Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 119(4): 3598-3607, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29231267

RESUMO

PACT is a stress-modulated activator of protein kinase PKR (protein kinase, RNA activated), which is involved in antiviral innate immune responses and stress-induced apoptosis. Stress-induced phosphorylation of PACT is essential for PACT's increased association with PKR leading to PKR activation, phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. PACT-induced PKR activation is negatively regulated by TRBP (transactivation response element RNA-binding protein), which dissociates from PACT after PACT phosphorylation in response to stress signals. The conserved double-stranded RNA binding motifs (dsRBMs) in PKR, PACT, and TRBP mediate protein-protein interactions, and the stress-dependent phosphorylation of PACT changes the relative strengths of PKR-PACT, PACT-TRBP, and PACT-PACT interactions to bring about a timely and transient PKR activation. This regulates the general kinetics as well as level of eIF2α phosphorylation, thereby influencing the cellular response to stress either as recovery and survival or elimination by apoptosis. In the present study, we evaluated the effect of specific mutations within PACT's two evolutionarily conserved dsRBMs on dsRNA-binding, and protein-protein interactions between PKR, PACT, and TRBP. Our data show that the two motifs contribute to varying extents in dsRNA binding, and protein interactions. These findings indicate that although the dsRBM motifs have high sequence conservation, their functional contribution in the context of the whole proteins needs to be determined by mutational analysis. Furthermore, using a PACT mutant that is deficient in PACT-PACT interaction but competent for PACT-PKR interaction, we demonstrate that PACT-PACT interaction is essential for efficient PKR activation.


Assuntos
Motivo de Ligação ao RNA de Cadeia Dupla/fisiologia , RNA de Cadeia Dupla/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Células COS , Chlorocebus aethiops , Motivo de Ligação ao RNA de Cadeia Dupla/genética , Células HeLa , Humanos , Fosforilação/genética , Fosforilação/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Técnicas do Sistema de Duplo-Híbrido , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
2.
Biochim Biophys Acta Gene Regul Mech ; 1860(12): 1179-1188, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29109067

RESUMO

microRNAs (miRNAs) are first transcribed as long, primary transcripts, which are then processed by multiple enzymes and proteins to generate the single-stranded, approximately 22-nucleotide (nt)-long mature miRNAs. A critical step in animal miRNA biogenesis is the cleavage of primary miRNA transcripts (pri-miRNAs) to produce precursor miRNAs (pre-miRNAs) by the enzyme Drosha. How Drosha recognizes its substrates remains incompletely understood. In this study we constructed a series of human Drosha mutants and examined their enzymatic activities and interaction with RNAs. We found that the N-terminal region is required for the nuclear localization and cellular function of Drosha. And in contrast to previous reports, we showed that the double-stranded RNA binding domain (RBD) of Drosha exhibited a weak but noticeable affinity for RNA. Compared to the RBDs of other RNA-binding proteins, the RBD of Drosha has a short insert, whose mutations reduced RNA binding and pri-miRNA cleavage. Overexpression of Drosha RBD mutants in a reporter assay corroborated their deficiencies in Drosha activity in cell cultures. In addition, we found that point mutations in the RNaseIIIb domain of Drosha implicated in Wilms tumors differentially affected cleavage of the 5' and 3' strands of pri-miRNAs in vitro. In conclusion, our results provided important insights into the mechanism of pri-miRNA processing by human Drosha.


Assuntos
Motivo de Ligação ao RNA de Cadeia Dupla/fisiologia , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Ribonuclease III/fisiologia , Células Cultivadas , Humanos , Mutação , RNA/metabolismo , Ribonuclease III/química
3.
PLoS One ; 12(8): e0182445, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28792523

RESUMO

Canonical processing of miRNA begins in the nucleus with the Microprocessor complex, which is minimally composed of the RNase III enzyme Drosha and two copies of its cofactor protein DGCR8. In structural analogy to most RNase III enzymes, Drosha possesses a modular domain with the double-stranded RNA binding domain (dsRBD) fold. Unlike the dsRBDs found in most members of the RNase III family, the Drosha-dsRBD does not display double-stranded RNA binding activity; perhaps related to this, the Drosha-dsRBD amino acid sequence does not conform well to the canonical patterns expected for a dsRBD. In this article, we investigate the impact on miRNA processing of engineering double-stranded RNA binding activity into Drosha's non-canonical dsRBD. Our findings corroborate previous studies that have demonstrated the Drosha-dsRBD is necessary for miRNA processing and suggest that the amino acid composition in the second α-helix of the domain is critical to support its evolved function.


Assuntos
Motivo de Ligação ao RNA de Cadeia Dupla/fisiologia , MicroRNAs/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Motivo de Ligação ao RNA de Cadeia Dupla/genética , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli , Engenharia Genética , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice/genética , Conformação Proteica em alfa-Hélice/fisiologia , Ribonuclease III/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...