Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
J Nanobiotechnology ; 22(1): 297, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812019

RESUMO

Chemotherapy, as a conventional strategy for tumor therapy, often leads to unsatisfied therapeutic effect due to the multi-drug resistance and the serious side effects. Herein, we genetically engineered a thermal-responsive murine Ferritin (mHFn) to specifically deliver mitoxantrone (MTO, a chemotherapeutic and photothermal agent) to tumor tissue for the chemotherapy and photothermal combined therapy of colorectal cancer, thanks to the high affinity of mHFn to transferrin receptor that highly expressed on tumor cells. The thermal-sensitive channels on mHFn allowed the effective encapsulation of MTO in vitro and the laser-controlled release of MTO in vivo. Upon irradiation with a 660 nm laser, the raised temperature triggered the opening of the thermal-sensitive channel in mHFn nanocage, resulting in the controlled and rapid release of MTO. Consequently, a significant amount of reactive oxygen species was generated, causing mitochondrial collapse and tumor cell death. The photothermal-sensitive controlled release, low systemic cytotoxicity, and excellent synergistic tumor eradication ability in vivo made mHFn@MTO a promising candidate for chemo-photothermal combination therapy against colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferritinas , Lasers , Mitoxantrona , Terapia Fototérmica , Animais , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Ferritinas/química , Ferritinas/metabolismo , Terapia Fototérmica/métodos , Humanos , Mitoxantrona/farmacologia , Mitoxantrona/química , Mitoxantrona/uso terapêutico , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Nus , Feminino
2.
J Colloid Interface Sci ; 669: 731-739, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38735255

RESUMO

HYPOTHESIS: Hydrophilic cationic drugs such as mitoxantrone hydrochloride (MTO) pose a significant delivery challenge to the development of nanodrug systems. Herein, we report the use of a hydrophobic ion-pairing strategy to enhance the nano-assembly of MTO. EXPERIMENTS: We employed biocompatible sodium cholesteryl sulfate (SCS) as a modification module to form stable ion pairs with MTO, which balanced the intermolecular forces and facilitated nano-assembly. PEGylated MTO-SCS nanoassemblies (pMS NAs) were prepared via nanoprecipitation. We systematically evaluated the effect of the ratio of the drug module (MTO) to the modification module (SCS) on the nanoassemblies. FINDINGS: The increased lipophilicity of MTO-SCS ion pair could significantly improve the encapsulation efficiency (∼97 %) and cellular uptake efficiency of MTO. The pMS NAs showed prolonged blood circulation, maintained the same level of tumor antiproliferative activity, and exhibited reduced toxicity compared with the free MTO solution. It is noteworthy that the stability, cellular uptake, cytotoxicity, and in vivo pharmacokinetic behavior of the pMS NAs increased in proportion to the molar ratio of SCS to MTO. This study presents a self-assembly strategy mediated by ion pairing to overcome the challenges commonly associated with the poor assembly ability of hydrophilic cationic drugs.


Assuntos
Antineoplásicos , Ésteres do Colesterol , Interações Hidrofóbicas e Hidrofílicas , Mitoxantrona , Mitoxantrona/química , Mitoxantrona/farmacologia , Mitoxantrona/farmacocinética , Humanos , Animais , Ésteres do Colesterol/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Nanopartículas/química , Propriedades de Superfície , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Polietilenoglicóis/química
3.
J Nanobiotechnology ; 22(1): 249, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745193

RESUMO

BACKGROUND: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Sobrevivência Celular , Mitoxantrona , Compostos de Organossilício , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Sobrevivência Celular/efeitos dos fármacos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Mitoxantrona/farmacologia , Mitoxantrona/química , Mitoxantrona/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Dióxido de Silício/química , Porosidade , Liberação Controlada de Fármacos , Nanopartículas/química , Células MCF-7 , Nanomedicina/métodos , Espécies Reativas de Oxigênio/metabolismo
4.
Adv Mater ; 36(27): e2313097, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643386

