Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.988
Filtrar
1.
Sci Rep ; 14(1): 12827, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834834

RESUMO

Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Lipopolissacarídeos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , NF-kappa B/metabolismo , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/microbiologia , Camundongos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/microbiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Linhagem Celular Tumoral , Invasividade Neoplásica , Inflamação/metabolismo , Inflamação/patologia , Bacteroidetes , Microbioma Gastrointestinal , Movimento Celular/efeitos dos fármacos , Masculino , Metástase Neoplásica , Proliferação de Células , Feminino
2.
J Toxicol Sci ; 49(6): 281-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825487

RESUMO

Nitric oxide (NO) plays a physiological role in signal transduction and excess or chronic NO has toxic effects as an inflammatory mediator. NO reversibly forms protein S-nitrosylation and exerts toxicological functions related to disease progression. DNA methyltransferases, epigenome-related enzymes, are inhibited in enzymatic activity by S-nitrosylation. Therefore, excess or chronic NO exposure may cause disease by altering gene expression. However, the effects of chronic NO exposure on transcriptome are poorly understood. Here, we performed transcriptome analysis of A549, AGS, HEK293T, and SW48 cells exposed to NO (100 µM) for 48 hr. We showed that the differentially expressed genes were cell-specific. Gene ontology analysis showed that the functional signature of differentially expressed genes related to cell adhesion or migration was upregulated in several cell lines. Gene set enrichment analysis indicated that NO stimulated inflammation-related gene expression in various cell lines. This finding supports previous studies showing that NO is closely involved in inflammatory diseases. Overall, this study elucidates the pathogenesis of NO-associated inflammatory diseases by focusing on changes in gene expression.


Assuntos
Perfilação da Expressão Gênica , Óxido Nítrico , Transcriptoma , Humanos , Óxido Nítrico/metabolismo , Transcriptoma/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Células HEK293 , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Inflamação/genética , Inflamação/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
J Gene Med ; 26(6): e3708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837511

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Assuntos
Movimento Celular , Proliferação de Células , Quimiocina CCL2 , Células Epiteliais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Lisofosfolipídeos , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Progressão da Doença , Transdução de Sinais/efeitos dos fármacos , Esôfago/metabolismo , Esôfago/patologia , Esôfago/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos
4.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38822516

RESUMO

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Assuntos
Caderinas , Toxina Diftérica , Transição Epitelial-Mesenquimal , Regiões Promotoras Genéticas , Humanos , Células A549 , Antígenos CD/genética , Antígenos CD/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos , Toxina Diftérica/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Genes Transgênicos Suicidas , Regiões Promotoras Genéticas/genética , Vimentina/genética , Vimentina/metabolismo
5.
J Cell Mol Med ; 28(11): e18442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842135

RESUMO

Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.


Assuntos
Apoptose , Biflavonoides , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transdução de Sinais , Proteína Supressora de Tumor p53 , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Biflavonoides/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Transdução de Sinais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Biologia Computacional/métodos
6.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 108-113, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836673

RESUMO

Oridonin belongs to a small molecule from the Chinese herb Rabdosia rubescens with potent anticancer activity. In spite of the lncRNA AFAP1-AS1 has been proven to exert promoting function in lung cancer, its relationship with oridonin in lung cancer is obscure. Therefore, our study planned to explore the potential of oridonin in lung cancer as well as unveil the regulatory mechanism of oridonin on AFAP1-AS1 in lung cancer cells. In the present study, oridonin inhibited lung cancer cell proliferation, migration, as well as invasion, as evidenced by MTT, wound healing, as well as transwell assays. Besides, we observed that oridonin could downregulate AFAP1-AS1 expression, and overexpressed AFAP1-AS1 could reverse the repressive effects of oridonin on lung cancer cell proliferation, migration, as well as invasion. More importantly, we found that AFAP1-AS1 could bind to IGF2BP1 through starBase prediction and RIP assay. The expression level of IGF2BP1 was also reduced by oridonin treatment but reversed after AFAP1-AS1 overexpression. Additionally, we proved that overexpressed IGF2BP1 could reverse the repressive impacts of oridonin on lung cancer cell proliferation, migration, as well as invasion. Further, in vivo experiments validated the repressive role of oridonin on tumor growth of lung cancer. Together, oridonin inhibits lung cancer cell proliferation as well as migration by modulating AFAP1-AS1/IGF2BP1, and AFAP1-AS1/IGF2BP1 possesses the potential to be a promising therapy targeting for lung cancer, especially in oridonin treatment.


