critical metabolic pathways involved in mitochondrial biogenesis and function. Moreover, the overall pattern of gene expression was indicative of accelerated aging in FPL subjects. A lower muscle protein synthesis and downregulation of gene transcripts involved in muscle protein catabolism was observed. CONCLUSION: Increased muscularity in FPL is not due to increased muscle protein synthesis and is likely due to reduced muscle protein degradation. Impaired mitochondrial function and altered gene expression likely explain the metabolic abnormalities and skeletal muscle dysfunction in FPL subjects.


Assuntos
Lipodistrofia Parcial Familiar/fisiopatologia , Mitocôndrias Musculares/patologia , Músculo Esquelético/fisiopatologia , Absorciometria de Fóton , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Resistência Física/fisiologia , Proteólise , Adulto Jovem
9.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681740

RESUMO

Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias Musculares/genética , Fibras Musculares Esqueléticas/patologia , Oftalmoplegia Externa Progressiva Crônica/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Microdissecção e Captura a Laser , Masculino , Mitocôndrias Musculares/patologia , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Oftalmoplegia Externa Progressiva Crônica/patologia , Proteômica/métodos , Succinato Desidrogenase/metabolismo
10.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639076

RESUMO

Skeletal muscle suffers atrophy and weakness with aging. Denervation, oxidative stress, and mitochondrial dysfunction are all proposed as contributors to age-associated muscle loss, but connections between these factors have not been established. We examined contractility, mitochondrial function, and intracellular calcium transients (ICTs) in muscles of mice throughout the life span to define their sequential relationships. We performed these same measures and analyzed neuromuscular junction (NMJ) morphology in mice with postnatal deletion of neuronal Sod1 (i-mn-Sod1-/- mice), previously shown to display accelerated age-associated muscle loss and exacerbation of denervation in old age, to test relationships between neuronal redox homeostasis, NMJ degeneration and mitochondrial function. In control mice, the amount and rate of the decrease in mitochondrial NADH during contraction was greater in middle than young age although force was not reduced, suggesting decreased efficiency of NADH utilization prior to the onset of weakness. Declines in both the peak of the ICT and force were observed in old age. Muscles of i-mn-Sod1-/- mice showed degeneration of mitochondrial and calcium handling functions in middle-age and a decline in force generation to a level not different from the old control mice, with maintenance of NMJ morphology. Together, the findings support the conclusion that muscle mitochondrial function decreases during aging and in response to altered neuronal redox status prior to NMJ deterioration or loss of mass and force suggesting mitochondrial defects contribute to sarcopenia independent of denervation.


Assuntos
Envelhecimento , Cálcio/metabolismo , Mitocôndrias Musculares/patologia , Neurônios/patologia , Estresse Oxidativo , Sarcopenia/patologia , Superóxido Dismutase-1/fisiologia , Animais , Denervação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Contração Muscular , Neurônios/metabolismo , Oxirredução , Sarcopenia/etiologia
11.
Cell Physiol Biochem ; 55(4): 489-504, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416105

RESUMO

BACKGROUND/AIMS: Diaphragm dysfunction with increased reactive oxygen species (ROS) occurs within 72 hrs post-myocardial infarction (MI) in mice and may contribute to loss of inspiratory maximal pressure and endurance in patients. METHODS: We used wild-type (WT) and whole-body Nox4 knockout (Nox4KO) mice to measure diaphragm bundle force in vitro with a force transducer, mitochondrial respiration in isolated fiber bundles with an O2 sensor, mitochondrial ROS by fluorescence, mRNA (RT-PCR) and protein (immunoblot), and fiber size by histology 72 hrs post-MI. RESULTS: MI decreased diaphragm fiber cross-sectional area (CSA) (~15%, p = 0.015) and maximal specific force (10%, p = 0.005), and increased actin carbonylation (5-10%, p = 0.007) in both WT and Nox4KO. Interestingly, MI did not affect diaphragm mRNA abundance of MAFbx/atrogin-1 and MuRF-1 but Nox4KO decreased it by 20-50% (p < 0.01). Regarding the mitochondria, MI and Nox4KO decreased the protein abundance of citrate synthase and subunits of electron transport system (ETS) complexes and increased mitochondrial O2 flux (JO2) and H2O2 emission (JH2O2) normalized to citrate synthase. Mitochondrial electron leak (JH2O2/JO2) in the presence of ADP was lower in Nox4KO and not changed by MI. CONCLUSION: Our study shows that the early phase post-MI causes diaphragm atrophy, contractile dysfunction, sarcomeric actin oxidation, and decreases citrate synthase and subunits of mitochondrial ETS complexes. These factors are potential causes of loss of inspiratory muscle strength and endurance in patients, which likely contribute to the pathophysiology in the early phase post-MI. Whole-body Nox4KO did not prevent the diaphragm abnormalities induced 72 hrs post-MI, suggesting that systemic pharmacological inhibition of Nox4 will not benefit patients in the early phase post-MI.