RESUMO

Therapy-induced immunogenic cell death (ICD) can initiate both innate and adaptive immune responses for amplified anti-tumor efficacy. However, dying cell-released ICD signals are prone to being sequestered by the TIM-3 receptors on dendritic cell (DC) surfaces, preventing immune surveillance. Herein, dismantlable coronated nanoparticles (NPs) are fabricated as a type of spatiotemporally controlled nanocarriers for coupling tumor cell-mediated ICD induction to DC-mediated immune sensing. These NPs are loaded with an ICD inducer, mitoxantrone (MTO), and wrapped by a redox-labile anti-TIM-3 (αTIM-3) antibody corona, forming a separable core-shell structure. The antibody corona disintegrates under high levels of extracellular reactive oxygen species in the tumor microenvironment, exposing the MTO-loaded NP core for ICD induction and releasing functional αTIM-3 molecules for DC sensitization. Systemic administration of the coronated NPs augments DC maturation, promotes cytotoxic T cell recruitment, enhances tumor susceptibility to immune checkpoint blockade, and prevents the side effects of MTO. This study develops a promising nanoplatform to unleash the potential of host immunity in cancer therapy.


Assuntos
Células Dendríticas , Morte Celular Imunogênica , Mitoxantrona , Nanopartículas , Nanopartículas/química , Morte Celular Imunogênica/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Animais , Humanos , Camundongos , Mitoxantrona/química , Mitoxantrona/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Portadores de Fármacos/química , Coroa de Proteína/química
5.
Adv Healthc Mater ; 13(12): e2303631, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38278138

RESUMO

Currently, the secondary development and modification of clinical drugs has become one of the research priorities. Researchers have developed a variety of TME-responsive nanomedicine carriers to solve certain clinical problems. Unfortunately, endogenous stimuli such as reactive oxygen species (ROS), as an important prerequisite for effective therapeutic efficacy, are not enough to achieve the expected drug release process, therefore, it is difficult to achieve a continuous and efficient treatment process. Herein, a self-supply ROS-responsive cascade polyprodrug (PMTO) is designed. The encapsulation of the chemotherapy drug mitoxantrone (MTO) in a polymer backbone could effectively reduce systemic toxicity when transported in vivo. After PMTO is degraded by endogenous ROS of the TME, another part of the polyprodrug backbone becomes cinnamaldehyde (CA), which can further enhance intracellular ROS, thereby achieving a sustained drug release process. Meanwhile, due to the disruption of the intracellular redox environment, the efficacy of chemotherapy drugs is enhanced. Finally, the anticancer treatment efficacy is further enhanced due to the mild hyperthermia effect of PMTO. In conclusion, the designed PMTO demonstrates remarkable antitumor efficacy, effectively addressing the limitations associated with MTO.


Assuntos
Acroleína/análogos & derivados , Mitoxantrona , Espécies Reativas de Oxigênio , Mitoxantrona/química , Mitoxantrona/farmacologia , Mitoxantrona/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Acroleína/química , Acroleína/farmacologia , Camundongos Endogâmicos BALB C , Liberação Controlada de Fármacos , Feminino , Camundongos Nus , Portadores de Fármacos/química , Polímeros/química
6.
Chemistry ; 29(68): e202303374, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37851342

RESUMO

We describe the preparation, dynamic, assembly characteristics of vase-shaped basket 13- along with its ability to form an inclusion complex with anticancer drug mitoxantrone in abiotic and biotic systems. This novel cavitand has a deep nonpolar pocket consisting of three naphthalimide sides fused to a bicyclic platform at the bottom while carrying polar glycines at the top. The results of 1 H Nuclear Magnetic Resonance (NMR), 1 H NMR Chemical Exchange Saturation Transfer (CEST), Calorimetry, Hybrid Replica Exchange Molecular Dynamics (REMD), and Microcrystal Electron Diffraction (MicroED) measurements are in line with 1 forming dimer [12 ]6- , to be in equilibrium with monomers 1(R) 3- (relaxed) and 1(S) 3- (squeezed). Through simultaneous line-shape analysis of 1 H NMR data, kinetic and thermodynamic parameters characterizing these equilibria were quantified. Basket 1(R) 3- includes anticancer drug mitoxantrone (MTO2+ ) in its pocket to give stable binary complex [MTO⊂1]- (Kd =2.1 µM) that can be precipitated in vitro with UV light or pH as stimuli. Both in vitro and in vivo studies showed that the basket is nontoxic, while at a higher proportion with respect to MTO it reduced its cytotoxicity in vitro. With well-characterized internal dynamics and dimerization, the ability to include mitoxantrone, and biocompatibility, the stage is set to develop sequestering agents from deep-cavity baskets.