Assuntos
Movimento Celular , Proliferação de Células , Diterpenos do Tipo Caurano , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , RNA Longo não Codificante , Proteínas de Ligação a RNA , Diterpenos do Tipo Caurano/farmacologia , Humanos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Camundongos Nus , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Células A549
7.
Front Endocrinol (Lausanne) ; 15: 1386309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846494

RESUMO

Introduction: Leptin and its receptors are expressed by the human placenta throughout gestation, yet the role of leptin in early human placental development is not well characterized. Leptin is overexpressed in the placentas from preeclamptic (PE) pregnancies. PE can result from the impaired invasion of fetal placental cells, cytotrophoblasts (CTBs), into the maternal decidua. We hypothesized that elevated leptin levels would impair human CTB invasion. Methods: The effects of leptin on the invasion of human CTBs were evaluated in three cell models, HTR-8/SVneo cells, primary CTBs, and placental villous explants using invasion assays. Further, leptin receptor expression was characterized in all three cell models using RT-PCR. Further phosphokinase assays were performed in HTR-8/SVneo cells to determine signaling pathways involved in CTB invasion in response to differential leptin doses. Results: We found that, prior to 8 weeks gestation, leptin promoted CTB invasion in the explant model. After 11 weeks gestation in explants, primary CTBs and in HTR-8/SVneo cells, leptin promoted invasion at moderate but not at high concentrations. Further, leptin receptor characterization revealed that leptin receptor expression did not vary over gestation, however, STAT, PI3K and MAPK pathways showed different signaling in response to varied leptin doses. Discussion: These data suggest that the excess placental leptin observed in PE may cause impaired CTB invasion as a second-trimester defect. Leptin's differential effect on trophoblast invasion may explain the role of hyperleptinemia in preeclampsia pathogenesis.


Assuntos
Idade Gestacional , Leptina , Receptores para Leptina , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia , Leptina/metabolismo , Leptina/farmacologia , Feminino , Gravidez , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Placenta/metabolismo , Placenta/efeitos dos fármacos , Placenta/patologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Relação Dose-Resposta a Droga , Transdução de Sinais , Placentação/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
8.
J Environ Sci (China) ; 145: 1-12, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844310

RESUMO

The potential association between colorectal cancer (CRC) and environmental pollutants is worrisome. Previous studies have found that some perfluoroalkyl acids, including perfluorooctane sulfonate (PFOS), induced colorectal tumors in experimental animals and promoted the migration of and invasion by CRC cells in vitro, but the underlying mechanism is unclear. Here, we investigated the effects of PFOS on the proliferation and migration of CRC cells and the potential mechanisms involving activating the PI3K/Akt-NF-κB signal pathway and epithelial-mesenchymal transition (EMT). It was found that PFOS promoted the growth and migration of HCT116 cells at non-cytotoxic concentrations and increased the mRNA expression of the migration-related angiogenic cytokines vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). In a mechanistic investigation, the up-stream signal pathway PI3K/Akt-NF-κB was activated by PFOS, and the process was suppressed by LY294002 (PI3K/Akt inhibitor) and BAY11-7082 (NF-κB inhibitor) respectively, leading to less proliferation of HCT116 cells. Furthermore, matrix metalloproteinases (MMP) and EMT-related markers were up-regulated after PFOS exposure, and were also suppressed respectively by LY294002 and BAY11-7082. Moreover, the up-regulation of EMT markers was suppressed by a MMP inhibitor GM6001. Taken together, our results indicated that PFOS promotes colorectal cancer cell migration and proliferation by activating the PI3K/Akt-NF-κB signal pathway and epithelial-mesenchymal transition. This could be a potential toxicological mechanism of PFOS-induced malignant development of colorectal cancer.


Assuntos
Ácidos Alcanossulfônicos , Movimento Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Fluorocarbonos , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Colorretais/patologia , Humanos , Movimento Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Células HCT116 , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
9.
J Transl Med ; 22(1): 528, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824544

RESUMO

Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 µmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.