Assuntos
Diafragma/enzimologia , Mitocôndrias Musculares/enzimologia , Contração Muscular , Atrofia Muscular/enzimologia , Infarto do Miocárdio/enzimologia , NADPH Oxidase 4/deficiência , Animais , Diafragma/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , NADPH Oxidase 4/metabolismo
12.
J Biochem Mol Toxicol ; 35(9): e22846, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250697

RESUMO

The liver is the primary organ affected by cholestasis. However, the brain, skeletal muscle, heart, and kidney are also severely influenced by cholestasis/cirrhosis. However, little is known about the molecular mechanisms of organ injury in cholestasis. The current study was designed to evaluate the mitochondrial glutathione redox state as a significant index in cell death. Moreover, tissue energy charge (EC) was calculated. Rats underwent bile duct ligation (BDL) and the brain, heart, liver, kidney, and skeletal muscle mitochondria were assessed at scheduled time intervals (3, 7, 14, and 28 days after BDL). A significant decrease in mitochondrial glutathione redox state and EC was detected in BDL animals. Moreover, disturbed mitochondrial indices were evident in different organs of BDL rats. These data could offer new insight into the mechanisms of organ injury and the source of oxidative stress during cholestasis and might provide novel therapeutic strategies against these complications.


Assuntos
Colestase/metabolismo , Metabolismo Energético , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Animais , Colestase/patologia , Modelos Animais de Doenças , Masculino , Mitocôndrias Hepáticas/patologia , Mitocôndrias Musculares/patologia , Especificidade de Órgãos , Oxirredução , Ratos , Ratos Sprague-Dawley
13.
Cell Death Dis ; 12(7): 671, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34218254

RESUMO

The balanced functionality of cellular proteostatic modules is central to both proteome stability and mitochondrial physiology; thus, the age-related decline of proteostasis also triggers mitochondrial dysfunction, which marks multiple degenerative disorders. Non-functional mitochondria are removed by mitophagy, including Parkin/Pink1-mediated mitophagy. A common feature of neuronal or muscle degenerative diseases, is the accumulation of damaged mitochondria due to disrupted mitophagy rates. Here, we exploit Drosophila as a model organism to investigate the functional role of Parkin/Pink1 in regulating mitophagy and proteostatic responses, as well as in suppressing degenerative phenotypes at the whole organism level. We found that Parkin or Pink1 knock down in young flies modulated proteostatic components in a tissue-dependent manner, increased cell oxidative load, and suppressed mitophagy in neuronal and muscle tissues, causing mitochondrial aggregation and neuromuscular degeneration. Concomitant to Parkin or Pink1 knock down cncC/Nrf2 overexpression, induced the proteostasis network, suppressed oxidative stress, restored mitochondrial function, and elevated mitophagy rates in flies' tissues; it also, largely rescued Parkin or Pink1 knock down-mediated neuromuscular degenerative phenotypes. Our in vivo findings highlight the critical role of the Parkin/Pink1 pathway in mitophagy, and support the therapeutic potency of Nrf2 (a druggable pathway) activation in age-related degenerative diseases.


Assuntos
Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Mitocôndrias Musculares/enzimologia , Mitofagia , Músculo Esquelético/enzimologia , Degeneração Neural , Neurônios/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Neurônios/patologia , Estresse Oxidativo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteostase , Proteínas Repressoras/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
14.
Pharmacol Res ; 170: 105751, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197911

RESUMO

Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.


Assuntos
Carbamatos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Biogênese de Organelas , Acetilação , Animais , Modelos Animais de Doenças , Epigênese Genética , Camundongos Endogâmicos mdx , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas
15.
Metabolism ; 121: 154803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34090870

RESUMO

BACKGROUND AND AIMS: A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. METHODS: 19 healthy adults (age:28.4 ±â€¯1.7 years; BMI:22.7 ±â€¯0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. RESULTS: Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). CONCLUSIONS: These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. CLINICAL TRIAL REGISTRATION: NCT02697201, ClinicalTrials.gov.


