Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 579(7799): 443-447, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103179

RESUMO

In eukaryotic protein N-glycosylation, a series of glycosyltransferases catalyse the biosynthesis of a dolichylpyrophosphate-linked oligosaccharide before its transfer onto acceptor proteins1. The final seven steps occur in the lumen of the endoplasmic reticulum (ER) and require dolichylphosphate-activated mannose and glucose as donor substrates2. The responsible enzymes-ALG3, ALG9, ALG12, ALG6, ALG8 and ALG10-are glycosyltransferases of the C-superfamily (GT-Cs), which are loosely defined as containing membrane-spanning helices and processing an isoprenoid-linked carbohydrate donor substrate3,4. Here we present the cryo-electron microscopy structure of yeast ALG6 at 3.0 Å resolution, which reveals a previously undescribed transmembrane protein fold. Comparison with reported GT-C structures suggests that GT-C enzymes contain a modular architecture with a conserved module and a variable module, each with distinct functional roles. We used synthetic analogues of dolichylphosphate-linked and dolichylpyrophosphate-linked sugars and enzymatic glycan extension to generate donor and acceptor substrates using purified enzymes of the ALG pathway to recapitulate the activity of ALG6 in vitro. A second cryo-electron microscopy structure of ALG6 bound to an analogue of dolichylphosphate-glucose at 3.9 Å resolution revealed the active site of the enzyme. Functional analysis of ALG6 variants identified a catalytic aspartate residue that probably acts as a general base. This residue is conserved in the GT-C superfamily. Our results define the architecture of ER-luminal GT-C enzymes and provide a structural basis for understanding their catalytic mechanisms.


Assuntos
Microscopia Crioeletrônica , Retículo Endoplasmático/enzimologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Biocatálise , Domínio Catalítico , Sequência Conservada , Dolicol Monofosfato Manose/metabolismo , Fosfatos de Dolicol/metabolismo , Glucose/análogos & derivados , Glucose/metabolismo , Glicosiltransferases/deficiência , Técnicas In Vitro , Lipídeos , Proteínas de Membrana/deficiência , Modelos Moleculares , Mutação , Monossacarídeos de Poli-Isoprenil Fosfato/química , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Especificidade por Substrato
2.
J Am Chem Soc ; 142(11): 5034-5048, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32048840

RESUMO

Penicillin binding proteins (PBPs) catalyzing transpeptidation reactions that stabilize the peptidoglycan component of the bacterial cell wall are the targets of ß-lactams, the most clinically successful antibiotics to date. However, PBP-transpeptidation enzymology has evaded detailed analysis, because of the historical unavailability of kinetically competent assays with physiologically relevant substrates and the previously unappreciated contribution of protein cofactors to PBP activity. By re-engineering peptidoglycan synthesis, we have constructed a continuous spectrophotometric assay for transpeptidation of native or near native peptidoglycan precursors and fragments by Escherichia coli PBP1B, allowing us to (a) identify recognition elements of transpeptidase substrates, (b) reveal a novel mechanism of stereochemical editing within peptidoglycan transpeptidation, (c) assess the impact of peptidoglycan substrates on ß-lactam targeting of transpeptidation, and (d) demonstrate that both substrates have to be bound before transpeptidation occurs. The results allow characterization of high molecular weight PBPs as enzymes and not merely the targets of ß-lactam acylation.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Ligação às Penicilinas/química , Peptidoglicano Glicosiltransferase/química , Peptidoglicano/química , Monossacarídeos de Poli-Isoprenil Fosfato/química , Oligossacarídeos de Poli-Isoprenil Fosfato/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , Proteínas da Membrana Bacteriana Externa/química , Biocatálise , Ensaios Enzimáticos/métodos , Cinética , Estereoisomerismo , Especificidade por Substrato
3.
Bioorg Khim ; 39(1): 99-104, 2013.
Artigo em Russo | MEDLINE | ID: mdl-23844511

RESUMO

Fluorescent 11-[(9'-anthracenyl)methoxy]undecyl phosphate and P1-{11-[(9'-anthracenyl)methoxy]undecyl}-P2-(alpha-D-galactopyranosyl) diphosphate were chemically synthesized for the first time. The ability of the first compound to serve as substrate-acceptor ofgalactosyl phosphate residue and the second compound of mannosyl residue in enzymic reactions catalyzed by galactosylphosphotransferase and mannosyltransferase from Salmonella newport membrane preparation was demonstrated.


Assuntos
Galactosídeos/síntese química , Manosiltransferases/metabolismo , Organofosfatos/síntese química , Monossacarídeos de Poli-Isoprenil Fosfato/síntese química , Salmonella/enzimologia , Galactosídeos/química , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Manosiltransferases/química , Organofosfatos/química , Monossacarídeos de Poli-Isoprenil Fosfato/química , Especificidade por Substrato
4.
Methods ; 35(4): 316-22, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15804602

RESUMO

Flippases are a class of membrane proteins that are proposed to facilitate the transbilayer movement of amphipathic polar lipids that are required for membrane biogenesis and the assembly of many diverse complex glycoconjugates in eukaryotic and prokaryotic cells. Despite their crucial roles in membrane biology, very little is known about their structures and the precise mechanism(s) by which they overcome the biophysical barriers of the hydrophobic core, and allow polar head groups to traverse membrane bilayers. This chapter presents methods based on the transport of water-soluble analogues that can be applied to investigate membrane proteins mediating the transverse diffusion of polyisoprenoid-linked glycolipid intermediates involved in the biosynthesis of N-linked glycoproteins, glycosylphosphatidylinositol anchors and bacterial polysaccharides.