Assuntos
Aminoácidos , Proliferação de Células , Fluoretos , Músculo Liso Vascular , Ratos Sprague-Dawley , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Fluoretos/farmacologia , Linhagem Celular , Aminoácidos/metabolismo , Proliferação de Células/efeitos dos fármacos , Ratos , Movimento Celular/efeitos dos fármacos , Masculino , Aorta/patologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Metabolômica , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Redes Reguladoras de Genes/efeitos dos fármacos
10.
Oncol Res ; 32(6): 1047-1061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827317

RESUMO

Background: Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. In many cases, the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluorouracil (5-FU). The epithelial-to-mesenchymal transition (EMT) and dysregulation in protein methylation are two mechanisms associated with chemoresistance in many cancers. This study looked into the effect of 5-FU dose escalation on EMT and protein methylation in CRC. Materials and Methods: HCT-116, Caco-2, and DLD-1 CRC cell lines were exposed to dose escalation treatment of 5-FU. The motility and invasive potentials of the cells before and after treatment with 5-FU were investigated through wound healing and invasion assays. This was followed by a Western blot which analyzed the protein expressions of the epithelial marker E-cadherin, mesenchymal marker vimentin, and the EMT transcription factor (EMT-TF), the snail family transcriptional repressor 1 (Snail) in the parental and desensitized cells. Western blotting was also conducted to study the protein expressions of the protein methyltransferases (PMTs), Euchromatic histone lysine methyltransferase 2 (EHMT2/G9A), protein arginine methyltransferase (PRMT5), and SET domain containing 7/9 (SETD7/9) along with the global lysine and arginine methylation profiles. Results: The dose escalation method generated 5-FU desensitized CRC cells with distinct morphological features and increased tolerance to high doses of 5-FU. The 5-FU desensitized cells experienced a decrease in migration and invasion when compared to the parental cells. This was reflected in the observed reduction in E-cadherin, vimentin, and Snail in the desensitized cell lines. Additionally, the protein expressions of EHMT2/G9A, PRMT5, and SETD7/9 also decreased in the desensitized cells and global protein lysine and arginine methylation became dysregulated with 5-FU treatment. Conclusion: This study showed that continuous, dose-escalation treatment of 5-FU in CRC cells generated 5-FU desensitized cancer cells that seemed to be less aggressive than parental cells.


Assuntos
Movimento Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/administração & dosagem , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antimetabólitos Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Relação Dose-Resposta a Droga , Metiltransferases/metabolismo , Metiltransferases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética
11.
Folia Biol (Praha) ; 70(1): 53-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38830123

RESUMO

Psoriasis is a chronic non-contagious autoimmune disease. Gallic acid is a natural compound with potential health benefits, including antioxidant, anticancer, antiviral and antibacterial properties. Nevertheless, the influence of gallic acid on psoriasis has not been fully determined. This investigation aimed to discover the effect of gallic acid on psoriasis. Thirty-one pairs of psoriatic skin tissues and healthy adult human skin tissues were collected. Human keratinocytes (HaCaT cells) were transfected with interleukin 17A (IL-17A) to create the psoriatic keratinocyte model. The content of bromodomain-containing protein 4 (BRD4) microRNA was assessed using qRT-PCR testing. The content of BRD4 was detected by Western blotting. Cell migration was evaluated by conducting a wound healing assay. Cell proliferation was determined using an EdU assay. Apoptosis was detected by the TUNEL assay. The contents of interferon gamma (IFN-γ), IL-6, IL-8 and IL-17 were detected by ELISA. BRD4 was up-regulated in psoriatic skin tissues and in the IL-17A group compared to the healthy adult human skin tissues and the control group. Silencing BRD4 inhibited cell migration, proliferation and inflammatory response but induced apoptosis in IL-17A-treated HaCaT cells. Conversely, BRD4 over-expression promoted cell migration, proliferation and inflammatory response but suppressed apoptosis in IL-17A-treated HaCaT cells. Gallic acid repressed cell migration, proliferation and inflammatory response but indu-ced apoptosis in HaCaT cells transfected with IL-17A by down-regulating BRD4. Gallic acid represses cell migration, proliferation and inflammatory response but induces apoptosis in IL-17A-transfected HaCaT cells by down-regulating BRD4.


