Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259.116
Filtrar
1.
FASEB J ; 38(11): e23724, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837712

RESUMO

Mycobacterium tuberculosis, the pathogen of the deadly disease tuberculosis, depends on the redox cofactor mycofactocin (MFT) to adapt to and survive under hypoxic conditions. MftR is a TetR family transcription regulator that binds upstream of the MFT gene cluster and controls MFT synthesis. To elucidate the structural basis underlying MftR regulation, we determined the crystal structure of Mycobacterium tuberculosis MftR (TB-MftR). The structure revealed an interconnected hydrogen bond network in the α1-α2-α3 helices of helix-turn-helix (HTH) DNA-binding domain that is essential for nucleic acid interactions. The ligand-binding domain contains a hydrophobic cavity enclosing long-chain fatty acyl-CoAs like the key regulatory ligand oleoyl-CoA. Despite variations in ligand-binding modes, comparative analyses suggest regulatory mechanisms are largely conserved across TetR family acyl-CoA sensors. By elucidating the intricate structural mechanisms governing DNA and ligand binding by TB-MftR, our study enhances understanding of the regulatory roles of this transcription factor under hypoxic conditions, providing insights that could inform future research into Mycobacterium tuberculosis pathogenesis.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Cristalografia por Raios X , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Modelos Moleculares , Sequência de Aminoácidos
2.
Drug Dev Res ; 85(4): e22216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831547

RESUMO

A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.


Assuntos
Inibidores da Colinesterase , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Quinoxalinas , Sulfonamidas , alfa-Amilases , alfa-Glucosidases , Quinoxalinas/química , Quinoxalinas/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Modelos Moleculares , Farmacóforo
3.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824131

RESUMO

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Assuntos
Mitocôndrias , RNA de Transferência , Ribonuclease P , tRNA Metiltransferases , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , Mitocôndrias/metabolismo , Ribonuclease P/metabolismo , Ribonuclease P/genética , Ribonuclease P/química , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/química , Processamento Pós-Transcricional do RNA , Microscopia Crioeletrônica , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/química , Metilação , Conformação de Ácido Nucleico , Modelos Moleculares , Precursores de RNA/metabolismo , Precursores de RNA/genética
4.
Genome Biol ; 25(1): 152, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862984

RESUMO

Protein folding has become a tractable problem with the significant advances in deep learning-driven protein structure prediction. Here we propose FoldPAthreader, a protein folding pathway prediction method that uses a novel folding force field model by exploring the intrinsic relationship between protein evolution and folding from the known protein universe. Further, the folding force field is used to guide Monte Carlo conformational sampling, driving the protein chain fold into its native state by exploring potential intermediates. On 30 example targets, FoldPAthreader successfully predicts 70% of the proteins whose folding pathway is consistent with biological experimental data.


Assuntos
Dobramento de Proteína , Proteínas , Proteínas/química , Proteínas/metabolismo , Método de Monte Carlo , Conformação Proteica , Software , Modelos Moleculares , Biologia Computacional/métodos
5.
Protein Sci ; 33(7): e5033, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864690

RESUMO

In silico validation of de novo designed proteins with deep learning (DL)-based structure prediction algorithms has become mainstream. However, formal evidence of the relationship between a high-quality predicted model and the chance of experimental success is lacking. We used experimentally characterized de novo water-soluble and transmembrane ß-barrel designs to show that AlphaFold2 and ESMFold excel at different tasks. ESMFold can efficiently identify designs generated based on high-quality (designable) backbones. However, only AlphaFold2 can predict which sequences have the best chance of experimentally folding among similar designs. We show that ESMFold can generate high-quality structures from just a few predicted contacts and introduce a new approach based on incremental perturbation of the prediction ("in silico melting"), which can reveal differences in the presence of favorable contacts between designs. This study provides a new insight on DL-based structure prediction models explainability and on how they could be leveraged for the design of increasingly complex proteins; in particular membrane proteins which have historically lacked basic in silico validation tools.