Assuntos
Retículo Endoplasmático/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Monoterpenos Acíclicos , Animais , Transporte Biológico Ativo , Sistema Livre de Células , Retículo Endoplasmático/química , Glicolipídeos/análise , Glicoproteínas de Membrana/fisiologia , Métodos , Monoterpenos/análise , Monossacarídeos de Poli-Isoprenil Fosfato/química , Monossacarídeos de Poli-Isoprenil Fosfato/isolamento & purificação , Ratos , Solubilidade , Água/química
5.
Mol Biol Evol ; 19(9): 1451-63, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12200473

RESUMO

On the basis of the analysis of 64 glycosyltransferases from 14 species we propose that several successive duplications of a common ancestral gene, followed by divergent evolution, have generated the mannosyltransferases and the glucosyltransferases involved in asparagine-linked glycosylation (ALG) and phosphatidyl-inositol glycan anchor (PIG or GPI), which use lipid-related donor and acceptor substrates. Long and short conserved peptide motifs were found in all enzymes. Conserved and identical amino acid positions were found for the alpha 2/6- and the alpha 3/4-mannosyltransferases and for the alpha 2/3-glucosyltransferases, suggesting unique ancestors for these three superfamilies. The three members of the alpha 2-mannosyltransferase family (ALG9, PIG-B, and SMP3) and the two members of the alpha 3-glucosyltransferase family (ALG6 and ALG8) shared 11 and 30 identical amino acid positions, respectively, suggesting that these enzymes have also originated by duplication and divergent evolution. This model predicts a common genetic origin for ALG and PIG enzymes using dolichyl-phospho-monosaccharide (Dol-P-monosaccharide) donors, which might be related to similar spatial orientation of the hydroxyl acceptors. On the basis of the multiple sequence analysis and the prediction of transmembrane topology we propose that the endoplasmic reticulum glycosyltransferases using Dol-P-monosaccharides as donor substrate have a multispan transmembrane topology with a first large luminal conserved loop containing the long motif and a small cytosolic conserved loop containing the short motif, different from the classical type II glycosyltransferases, which are anchored in the Golgi by a single transmembrane domain.


Assuntos
Dolicol Monofosfato Manose/metabolismo , Evolução Molecular , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Dolicol Monofosfato Manose/química , Glicosiltransferases/química , Humanos , Dados de Sequência Molecular , Filogenia , Monossacarídeos de Poli-Isoprenil Fosfato/química , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
J Biol Chem ; 274(48): 34072-82, 1999 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-10567375

RESUMO

The assembly of the core oligosaccharide region of asparagine-linked glycoproteins proceeds by means of the dolichol pathway. The first step of this pathway, the reaction of dolichol phosphate with UDP-GlcNAc to form N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-P-P-dolichol), is under investigation as a possible site of metabolic regulation. This report describes feedback inhibition of this reaction by the second intermediate of the pathway, N-acetylglucosaminyl-N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-GlcNAc-P-P-dolichol), and product inhibition by GlcNAc-P-P-dolichol itself. These influences were revealed when the reactions were carried out in the presence of showdomycin, a nucleoside antibiotic, present at concentrations that block the de novo formation of GlcNAc-GlcNAc-P-P-dolichol but not that of GlcNAc-P-P-dolichol. The apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol under basal conditions were 4.4 and 2.8 microM, respectively. Inhibition was also observed under conditions where mannosyl-P-dolichol (Man-P-dol) stimulated the biosynthesis of GlcNAc-P-P-dolichol; the apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol were 2.2 and 11 microM, respectively. Kinetic analysis of the types of inhibition indicated competitive inhibition by GlcNAc-P-P-dolichol toward the substrate UDP-GlcNAc and non-competitive inhibition toward dolichol phosphate. Inhibition by GlcNAc-GlcNAc-P-P-dolichol was uncompetitive toward UDP-GlcNAc and competitive toward dolichol phosphate. A model is presented for the kinetic mechanism of the synthesis of GlcNAc-P-P-dolichol. GlcNAc-P-P-dolichol also exerts a stimulatory effect on the biosynthesis of Man-P-dol, i.e. a reciprocal relationship to that previously observed between these two intermediates of the dolichol pathway. This network of inhibitory and stimulatory influences may be aspects of metabolic control of the pathway and thus of glycoprotein biosynthesis in general.