Assuntos
Apoptose , Proteínas de Ciclo Celular , Movimento Celular , Proliferação de Células , Ácido Gálico , Inflamação , Queratinócitos , Psoríase , Fatores de Transcrição , Humanos , Psoríase/metabolismo , Psoríase/patologia , Psoríase/tratamento farmacológico , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ácido Gálico/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Apoptose/efeitos dos fármacos , Inflamação/patologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Interleucina-17/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Masculino , Células HaCaT , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Linhagem Celular , Proteínas que Contêm Bromodomínio
12.
Sci Rep ; 14(1): 12716, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830933

RESUMO

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Assuntos
Carotenoides , Hipertensão Pulmonar , Hipóxia , Metaloproteinase 2 da Matriz , Inibidor Tecidual de Metaloproteinase-1 , Animais , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Camundongos , Hipóxia/metabolismo , Hipóxia/complicações , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Carotenoides/farmacologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Masculino , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Modelos Animais de Doenças , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína Smad3/metabolismo , Movimento Celular/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos
13.
Ren Fail ; 46(1): 2347462, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38832497

RESUMO

Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/ß-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of ß-catenin arrested cell migration and reduced the expression levels of Wnt/ß-catenin signaling-related molecules (Wnt4, p-GSK3ß and ß-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of ß-catenin. Furthermore, the combination of Ori treatment and ß-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/ß-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Diterpenos do Tipo Caurano , Fibrose , Ratos Sprague-Dawley , Via de Sinalização Wnt , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/etiologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/uso terapêutico , Ratos , Fibrose/tratamento farmacológico , Humanos , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Linhagem Celular , beta Catenina/metabolismo , Movimento Celular/efeitos dos fármacos , Rim/patologia , Rim/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/metabolismo
14.
J Cancer Res Clin Oncol ; 150(6): 287, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833016

RESUMO

BACKGROUND: Butyrate is a common short-chain fatty acids (SCFA), and it has been demonstrated to regulate the development of breast cancer (BC), while the underlying mechanism is still unreported. METHODS: Gas chromatography was used to measure the amounts of SCFA (acetate, propionate, and butyrate) in the feces. Cell viability was measured by the CCK-8 assay. The wound healing assay demonstrated cell migration, and the transwell assay demonstrated cell invasion. The levels of protein and gene were determined by western blot assay and RT-qPCR assay, respectively. RESULTS: The levels of SCFA were lower in the faecal samples from BC patients compared to control samples. In cellular experiments, butyrate significantly suppressed the cell viability, migration and invasion of T47D in a dose-dependent manner. In animal experiments, butyrate effectively impeded the growth of BC tumors. Toll like receptor 4 (TLR4) was highly expressed in the tumors from BC patients. Butyrate inhibited the expression of TLR4. In addition, butyrate promoted the expression of cuproptosis-related genes including PDXK (pyridoxal kinase) and SLC25A28 (solute carrier family 25 member 28), which was lowly expressed in BC tumors. Importantly, overexpression of TLR4 can reverses the promotion of butyrate to PDXK and SLC25A28 expression and the prevention of butyrate to the malignant biological behaviors of T47D cells. CONCLUSION: In summary, butyrate inhibits the development of BC by facilitating the expression of PDXK and SLC25A28 through inhibition of TLR4. Our investigation first identified a connection among butyrate, TLR4 and cuproptosis-related genes in BC progression. These findings may provide novel target for the treatment of BC.


Assuntos
Neoplasias da Mama , Butiratos , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Butiratos/farmacologia , Animais , Camundongos , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C
15.
Arch Dermatol Res ; 316(7): 341, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847867

RESUMO

Topical tirbanibulin is a highly effective and well tolerated novel treatment option for actinic keratoses (AKs). This study aimed to characterize the mode of action of tirbanibulin in keratinocytes (NHEK) and cutaneous squamous cell carcinoma (cSCC) cell lines (A431, SCC-12) in vitro. Tirbanibulin significantly reduced proliferation in a dose-dependent manner in all investigated cell lines, inhibited migration, and induced G2/M-cell cycle arrest only in the cSCC cell lines analyzed, and induced apoptosis solely in A431, which showed the highest sensitivity to tirbanibulin. In general, we detected low basal expression of phosphorylated SRC in all cell lines analyzed, therefore, interference with SRC signaling does not appear to be the driving force regarding the observed effects of tirbanibulin. The most prominent tirbanibulin-mediated effect was on ß-tubulin-polymerization, which was especially impaired in A431. Additionally, tirbanibulin induced an increase of the proinflammatory cytokines IL-1α, bFGF and VEGF in A431. In conclusion, tirbanibulin mediated anti-tumor effects predominantly in A431, while healthy keratinocytes and more dedifferentiated SCC-12 were less influenced. These effects of tirbanibulin are most likely mediated via dysregulation of ß-tubulin-polymerization and may be supported by proinflammatory aspects.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Queratinócitos , Neoplasias Cutâneas , Tubulina (Proteína) , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Polimerização/efeitos dos fármacos , Ceratose Actínica/tratamento farmacológico , Ceratose Actínica/patologia , Ceratose Actínica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetamidas , Morfolinas , Piridinas
16.
Med Oncol ; 41(7): 170, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847902