Assuntos
Proteínas de Membrana , Dobramento de Proteína , Solubilidade , Proteínas de Membrana/química , Água/química , Simulação por Computador , Modelos Moleculares , Conformação Proteica em Folha beta , Aprendizado Profundo , Algoritmos
6.
Protein Sci ; 33(7): e5031, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864692

RESUMO

Proteins are constantly undergoing folding and unfolding transitions, with rates that determine their homeostasis in vivo and modulate their biological function. The ability to optimize these rates without affecting overall native stability is hence highly desirable for protein engineering and design. The great challenge is, however, that mutations generally affect folding and unfolding rates with inversely complementary fractions of the net free energy change they inflict on the native state. Here we address this challenge by targeting the folding transition state (FTS) of chymotrypsin inhibitor 2 (CI2), a very slow and stable two-state folding protein with an FTS known to be refractory to change by mutation. We first discovered that the CI2's FTS is energetically taxed by the desolvation of several, highly conserved, charges that form a buried salt bridge network in the native structure. Based on these findings, we designed a CI2 variant that bears just four mutations and aims to selectively stabilize the FTS. This variant has >250-fold faster rates in both directions and hence identical native stability, demonstrating the success of our FTS-centric design strategy. With an optimized FTS, CI2 also becomes 250-fold more sensitive to proteolytic degradation by its natural substrate chymotrypsin, and completely loses its activity as inhibitor. These results indicate that CI2 has been selected through evolution to have a very unstable FTS in order to attain the kinetic stability needed to effectively function as protease inhibitor. Moreover, the CI2 case showcases that protein (un)folding rates can critically pivot around a few key residues-interactions, which can strongly modify the general effects of known structural factors such as domain size and fold topology. From a practical standpoint, our results suggest that future efforts should perhaps focus on identifying such critical residues-interactions in proteins as best strategy to significantly improve our ability to predict and engineer protein (un)folding rates.


Assuntos
Mutação , Dobramento de Proteína , Estabilidade Proteica , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Modelos Moleculares , Cinética , Conformação Proteica , Peptídeos
7.
Protein Sci ; 33(7): e5063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864729

RESUMO

Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.


Assuntos
Chaperonas Moleculares , Domínios Proteicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Sítios de Ligação , Humanos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas
8.
Protein Sci ; 33(7): e5067, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864716

RESUMO

The N-degron pathway determines the half-life of proteins by selectively destabilizing the proteins bearing N-degrons. N-terminal glutamine amidohydrolase 1 (NTAQ1) plays an essential role in the arginine N-degron (Arg/N-degron) pathway as an initializing enzyme via the deamidation of the N-terminal (Nt) glutamine (Gln). However, the Nt-serine-bound conformation of hNTAQ1 according to the previously identified crystal structure suggests the possibility of other factors influencing the recognition of Nt residues by hNTAQ1. Hence, in the current study, we aimed to further elucidate the substrate recognition of hNTAQ1; specifically, we explored 12 different substrate-binding conformations of hNTAQ1 depending on the subsequent residue of Nt-Gln. Results revealed that hNTAQ1 primarily interacts with the protein Nt backbone, instead of the side chain, for substrate recognition. Here, we report that the Nt backbone of proteins appears to be a key component of hNTAQ1 function and is the main determinant of substrate recognition. Moreover, not all second residues from Nt-Gln, but rather distinctive and charged residues, appeared to aid in detecting substrate recognition. These new findings define the substrate-recognition process of hNTAQ1 and emphasize the importance of the subsequent Gln residue in the Nt-Gln degradation system. Our extensive structural and biochemical analyses provide insights into the substrate specificity of the N-degron pathway and shed light on the mechanism underlying hNTAQ1 substrate recognition. An improved understanding of the protein degradation machinery could aid in developing therapies to promote overall health through enhanced protein regulation, such as targeted protein therapies.