Assuntos
Antineoplásicos , Mitoxantrona , Mitoxantrona/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Espectroscopia de Ressonância Magnética
7.
Genes (Basel) ; 14(5)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37239338

RESUMO

Occurrence of non-canonical G-quadruplex (G4) DNA structures in the genome have been recognized as key factors in gene regulation and several other cellular processes. The mosR and ndhA genes involved in pathways of oxidation sensing regulation and ATP generation, respectively, make Mycobacterium tuberculosis (Mtb) bacteria responsible for oxidative stress inside host macrophage cells. Circular Dichroism spectra demonstrate stable hybrid G4 DNA conformations of mosR/ndhA DNA sequences. Real-time binding of mitoxantrone to G4 DNA with an affinity constant ~105-107 M-1, leads to hypochromism with a red shift of ~18 nm, followed by hyperchromism in the absorption spectra. The corresponding fluorescence is quenched with a red shift ~15 nm followed by an increase in intensity. A change in conformation of the G4 DNA accompanies the formation of multiple stoichiometric complexes with a dual binding mode. The external binding of mitoxantrone with a partial stacking with G-quartets and/or groove binding induces significant thermal stabilization, ~20-29 °C in ndhA/mosR G4 DNA. The interaction leads to a two/four-fold downregulation of transcriptomes of mosR/ndhA genes apart from the suppression of DNA replication by Taq polymerase enzyme, establishing the role of mitoxantrone in targeting G4 DNA, as an alternate strategy for effective anti-tuberculosis action in view of deadly multi-drug resistant tuberculosis disease causing bacterial strains t that arise from existing therapeutic treatments.


Assuntos
Quadruplex G , Mycobacterium tuberculosis , Mitoxantrona/farmacologia , Mitoxantrona/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , DNA/genética , Sequência de Bases
8.
Nanotechnology ; 33(17)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008083

RESUMO

Graphene oxide has covalently modified by chito oligosaccharides andγ-polyglutamic acid to form GO-CO-γ-PGA, which exhibits excellent performance as a drug delivery carrier, but this carrier did not have the ability to actively target. In this study, the targeting property of breast cancer tumor cell exosomes was exploited to give GO-CO-γ-PGA the ability to target breast tumor cells (MDA-MB-231), and the drug mitoxantrone (MIT) was loaded to finally form EXO-GO-CO-γ-PGA-MIT with an encapsulation efficiency of 73.02%. The pH response of EXO-GO-CO-γ-PGA showed a maximum cumulative release rate of 56.59% (pH 5.0, 120 h) and 6.73% (pH 7.4, 120 h) for MIT at different pH conditions.In vitrocellular assays showed that EXO-GO-CO-γ-PGA-MIT was more potent in killing MDA-MB-231 cells due to its targeting ability and had a significantly higher pro-apoptotic capacity compared to GO-CO-γ-PGA-MIT. The results showed that this bionic nano-intelligent drug delivery system has good drug slow release function and it can increase the local drug concentration of tumor and enhance the pro-apoptotic ability of MIT, so this newly synthesized bionic drug delivery carriers (EXO-GO-CO-γ-PGA-MIT) has potential application in breast cancer treatment.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Exossomos/química , Grafite/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Exossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Mitoxantrona/química , Mitoxantrona/farmacologia , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química
9.
ACS Appl Mater Interfaces ; 13(40): 47407-47417, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597015