Assuntos
Insulina/metabolismo , Lipídeos/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Adulto , Biópsia , Respiração Celular/efeitos dos fármacos , Emulsões/administração & dosagem , Emulsões/farmacologia , Ácidos Graxos/administração & dosagem , Ácidos Graxos/farmacologia , Feminino , Técnica Clamp de Glucose , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/administração & dosagem , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias Musculares/patologia , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacologia , Óleo de Soja/administração & dosagem , Óleo de Soja/farmacologia
16.
Cell Death Dis ; 12(7): 625, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135312

RESUMO

Motoneuronal loss is the main feature of amyotrophic lateral sclerosis, although pathogenesis is extremely complex involving both neural and muscle cells. In order to translationally engage the sonic hedgehog pathway, which is a promising target for neural regeneration, recent studies have reported on the neuroprotective effects of clobetasol, an FDA-approved glucocorticoid, able to activate this pathway via smoothened. Herein we sought to examine functional, cellular, and metabolic effects of clobetasol in a neurotoxic mouse model of spinal motoneuronal loss. We found that clobetasol reduces muscle denervation and motor impairments in part by restoring sonic hedgehog signaling and supporting spinal plasticity. These effects were coupled with reduced pro-inflammatory microglia and reactive astrogliosis, reduced muscle atrophy, and support of mitochondrial integrity and metabolism. Our results suggest that clobetasol stimulates a series of compensatory processes and therefore represents a translational approach for intractable denervating and neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Clobetasol/farmacologia , Glucocorticoides/farmacologia , Proteínas Hedgehog/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Músculo Esquelético/inervação , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Coluna Vertebral/efeitos dos fármacos , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Estudos de Casos e Controles , Toxina da Cólera , Bases de Dados Genéticas , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos da Linhagem 129 , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Neurônios Motores/imunologia , Neurônios Motores/metabolismo , Teste de Campo Aberto , Saporinas , Transdução de Sinais , Receptor Smoothened/agonistas , Receptor Smoothened/metabolismo , Coluna Vertebral/imunologia , Coluna Vertebral/metabolismo , Coluna Vertebral/fisiopatologia
17.
Clin Nutr ; 40(5): 2697-2706, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933735

RESUMO

BACKGROUND & AIMS: Sarcopenic obesity (SO) increases the risk of mortality more than sarcopenia or obesity alone. Sarcopenia weakens the peripheral and respiratory muscles, leading to respiratory complications. It also induces mitochondrial dysfunction in the peripheral muscle; however, whether mitochondrial dysfunction in respiratory muscles differs among individuals with obesity, sarcopenia, and SO remains unknown. We evaluated the deterioration of respiratory muscle strength and mitochondrial function among normal, sarcopenia, obesity, and SO subjects. METHODS: Twenty-five patients who underwent lung resections were enrolled between April 2017 and January 2021, and their intercostal muscles were harvested. Based on their L3 muscle index and visceral fat area, the patients were divided into four groups (normal, obesity, sarcopenia, and SO). The clinical data, mRNA expression, and protein expressions associated with mitochondrial biogenesis/fusion/fission in the intercostal muscles were compared among the four groups. RESULTS: The respiratory muscle strength was evaluated using peak expiratory flow rate (PEFR). The PEFR values of the four groups were not significantly different. The levels of pAkt/Akt and mTOR (a marker of protein synthesis) were not significantly different among the four groups; however, those in the SO group were substantially lower than those in the sarcopenia or obesity groups. The levels of Atrogen-1 and MuRF1 (a marker of protein degradation) were not significantly different among the four groups; however, those in the SO group were substantially higher than those in the sarcopenia or obesity groups. Expression of PGC1-α (a marker of mitochondrial biogenesis) in the SO group was significantly lower than that in the normal group. MFN1 and MFN2 (marker of mitochondrial fusion) levels were significantly lower in the SO group than those in the normal group. DRP1 (a marker of mitochondrial fission) level in the SO group was substantially lower than that in the normal group. The expression of TNF-α (a pro-inflammatory cytokine) in the SO group was substantially lower than that in the normal group. CONCLUSION: Our results suggest that the deterioration of protein synthesis and degradation of mitochondrial function in the respiratory muscles was most prominent in the SO before the weakening of the respiratory muscles. The deterioration mechanism may differentially regulate obesity, sarcopenia, and SO.


Assuntos
Mitocôndrias Musculares/patologia , Obesidade/patologia , Sarcopenia/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcopenia/metabolismo
18.
J Cell Physiol ; 236(11): 7612-7624, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33934360

RESUMO

Muscle disuse induces atrophy through increased reactive oxygen species (ROS) released from damaged mitochondria. Mitophagy, the autophagic degradation of mitochondria, is associated with increased ROS production. However, the mitophagy activity status during disuse-induced muscle atrophy has been a subject of debate. Here, we developed a new mitophagy reporter mouse line to examine how disuse affected mitophagy activity in skeletal muscles. Mice expressing tandem mCherry-EGFP proteins on mitochondria were then used to monitor the dynamics of mitophagy activity. The reporter mice demonstrated enhanced mitophagy activity and increased ROS production in atrophic soleus muscles following a 14-day hindlimb immobilization. Results also showed an increased expression of multiple mitophagy genes, including Bnip3, Bnip3l, and Park2. Our findings thus conclude that disuse enhances mitophagy activity and ROS production in atrophic skeletal muscles and suggests that mitophagy is a potential therapeutic target for disuse-induced muscle atrophy.