Assuntos
Arginina , Humanos , Especificidade por Substrato , Arginina/química , Arginina/metabolismo , Modelos Moleculares , Glutamina/metabolismo , Glutamina/química , Amidoidrolases/química , Amidoidrolases/metabolismo , Amidoidrolases/genética , Conformação Proteica , Proteólise , Degrons
9.
Protein Sci ; 33(7): e5073, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864770

RESUMO

A common evolutionary mechanism in biology to drive function is protein oligomerization. In prokaryotes, the symmetrical assembly of repeating protein units to form homomers is widespread, yet consideration in vitro of whether such assemblies have functional or mechanistic consequences is often overlooked. Dye-decolorizing peroxidases (DyPs) are one such example, where their dimeric α + ß barrel units can form various oligomeric states, but the oligomer influence, if any, on mechanism and function has received little attention. In this work, we have explored the oligomeric state of three DyPs found in Streptomyces lividans, each with very different mechanistic behaviors in their reactions with hydrogen peroxide and organic substrates. Using analytical ultracentrifugation, we reveal that except for one of the A-type DyPs where only a single sedimenting species is detected, oligomer states ranging from homodimers to dodecamers are prevalent in solution. Using cryo-EM on preparations of the B-type DyP, we determined a 3.02 Å resolution structure of a hexamer assembly that corresponds to the dominant oligomeric state in solution as determined by analytical ultracentrifugation. Furthermore, cryo-EM data detected sub-populations of higher-order oligomers, with one of these formed by an arrangement of two B-type DyP hexamers to give a dodecamer assembly. Our solution and structural insights of these oligomer states provide a new framework to consider previous mechanistic studies of these DyP members and are discussed in terms of long-range electron transfer for substrate oxidation and in the "storage" of oxidizable equivalents on the heme until a two-electron donor is available.


Assuntos
Corantes , Oxirredução , Peroxidases , Multimerização Proteica , Streptomyces lividans , Streptomyces lividans/enzimologia , Peroxidases/química , Peroxidases/metabolismo , Corantes/química , Corantes/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Especificidade por Substrato , Microscopia Crioeletrônica , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo
10.
Sci Adv ; 10(24): eado6169, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865457

RESUMO

Nitrogenase plays a key role in the global nitrogen cycle; yet, the evolutionary history of nitrogenase and, particularly, the sequence of appearance between the homologous, yet distinct NifDK (the catalytic component) and NifEN (the cofactor maturase) of the extant molybdenum nitrogenase, remains elusive. Here, we report the ability of NifEN to reduce N2 at its surface-exposed L-cluster ([Fe8S9C]), a structural/functional homolog of the M-cluster (or cofactor; [(R-homocitrate)MoFe7S9C]) of NifDK. Furthermore, we demonstrate the ability of the L-cluster-bound NifDK to mimic its NifEN counterpart and enable N2 reduction. These observations, coupled with phylogenetic, ecological, and mechanistic considerations, lead to the proposal of a NifEN-like, L-cluster-carrying protein as an ancient nitrogenase, the exploration of which could shed crucial light on the evolutionary origin of nitrogenase and related enzymes.


Assuntos
Nitrogenase , Nitrogenase/metabolismo , Nitrogenase/química , Nitrogenase/genética , Filogenia , Nitrogênio/metabolismo , Nitrogênio/química , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Fixação de Nitrogênio/genética
11.
Sci Adv ; 10(24): eadn8386, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865454

RESUMO

Certain cyanobacteria alter their photosynthetic light absorption between green and red, a phenomenon called complementary chromatic acclimation. The acclimation is regulated by a cyanobacteriochrome-class photosensor that reversibly photoconverts between green-absorbing (Pg) and red-absorbing (Pr) states. Here, we elucidated the structural basis of the green/red photocycle. In the Pg state, the bilin chromophore adopted the extended C15-Z,anti structure within a hydrophobic pocket. Upon photoconversion to the Pr state, the bilin is isomerized to the cyclic C15-E,syn structure, forming a water channel in the pocket. The solvation/desolvation of the bilin causes changes in the protonation state and the stability of π-conjugation at the B ring, leading to a large absorption shift. These results advance our understanding of the enormous spectral diversity of the phytochrome superfamily.


Assuntos
Luz , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Aclimatação , Fotossíntese , Fitocromo/metabolismo , Fitocromo/química , Modelos Moleculares , Pigmentos Biliares/metabolismo , Pigmentos Biliares/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Luz Vermelha
12.
Proc Natl Acad Sci U S A ; 121(25): e2403273121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865266

RESUMO

In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.