RESUMO

Pyroptosis is a programmed cell death to enhance immunogenicity of tumor cells, but pyroptosis-based immunotherapy is limited due to the immune escape involving myeloid-derived suppressor cells (MDSCs). Therefore, designing a nanoplatform to not only trigger apoptosis-pyroptosis transformation but also combat the MDSC-based immune escape is of great significance. As a proof-of-concept study, here, we designed a metal organic framework (MOF)-based nanoplatform to tailor the pyroptosis immunotherapy through disrupting the MDSC-mediated immunosuppression. By pH-responsive zeolitic imidazolate framework-8 (ZIF-8) modified with hyaluronic acid (HA), the chemotherapeutic drug mitoxantrone (MIT) and DNA demethylating agent hydralazine (HYD) were successfully co-encapsulated into ZIF-8 for achieving (M+H)@ZIF/HA nanoparticles. This nanoplatform demonstrated a powerful apoptosis-to-pyroptosis transformation with a potent disruption of MDSC-mediated T cell paralysis via reducing immunosuppressive methylglyoxal by HYD. Overall, our two-pronged nanoplatform (M+H)@ZIF/HA can switch the cold tumor into an arsenal of antigens that stimulate robust immunological responses, while suppressing immune escape, collectively triggering vigorous cytotoxic T cell responses with remarkable tumor elimination and building a long-term immune memory response against metastasis.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Fatores Imunológicos/uso terapêutico , Células Supressoras Mieloides/efeitos dos fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Feminino , Ácido Hialurônico/química , Hidralazina/química , Hidralazina/uso terapêutico , Imidazóis/química , Fatores Imunológicos/química , Imunomodulação/efeitos dos fármacos , Imunoterapia/métodos , Estruturas Metalorgânicas/química , Camundongos Endogâmicos BALB C , Mitoxantrona/química , Mitoxantrona/uso terapêutico , Metástase Neoplásica/prevenção & controle , Estudo de Prova de Conceito , Piroptose/efeitos dos fármacos
10.
Food Chem ; 349: 129171, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582542

RESUMO

Herein, an innovative ratiometric fluorescence (FL) aptasensor was successfully fabricated for the accurate analysis of zearalenone (ZEN) in corn and barley flour. The ZEN aptamer-modified nitrogen doped graphene quantum dots (NGQDs-apt) and silica sphere-encapsulated cadmium telluride quantum dots (CdTe QDs@SiO2) were directly mixed and applied as ratiometric probes. In the absence of ZEN, mitoxantrone (MTX), which was innovatively introduced as quencher, was captured by NGQDs-apt and its inner filter effect (IFE) on CdTe QDs@SiO2 was inhibited. When ZEN existed, MTX separated from NGQDs-apt and re-dispersed around CdTe QDs@SiO2 owing to the competitive binding of ZEN with its aptamer. As the IFE of free MTX on CdTe QDs@SiO2 recovering, the FL intensity of CdTe QDs@SiO2 was quenched, while the FL intensity of NGQDs-apt was nearly invariant. On this basis, a ratiometric FL aptasensor for ZEN was fabricated, which exhibited outstanding detection performances with a desirable detection limit of 0.32 pg mL-1.


Assuntos
Compostos de Cádmio/química , Produtos Agrícolas/química , Grão Comestível/química , Mitoxantrona/química , Pontos Quânticos/química , Dióxido de Silício/química , Telúrio/química , Zearalenona/análise , Aptâmeros de Nucleotídeos , Farinha/análise , Fluorescência , Grafite , Limite de Detecção
11.
J Chromatogr A ; 1636: 461790, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33340746

RESUMO

Epigenetic inheritance in mammals relies in part on propagation of DNA methylation patterns throughout development. UHRF1 (ubiquitin-like containing PHD and RING finger domains 1) is required for maintenance the methylation pattern. It was reported that UHRF1 is overexpressed in a number of cancer types, and its depletion has been established to inhibit growth and invasion of cancer cells. It has been considered as a new therapeutic target for cancer. In the present work, we described a method for screening inhibitors for blocking the formation of UHRF1-methylated DNA (mDNA) complex by using nonequilibrium capillary electrophoresis of the equilibrium mixture (NECEEM). A recombinant UHRF1 with the SRA domain (residues 408-643), a fluorescently labeled double strand mDNA (12 mer) and a known inhibitor mitoxantrone were employed for proof of concept. The method allows to measure the dissociation constant (Kd) of the UHRF1-mDNA complex as well as the rate kinetic constant for complex formation (kon) and dissociation (koff). A small chemical library composed of 60 natural compounds were used to validate the method. Sample pooling strategy was employed to improve the screening throughput. The merit of the method was confirmed by the discovery of two natural products proanthocyanidins and baicalein as the new inhibitors for blocking the formation of UHRF1-mDNA complex. Our work demonstrated that CE represents a straightforward and robust technique for studying UHRF1-mDNA interaction and screening of the inhibitors.