Assuntos
Monossacarídeos de Poli-Isoprenil Fosfato/antagonistas & inibidores , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Acetilglucosamina/biossíntese , Ácidos/farmacologia , Animais , Embrião de Galinha , Fosfatos de Dolicol/antagonistas & inibidores , Fosfatos de Dolicol/metabolismo , Dolicóis/análogos & derivados , Dolicóis/biossíntese , Hidrólise/efeitos dos fármacos , Cinética , Lipídeos/biossíntese , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/química , Oligossacarídeos de Poli-Isoprenil Fosfato/antagonistas & inibidores , Oligossacarídeos de Poli-Isoprenil Fosfato/química , Oligossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Retina/efeitos dos fármacos , Retina/embriologia , Retina/metabolismo , Showdomicina/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Trítio , Uridina Difosfato N-Acetilglicosamina/antagonistas & inibidores , Uridina Difosfato N-Acetilglicosamina/metabolismo , Uridina Monofosfato/metabolismo
7.
Glycobiology ; 8(10): 955-62, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9719676

RESUMO

We isolated from the endogenous polyprenyl-phospho-sugar pool of Mycobacterium smegmatis two mannose-containing compounds, i.e., a partially saturated C35-octahydroheptaprenyl-P-mannose and a fully unsaturated C50-decaprenyl-P-mannose. The relative amount of C35-polyprenyl-P-mannose in mycobacterial cells was comparable to that of decaprenyl- P-pentoses and, at least, an order of magnitude higher than that of C50-decaprenyl-P-mannose. The major form of mycobacterial polyprenyl-P-mannose was structurally characterized by combined gas chromatography-mass spectrometry, fast-atom bombardment tandem mass spectrometry and proton-nuclear magnetic resonance spectroscopy as beta-d-mannopyranosyl-monophospho-(C35)octahydroheptapren ol of which all three isoprene units have Z ( cis ) configuration. The differences in the structure and cellular concentrations of the mycobacterial mannosyl-P-polyprenols reflect distinct biochemical pathways of the two compounds and suggest the existence of specific GDP-Man:polyprenyl-P mannosyltransferases (synthetases) able to distinguish between C35-octahydroheptaprenyl- and C50-decaprenyl- phosphates of mycobacteria. Since the 6'-O-mycoloylated form of C35-octahydroheptaprenyl-P-mannose isolated from M. smegmatis is apparently involved in mycolate rather than mannosyl transfer reactions, we speculate that a catabolic pathway responsible for degradation of C35-P-mannose and recycling C35-octahydroheptaprenyl phosphate might exist in mycobacteria.


Assuntos
Mycobacterium smegmatis/química , Monossacarídeos de Poli-Isoprenil Fosfato/isolamento & purificação , Configuração de Carboidratos , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Monossacarídeos de Poli-Isoprenil Fosfato/química , Espectrometria de Massas de Bombardeamento Rápido de Átomos
8.
Proc Natl Acad Sci U S A ; 95(5): 2100-4, 1998 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-9482845

RESUMO

Isopentenyl diphosphate, the common precursor of all isoprenoids, has been widely assumed to be synthesized by the acetate/mevalonate pathway in all organisms. However, based on in vivo feeding experiments, isopentenyl diphosphate formation in several eubacteria, a green alga, and plant chloroplasts has been demonstrated very recently to originate via a mevalonate-independent route from pyruvate and glyceraldehyde 3-phosphate as precursors. Here we describe the cloning from peppermint (Mentha x piperita) and heterologous expression in Escherichia coli of 1-deoxy-D-xylulose-5-phosphate synthase, the enzyme that catalyzes the first reaction of this pyruvate/glyceraldehyde 3-phosphate pathway. This synthase gene contains an ORF of 2,172 base pairs. When the proposed plastid targeting sequence is excluded, the deduced amino acid sequence indicates the peppermint synthase to be about 650 residues in length, corresponding to a native size of roughly 71 kDa. The enzyme appears to represent a novel class of highly conserved transketolases and likely plays a key role in the biosynthesis of plastid-derived isoprenoids essential for growth, development, and defense in plants.


Assuntos
Hemiterpenos , Plantas Comestíveis/enzimologia , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Transcetolase/química , Transcetolase/metabolismo , Sequência de Aminoácidos , Sequência Consenso , Escherichia coli/enzimologia , Evolução Molecular , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Ácido Mevalônico , Dados de Sequência Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Filogenia , Folhas de Planta , Plantas Comestíveis/classificação , Monossacarídeos de Poli-Isoprenil Fosfato/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transferases/metabolismo
9.
J Biol Chem ; 250(8): 2842-54, 1975 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16509041

RESUMO

The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.


Assuntos
Glicoproteínas/biossíntese , Manose/análogos & derivados , Manosiltransferases/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Glândula Tireoide/metabolismo , Animais , Bovinos , Dolicol Monofosfato Manose/metabolismo , Fosfatos de Dolicol/farmacologia , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Manose/biossíntese , Manose/química , Manose/metabolismo , Manosídeos/biossíntese , Manosídeos/metabolismo , Açúcares de Nucleosídeo Difosfato/metabolismo , Monossacarídeos de Poli-Isoprenil Fosfato/química , Frações Subcelulares/metabolismo , Glândula Tireoide/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...