Assuntos
Compostos de Amônio Quaternário , Especificidade por Substrato , Compostos de Amônio Quaternário/metabolismo , Compostos de Amônio Quaternário/química , Cristalografia por Raios X , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Farmacorresistência Bacteriana Múltipla/genética , Anti-Infecciosos Locais/metabolismo , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/química , Modelos Moleculares
13.
Proc Natl Acad Sci U S A ; 121(25): e2322452121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861600

RESUMO

Intrinsically disordered proteins (IDPs) play a crucial role in various biological phenomena, dynamically changing their conformations in response to external environmental cues. To gain a deeper understanding of these proteins, it is essential to identify the determinants that fix their structures at the atomic level. Here, we developed a pipeline for rapid crystal structure analysis of IDP using a cell-free protein crystallization (CFPC) method. Through this approach, we successfully demonstrated the determination of the structure of an IDP to uncover the key determinants that stabilize its conformation. Specifically, we focused on the 11-residue fragment of c-Myc, which forms an α-helix through dimerization with a binding partner protein. This fragment was strategically recombined with an in-cell crystallizing protein and was expressed in a cell-free system. The resulting crystal structures of the c-Myc fragment were successfully determined at a resolution of 1.92 Å and we confirmed that they are identical to the structures of the complex with the native binding partner protein. This indicates that the environment of the scaffold crystal can fix the structure of c-Myc. Significantly, these crystals were obtained directly from a small reaction mixture (30 µL) incubated for only 72 h. Analysis of eight crystal structures derived from 22 mutants revealed two hydrophobic residues as the key determinants responsible for stabilizing the α-helical structure. These findings underscore the power of our CFPC screening method as a valuable tool for determining the structures of challenging target proteins and elucidating the essential molecular interactions that govern their stability.


Assuntos
Sistema Livre de Células , Cristalização , Proteínas Intrinsicamente Desordenadas , Proteínas Proto-Oncogênicas c-myc , Proteínas Intrinsicamente Desordenadas/química , Cristalografia por Raios X/métodos , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Humanos , Conformação Proteica , Modelos Moleculares , Ligação Proteica
14.
Open Biol ; 14(6): 230448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862016

RESUMO

Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 ß-sandwich (ß1-ß7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands ß3 and ß4 ('motif Lß3ß4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lß3ß4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Porphyromonas gingivalis , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/química , Modelos Moleculares , Cristalografia por Raios X , Sequência de Aminoácidos , Sinais Direcionadores de Proteínas , Domínios Proteicos , Bacteroidetes/metabolismo , Bacteroidetes/genética , Tannerella forsythia/metabolismo , Tannerella forsythia/genética , Tannerella forsythia/química , Relação Estrutura-Atividade , Conformação Proteica
15.
Open Biol ; 14(6): 240025, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862021

RESUMO

Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.


Assuntos
Cinetocoros , Proteínas de Protozoários , Cinetocoros/metabolismo , Cinetocoros/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Modelos Moleculares , Sequência de Aminoácidos , Filogenia , Ligação Proteica , Cristalografia por Raios X , Segregação de Cromossomos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética
16.
Science ; 384(6700): 1091-1095, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843321

RESUMO

Successive cleavages of amyloid precursor protein C-terminal fragment with 99 residues (APP-C99) by γ-secretase result in amyloid-ß (Aß) peptides of varying lengths. Most cleavages have a step size of three residues. To elucidate the underlying mechanism, we determined the atomic structures of human γ-secretase bound individually to APP-C99, Aß49, Aß46, and Aß43. In all cases, the substrate displays the same structural features: a transmembrane α-helix, a three-residue linker, and a ß-strand that forms a hybrid ß-sheet with presenilin 1 (PS1). Proteolytic cleavage occurs just ahead of the substrate ß-strand. Each cleavage is followed by unwinding and translocation of the substrate α-helix by one turn and the formation of a new ß-strand. This mechanism is consistent with existing biochemical data and may explain the cleavages of other substrates by γ-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Presenilina-1 , Humanos , Peptídeos beta-Amiloides/química , Precursor de Proteína beta-Amiloide/química , Secretases da Proteína Precursora do Amiloide/química , Cristalografia por Raios X , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Presenilina-1/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteólise , Especificidade por Substrato
17.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866426