Assuntos
Antineoplásicos/análise , Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA/genética , Ensaios de Seleção de Medicamentos Antitumorais , Eletroforese Capilar/métodos , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antineoplásicos/química , Metilação de DNA/efeitos dos fármacos , Flavanonas/química , Flavanonas/farmacologia , Humanos , Cinética , Mitoxantrona/química , Mitoxantrona/farmacologia , Proantocianidinas/química , Proantocianidinas/farmacologia
12.
Bioorg Chem ; 101: 104005, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599362

RESUMO

The clinical application of mitoxantrone (MTZ), a DNA-intercalating topoisomerase II (topo II) poison, has been largely limited by the risk of secondary tumor and severe myelosuppression. To develop more effective antineoplastic agents with less toxicity, a spectrum of anthraquinone analogues of MTZ were herein designed and synthesized based on the concept of 'enhancing protein backbone-binding', by rationally introducing hydrophobic long fatty acid chain (LFC) and hydrophilic polyamine (PA) components, which are reported to function as effective tumor-targeting tethers. The SAR exploration implicated that in our synthesized molecules, the introduction of both lipophilic LFC and hydrophilic PA fragment is plausibly beneficial to the anti-proliferative potency, with a certain degree of selectivity between the hematopoietic and solid malignant cells, which still need to be further accurately confirmed. Meanwhile, many compounds, the LFC-tethered 5d2 and PA-bridged 8c in particular, provided satisfactory topo IIα inhibition by acting as DNA non-intercalators, largely attributable to their strong adaptability to three binding regions (pocket I, II and III) and also the generated H-bonding interactions between inhibitors and key residues of topo IIα. In brief, 5d2 and 8c might be promising hits for further exploitation of more potent topo IIα inhibitors.


Assuntos
Antraquinonas/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Mitoxantrona/análogos & derivados , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Mitoxantrona/química , Mitoxantrona/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química
13.
Nat Commun ; 11(1): 2264, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385283

RESUMO

ABCG2 is an ABC transporter that extrudes a variety of compounds from cells, and presents an obstacle in treating chemotherapy-resistant cancers. Despite recent structural insights, no anticancer drug bound to ABCG2 has been resolved, and the mechanisms of multidrug transport remain obscure. Such a gap of knowledge limits the development of novel compounds that block or evade this critical molecular pump. Here we present single-particle cryo-EM studies of ABCG2 in the apo state, and bound to the three structurally distinct chemotherapeutics. Without the binding of conformation-selective antibody fragments or inhibitors, the resting ABCG2 adopts a closed conformation. Our cryo-EM, biochemical, and functional analyses reveal the binding mode of three chemotherapeutic compounds, demonstrate how these molecules open the closed conformation of the transporter, and establish that imatinib is particularly effective in stabilizing the inward facing conformation of ABCG2. Together these studies reveal the previously unrecognized conformational cycle of ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Antineoplásicos/química , Transporte Biológico , Dissulfetos/metabolismo , Células HEK293 , Humanos , Mesilato de Imatinib/metabolismo , Ligantes , Mitoxantrona/química , Mitoxantrona/metabolismo , Modelos Biológicos , Estrutura Secundária de Proteína
14.
Sci Rep ; 10(1): 3788, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123236

RESUMO

The blood-brain barrier (BBB) serves to protect and regulate the CNS microenvironment. The development of an in-vitro mimic of the BBB requires recapitulating the correct phenotype of the in-vivo BBB, particularly for drug permeation studies. However the majority of widely used BBB models demonstrate low transendothelial electrical resistance (TEER) and poor BBB phenotype. The application of shear stress is known to enhance tight junction formation and hence improve the barrier function. We utilised a high TEER primary porcine brain microvascular endothelial cell (PBMEC) culture to assess the impact of shear stress on barrier formation using the Kirkstall QuasiVivo 600 (QV600) multi-chamber perfusion system. The application of shear stress resulted in a reorientation and enhancement of tight junction formation on both coverslip and permeable inserts, in addition to enhancing and maintaining TEER for longer, when compared to static conditions. Furthermore, the functional consequences of this was demonstrated with the reduction in flux of mitoxantrone across PBMEC monolayers. The QV600 perfusion system may service as a viable tool to enhance and maintain the high TEER PBMEC system for use in in-vitro BBB models.