RESUMO

Salvianolic acid B (Sal B) has demonstrated anticancer activity against various types of cancer. However, the underlying mechanism of Sal B-mediated anticancer effects remains incompletely understood. This study aims to investigate the impact of Sal B on the growth and metastasis of human A549 lung cells, as well as elucidate its potential mechanisms. In this study, different concentrations of Sal B were administered to A549 cells. The effects on migration and invasion abilities were assessed using MTT, wound healing, and transwell assays. Flow cytometry analysis was employed to evaluate Sal B-induced apoptosis in A549 cells. Western blotting and immunohistochemistry were conducted to measure the expression levels of cleaved caspase-3, cleaved PARP, and E-cadherin. Commercial kits were utilized for detecting intracellular reactive oxygen species (ROS) and NAD+. Additionally, a xenograft model with transplanted A549 tumors was employed to assess the anti-tumor effect of Sal B in vivo. The expression levels of NDRG2, p-PTEN, and p-AKT were determined through western blotting. Our findings demonstrate that Sal B effectively inhibits proliferation, migration, and invasion in A549 cells while inducing dose-dependent apoptosis. These apoptotic responses and inhibition of tumor cell metastasis are accompanied by alterations in intracellular ROS levels and NAD+/NADH ratio. Furthermore, our in vivo experiment reveals that Sal B significantly suppresses A549 tumor growth compared to an untreated control group while promoting increased cleavage of caspase-3 and PARP. Importantly, we observe that Sal B upregulates NDRG2 expression while downregulating p-PTEN and p-AKT expressions. Collectively, our results provide compelling evidence supporting the ability of Sal B to inhibit both growth and metastasis in A549 lung cancer cells through oxidative stress modulation as well as involvement of the NDRG2/PTEN/AKT pathway.


Assuntos
Benzofuranos , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Estresse Oxidativo , PTEN Fosfo-Hidrolase , Transdução de Sinais , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Animais , Proliferação de Células/efeitos dos fármacos , Benzofuranos/farmacologia , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Depsídeos
17.
Arch Dermatol Res ; 316(7): 338, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847916

RESUMO

Diabetic foot ulcer (DFU) is a predominant complication of diabetes mellitus with poor prognosis accompanied by high amputation and mortality rates. Dang-Gui-Si-Ni decoction (DSD), as a classic formula with a long history in China, has been found to improve DFU symptoms. However, mechanism of DSD for DFU therapy remains unclear with no systematic elaboration. In vivo, following establishment of DFU rat model, DSD intervention with low, medium and high doses was done, with Metformin (DM) as a positive control group. With wound healing detection, pathological changes by HE staining, inflammatory factor expression by ELISA and qRT-PCR, oxidative stress levels by ELISA, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were performed. In vitro, intervention with LY2109761 (TGF-ß pathway inhibitor) based on DSD treatment in human dermal fibroblast-adult (HDF-a) cells was made. Cell viability by CCK8, migration ability by cell scratch, apoptosis by flow cytometry, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were measured. DFU rats exhibited elevated AGEs/RAGE expression, whereas decreased TGF-ß1 and p-Smad3/Smad3 protein expression, accompanied by higher IL-1ß, IL-6, TNF-α levels, and oxidative stress. DSD intervention reversed above effects. Glucose induction caused lower cell viability, migration, TGF-ß1 and p-Smad3/Smad3 protein expression, with increased apoptosis and AGEs/RAGE expression in HDF-a cells. These effects were reversed after DSD intervention, and further LY2109761 intervention inhibited DSD effects in cells. DSD intervention may facilitate wound healing in DFU by regulating expression of AGEs/RAGE/TGF-ß/Smad2/3, providing scientific experimental evidence for DSD clinical application for DFU therapy.