RESUMO

Multispanning membrane proteins are inserted into the endoplasmic reticulum membrane by the ribosome-bound multipass translocon (MPT) machinery. Based on cryo-electron tomography and extensive subtomogram analysis, we reveal the composition and arrangement of ribosome-bound MPT components in their native membrane environment. The intramembrane chaperone complex PAT and the translocon-associated protein (TRAP) complex associate substoichiometrically with the MPT in a translation-dependent manner. Although PAT is preferentially part of MPTs bound to translating ribosomes, the abundance of TRAP is highest in MPTs associated with non-translating ribosomes. The subtomogram average of the TRAP-containing MPT reveals intermolecular contacts between the luminal domains of TRAP and an unknown subunit of the back-of-Sec61 complex. AlphaFold modeling suggests this protein is nodal modulator, bridging the luminal domains of nicalin and TRAPα. Collectively, our results visualize the variability of MPT factors in the native membrane environment dependent on the translational activity of the bound ribosome.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Ribossomos , Ribossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Retículo Endoplasmático/metabolismo , Biossíntese de Proteínas , Microscopia Crioeletrônica , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/química , Chaperonas Moleculares/metabolismo , Transporte Proteico , Modelos Moleculares
18.
Nat Commun ; 15(1): 5039, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866775

RESUMO

Urate, the physiological form of uric acid and a potent antioxidant in serum, plays a pivotal role in scavenging reactive oxygen species. Yet excessive accumulation of urate, known as hyperuricemia, is the primary risk factor for the development of gout. The high-capacity urate transporter GLUT9 represents a promising target for gout treatment. Here, we present cryo-electron microscopy structures of human GLUT9 in complex with urate or its inhibitor apigenin at overall resolutions of 3.5 Å and 3.3 Å, respectively. In both structures, GLUT9 exhibits an inward open conformation, wherein the substrate binding pocket faces the intracellular side. These structures unveil the molecular basis for GLUT9's substrate preference of urate over glucose, and show that apigenin acts as a competitive inhibitor by occupying the substrate binding site. Our findings provide critical information for the development of specific inhibitors targeting GLUT9 as potential therapeutics for gout and hyperuricemia.


Assuntos
Apigenina , Microscopia Crioeletrônica , Proteínas Facilitadoras de Transporte de Glucose , Ácido Úrico , Humanos , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/química , Ácido Úrico/metabolismo , Ácido Úrico/química , Apigenina/farmacologia , Apigenina/química , Sítios de Ligação , Ligação Proteica , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Modelos Moleculares , Gota/tratamento farmacológico , Gota/metabolismo , Células HEK293
19.
Nat Commun ; 15(1): 4999, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866834

RESUMO

Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.


Assuntos
Microscopia Crioeletrônica , Criptófitas , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Criptófitas/metabolismo , Fotossíntese , Modelos Moleculares , Transferência de Energia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Clorofila A/metabolismo , Clorofila A/química
20.
Nat Commun ; 15(1): 4933, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858403

RESUMO

Native amine dehydrogenases offer sustainable access to chiral amines, so the search for scaffolds capable of converting more diverse carbonyl compounds is required to reach the full potential of this alternative to conventional synthetic reductive aminations. Here we report a multidisciplinary strategy combining bioinformatics, chemoinformatics and biocatalysis to extensively screen billions of sequences in silico and to efficiently find native amine dehydrogenases features using computational approaches. In this way, we achieve a comprehensive overview of the initial native amine dehydrogenase family, extending it from 2,011 to 17,959 sequences, and identify native amine dehydrogenases with non-reported substrate spectra, including hindered carbonyls and ethyl ketones, and accepting methylamine and cyclopropylamine as amine donor. We also present preliminary model-based structural information to inform the design of potential (R)-selective amine dehydrogenases, as native amine dehydrogenases are mostly (S)-selective. This integrated strategy paves the way for expanding the resource of other enzyme families and in highlighting enzymes with original features.


Assuntos
Aminas , Aminas/metabolismo , Aminas/química , Especificidade por Substrato , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Biologia Computacional/métodos , Biocatálise , Biodiversidade , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...