Assuntos
Barreira Hematoencefálica/química , Mitoxantrona/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Células Endoteliais/química , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Mitoxantrona/química , Mitoxantrona/farmacologia , Modelos Biológicos , Perfusão , Resistência ao Cisalhamento , Suínos , Junções Íntimas/química , Junções Íntimas/metabolismo
15.
Chemosphere ; 246: 125700, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31884233

RESUMO

Anti-tumor drugs, due to their non-specific toxicity will cause long-term delayed toxicity to organisms and humans when discharged into the environment. In this study, reduced graphene oxide @ iron nanoparticles (rGO@Fe NPs) were successfully prepared using green tea extract as reductant and subsequently used for mitoxantrone (MTX) removal. SEM and Raman spectroscopy showed that 30-60 nm sized Fe NPs were loaded on rGO and green tea extract successfully reduced GO to rGO. The removal efficiency of MTX by the hybrid material was higher (98.5%) than either rGO (77.5%) or Fe NPs (53.1%) alone. In addition, the removal efficiency of MTX by the hybrid material was as high as 95% within 5 min, MTX adsorption followed both a pseudo-second-order kinetic model and the Langmuir isotherm, and it is a spontaneous adsorption. Recycling experiments showed that the removal efficiency of MTX decreased from 99.9 to 76.8% after six cycles, and could be as high as 99% in both municipal and medical wastewater. Scanning electron microscopy (SEM), Fourier transform infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and High performance liquid chromatography (HPLC) were all used to characterize and analyze the hybrid material, and possible adsorption mechanisms which revealed that MTX adsorption probably involved a combination of π-π stacking interaction, hydrogen bonding, electrostatic interaction and pore-filling.


Assuntos
Grafite/química , Química Verde , Mitoxantrona/química , Nanopartículas/química , Poluentes Químicos da Água/química , Adsorção , Cromatografia Líquida de Alta Pressão , Humanos , Ferro/química , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Eletricidade Estática , Eliminação de Resíduos Líquidos , Águas Residuárias
16.
Bioorg Med Chem ; 28(3): 115260, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870833

RESUMO

Mitoxantrone is an anticancer anthracenedione that can be activated by formaldehyde to generate covalent drug-DNA adducts. Despite their covalent nature, these DNA lesions are relatively labile. It was recently established that analogues of mitoxantrone featuring extended side-chains terminating in primary amino groups typically yielded high levels of stable DNA adducts following their activation by formaldehyde. In this study we describe the DNA sequence-specific binding properties of the mitoxantrone analogue WEHI-150 which is the first anthracenedione to form apparent DNA crosslinks mediated by formaldehyde. The utility of this compound lies in the versatility of the covalent binding modes displayed. Unlike other anthracenediones described to date, WEHI-150 can mediate covalent adducts that are independent of interactions with the N-2 of guanine and is capable of adduct formation at novel DNA sequences. Moreover, these covalent adducts incorporate more than one formaldehyde-mediated bond with DNA, thus facilitating the formation of highly lethal DNA crosslinks. The versatility of binding observed is anticipated to allow the next generation of anthracenediones to interact with a broader spectrum of nucleic acid species than previously demonstrated by the parent compounds, thus allowing for more diverse biological activities.


Assuntos
DNA/efeitos dos fármacos , Formaldeído/farmacologia , Mitoxantrona/farmacologia , Animais , Bovinos , Relação Dose-Resposta a Droga , Formaldeído/química , Espectrometria de Massas , Mitoxantrona/análogos & derivados , Mitoxantrona/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
17.
J Nanobiotechnology ; 17(1): 125, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870362

RESUMO

BACKGROUND: Multidrug resistance (MDR) is a pressing obstacle in clinical chemotherapy for breast cancer. Based on the fact that the drug efflux is an important factor in MDR, we designed a codelivery system to guide the drug efflux inhibitor verapamil (VRP) and the chemotherapeutic agent novantrone (NVT) synergistically into breast cancer cells to reverse MDR. RESULTS: This co-delivery system consists of following components: the active targeting peptide RGD, an inorganic calcium phosphate (CaP) shell and an organic inner core. VRP and NVT were loaded into CaP shell and phosphatidylserine polyethylene glycol (PS-PEG) core of nanoparticles (NPs) separately to obtain NVT- and VRP-loaded NPs (NV@CaP-RGD). These codelivered NPs allowed VRP to prevent the efflux of NVT from breast cancer cells by competitively combining with drug efflux pumps. Additionally, NV@CaP-RGD was effectively internalized into breast cancer cells by precise delivery through the effects of the active targeting peptides RGD and EPR. The pH-triggered profile of CaP was also able to assist the NPs to successfully escape from lysosomes, leading to a greatly increased effective intracellular drug concentration. CONCLUSION: The concurrent administration of VRP and NVT by organic/inorganic NPs is a promising therapeutic approach to reverse MDR in breast cancer.