Assuntos
Mitocôndrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Elevação dos Membros Posteriores , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Inanição , Fatores de Tempo , Proteína Vermelha Fluorescente
19.
J Allergy Clin Immunol ; 148(2): 645-651.e11, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33819511

RESUMO

BACKGROUND: Bronchial remodeling is a key feature of asthma that is already present in preschoolers with wheezing. Moreover, bronchial smooth muscle (BSM) remodeling at preschool age is predictive of asthma at school age. However, the mechanism responsible for BSM remodeling in preschoolers with wheezing remains totally unknown. In contrast, in adult asthma, BSM remodeling has been associated with an increase in BSM cell proliferation related to increased mitochondrial mass and biogenesis triggered by an altered calcium homeostasis. Indeed, BSM cell proliferation was decreased in vitro by the calcium channel blocker gallopamil. OBJECTIVE: Our aim was to investigate the mechanisms involved in BSM cell proliferation in preschoolers with severe wheezing, with special attention to the role of mitochondria and calcium signaling. METHODS: Bronchial tissue samples obtained from 12 preschool controls without wheezing and 10 preschoolers with severe wheezing were used to measure BSM mass and establish primary BSM cell cultures. BSM cell proliferation was assessed by manual counting and flow cytometry, ATP content was assessed by bioluminescence, mitochondrial respiration was assessed by using either the Seahorse or Oroboros technique, mitochondrial mass and biogenesis were assessed by immunoblotting, and calcium response to carbachol was assessed by confocal microscopy. The effect of gallopamil was also evaluated. RESULTS: BSM mass, cell proliferation, ATP content, mitochondrial respiration, mass and biogenesis, and calcium response were all increased in preschoolers with severe wheezing compared with in the controls. Gallopamil significantly decreased BSM mitochondrial biogenesis and mass, as well as cell proliferation. CONCLUSION: Mitochondria are key players in BSM cell proliferation in preschoolers with severe wheezing and could represent a potential target to treat BSM remodeling at an early stage of the disease.


Assuntos
Remodelação das Vias Aéreas/imunologia , Brônquios/imunologia , Mitocôndrias Musculares/imunologia , Músculo Liso/imunologia , Sons Respiratórios/imunologia , Asma/etiologia , Asma/imunologia , Asma/patologia , Brônquios/patologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/imunologia , Células Cultivadas , Pré-Escolar , Feminino , Galopamil/farmacologia , Humanos , Lactente , Masculino , Mitocôndrias Musculares/patologia , Músculo Liso/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-33757832

RESUMO

Oxidative phosphorylation is compromised in hypoxia, but many organisms live and exercise in low oxygen environments. Hypoxia-driven adaptations at the mitochondrial level are common and may enhance energetic efficiency or minimize deleterious reactive oxygen species (ROS) generation. Mitochondria from various hypoxia-tolerant animals exhibit robust functional changes following in vivo hypoxia and we hypothesized that similar plasticity would occur in naked mole-rat skeletal muscle. To test this, we exposed adult subordinate naked mole-rats to normoxia (21% O2) or acute (4 h, 7% O2) or chronic hypoxia (4-6 weeks, 11% O2) and then isolated skeletal muscle mitochondria. Using high-resolution respirometry and a fluorescent indicator of ROS production, we then probed for changes in: i) lipid- (palmitoylcarnitine-malate), ii) carbohydrate- (pyruvate-malate), and iii) succinate-fueled metabolism, and also iv) complex IV electron transfer capacity, and v) H2O2 production. Compared to normoxic values, a) lipid-fueled uncoupled respiration was reduced ~15% during acute and chronic hypoxia, b) complex I-II capacity and the rate of ROS efflux were both unaffected, and c) complex II and IV uncoupled respiration were supressed ~16% following acute hypoxia. Notably, complex II-linked H2O2 efflux was 33% lower after acute hypoxia, which may reduce deleterious ROS bursts during reoxygenation. These mild changes in lipid- and carbohydrate-fueled respiratory capacity may reflect the need for this animal to exercise regularly in highly variable and intermittently hypoxic environments in which more robust plasticity may be energetically expensive.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hipóxia/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença Aguda , Animais , Doença Crônica , Hipóxia/patologia , Mitocôndrias Musculares/patologia , Ratos-Toupeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...