Assuntos
Pé Diabético , Medicamentos de Ervas Chinesas , Produtos Finais de Glicação Avançada , Proteína Smad2 , Proteína Smad3 , Cicatrização , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Pé Diabético/patologia , Animais , Cicatrização/efeitos dos fármacos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Proteína Smad2/metabolismo , Humanos , Proteína Smad3/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
18.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724836

RESUMO

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Assuntos
Adenocarcinoma , Antineoplásicos , Apoptose , Portadores de Fármacos , Transição Epitelial-Mesenquimal , Nanopartículas , Neoplasias da Próstata , Piranos , Ratos Wistar , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Animais , Piranos/farmacologia , Piranos/administração & dosagem , Apoptose/efeitos dos fármacos , Humanos , Ratos , Linhagem Celular Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Portadores de Fármacos/química , Nanopartículas/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Movimento Celular/efeitos dos fármacos , Células PC-3 , Sistemas de Liberação de Medicamentos/métodos , Policetídeos de Poliéter
19.
Integr Cancer Ther ; 23: 15347354241253846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721848

RESUMO

Vikil 20 is an herbal formula produced in Ghana and is widely marketed as a product to boost immunity as well as for general well-being. However, the pharmacological effect of this herbal preparation has not been proven scientifically. Therefore, this study was aimed at investigating the antioxidative as well as the anti-prostate cancer effects of the product. To assess the antioxidative effect of Vikil 20, the DPPH and ABTS activities were investigated. The total phenolic content was investigated using the Folin-Ciocalteu method. The cytotoxic effect of Vikil 20 against prostate cancer (PC-3) cells as well as normal (RAW 264.7) cells was investigated using the MTT assay whereas its anti-metastatic effect was analyzed using the cell migration assay. The effect of Vikil 20 on cell adhesion was analyzed via the cell adhesion assay whereas its effect on TNF-α secretion was investigated using a TNF-α detection kit. Vikil 20 demonstrated significant antioxidant effects by suppressing 57.61% and 92.88% respectively of DPPH and ABTS radicals at 1000 µg/mL with total phenolic contents of 140.45 mg GAE/g. Vikil 20 suppressed the proliferation of PC-3 cells by reducing the number of viable cells to 49.5% while sparing the RAW, 264.7 cells. Further, Vikil 20 significantly suppressed both cellular migration and adhesion of prostate cancer cells. Finally, suppression of cellular migration and adhesion is associated with a reduction in TNF-α secretion by PC-3 cells. Taken together, Vikil 20 was found to possess significant antioxidant and anti-prostate cancer effects in vitro.


Assuntos
Antioxidantes , Movimento Celular , Proliferação de Células , Extratos Vegetais , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células/efeitos dos fármacos , Células PC-3 , Antioxidantes/farmacologia , Movimento Celular/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Radicais Livres/metabolismo , Extratos Vegetais/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Fenóis/farmacologia
20.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727264

RESUMO

Natural killer (NK) cells can migrate quickly to the tumor site to exert cytotoxic effects on tumors, and some chemokines, including CXCL8, CXCL10 or and CXCL12, can regulate the migration of NK cells. Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is highly expressed in tumor tissues and involved in tumor development and immune cell activation. In this study, we focus on the effects of activin A on NK cell migration. In vitro, activin A induced NK cell migration and invasion, promoted cell polarization and inhibited cell adhesion. Moreover, activin A increased Ca2+, p-SMAD3 and p-AKT levels in NK cells. An AKT inhibitor and Ca2+ chelator partially blocked activin A-induced NK cell migration. In vivo, exogenous activin A increased tumor-infiltrating NK cells in NS-1 cell solid tumors and inhibited tumor growth, and blocking endogenous activin A with anti-activin A antibody reduced tumor-infiltrating NK cells in 4T-1 cell solid tumors. These results suggest that activin A induces NK cell migration through AKT signaling and calcium signaling and may enhance the antitumor effect of NK cells by increasing tumor-infiltrating NK cells.


Assuntos
Ativinas , Sinalização do Cálcio , Movimento Celular , Células Matadoras Naturais , Proteínas Proto-Oncogênicas c-akt , Ativinas/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Animais , Movimento Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...