Assuntos
Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Mitoxantrona/química , Nanocápsulas/química , Verapamil/química , Animais , Fosfatos de Cálcio/química , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Quimioterapia Combinada/métodos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitoxantrona/farmacologia , Terapia de Alvo Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Fosfatidilserinas/química , Polietilenoglicóis/química , Verapamil/metabolismo
18.
Chem Commun (Camb) ; 55(93): 13987-13990, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31687673

RESUMO

Polyprodrug-based delivery technique is a fast-growing and effective strategy to improve the therapeutic efficacy of small molecule drugs. We herein developed a robust mitoxantrone (MTO)-based polyprodrug nanoplatform for systemic cisplatin prodrug delivery and combination cancer therapy. Our results show that this nanoplatform can concurrently transport MTO and cisplatin to tumor cells and significantly inhibit tumor growth.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Sistemas de Liberação de Medicamentos , Mitoxantrona/farmacologia , Nanopartículas/química , Polímeros/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Terapia Combinada , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitoxantrona/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Imagem Óptica , Tamanho da Partícula , Polímeros/química , Pró-Fármacos/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
19.
Biomed Pharmacother ; 120: 109468, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605952

RESUMO

Development of resistance to chemotherapy drugs is a significant problem in treating human malignancies in the clinic. Overexpression of ABC transporter proteins, including P-170 glycoprotein (P-gp), and breast cancer resistance protein (BCRP, ABCG2) have been implicated in this multi-drug resistance (MDR). These ABC transporters are ATP-dependent efflux proteins. We have recently shown that nitric oxide (NO) inhibits the ATPase activities of P-gp, resulting in a significant enhancement of drug accumulation and the reversal of multi-drug resistance in NCI/ADR-RES cells, a P-gp-overexpressing human MDR cell line. In this study, we used [O2-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)-piperazin-1 yl]-diazene-1-ium-1-2-diolate] (JS-K), a tumor-specific NO-donor to study the reversal of drug resistance in both P-gp- and BCRP-overexpressing human tumor cells. We report here that while JS-K was extremely effective in reversing adriamycin resistance in the P-gp-overexpressing tumor cells (NCI/ADR-RES); it was significantly resistant to BCRP-overexpressing (MCF-7/MX) tumor cells, suggesting that JS-K may be a substrate for BCRP. Using another NO-donor (DETNO), we show that NO directly inhibits the ATP activities of BCRP, inducing significant increases in the accumulations of both Hoechst 33342 dye and topotecan, substrates for BCRP. Furthermore, NO treatment significantly reversed topotecan and mitoxantrone resistance to MCF-7/MX tumor cells. Molecular docking studies indicated that while DETNO and JS-K bind to ATP binding site in both ABC proteins, binding score was significantly reduced, compared to the ATP binding. Our results indicate that appropriately designed NO donors may find success in reversing multidrug resistance in the clinic.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Compostos Azo/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Óxido Nítrico/farmacologia , Piperazinas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Compostos Azo/química , Linhagem Celular Tumoral , Sobrevivência Celular , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Humanos , Mitoxantrona/química , Mitoxantrona/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Nitrosos/química , Compostos Nitrosos/farmacologia , Piperazinas/química , Topotecan/química , Topotecan/farmacologia
20.
Nanoscale ; 11(39): 18031-18036, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570915

RESUMO

A theranostic nanosystem based on indocyanine green (ICG) covalently conjugated to mesoporous silica nanoparticles (MSNs) loaded with the anticancer drug mitoxantrone (MTX) is proposed as an innovative photoacoustic probe. Taking advantage of the characteristic PA signal displayed by both ICG and MTX, a PA-ratiometric approach was applied to assess the drug release profile from the MSNs. After complete in vitro characterization of the nanoprobe, a proof-of-concept study has been carried out in tumour-bearing mice to evaluate in vivo its effectiveness for cancer imaging and chemotherapeutic agent delivery.


Assuntos
Antineoplásicos , Meios de Contraste , Mitoxantrona , Nanopartículas , Neoplasias Experimentais , Técnicas Fotoacústicas , Fototerapia , Dióxido de Silício , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Meios de Contraste/química , Meios de Contraste/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Camundongos , Mitoxantrona/química , Mitoxantrona/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...